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A Stone-Weierstrass theorem for Banach lattices

by
RAINER J. NAGEL (Tithingen)

Absteact, Lot /7 be o Banach lablico” with a quagi-interior point wel ., and
let I be a sublattice of I containing w. Using the representation theory for such
Banaeh latticos wo give a necessary and sufficient condition for H to be dense in K.
The elassical Stone--Weiorstrass theorem for # == ((X) and other known results for
LP-gpaces and Banach funelion spaces are cagy consequonces of the main theorem,

Recently, 1. B. Davies [2] and H. P. Lotz [5] (see also the paper of
H. . Schaefer [9]) developed a representation theory for Banach lattices
with quasi-interior points in the positive cone. 'We restate the main the-
orem:

Let ¥ be a Banach lattice with quasi-interior elements in the posi-
tive cone. Then % is isomorphic to a vector lattice T of continuous numeri-
cal functions on a compact space K (the -“structure space” of %), each -
of which. is infinite only on some rare subset of K. F is a Banach lattice
for the norm transferred from ¥ and contains C(K) as a dense ideal.
This property determines K to within homeomorphism.

This result contains as special cases the Kakutani representation
theorems for AM-spaces with order unit and 4 L-spaces with weak order
unit. Moreover, the structure space K seems to be quite appropriate for
further research on the structure of Banach lattices. In this paper we shall
use it for the investigation of dense sublattices, and we will prove a the-
orem which includes the classical Stone-Weierstrass theorem for Banach
latticos €/ (K) as well as the results of R. EL. Farrell [3] for L’-spaces and
of M, M. Rao [7] for function spaces.

The paper was presented to the Uonference on Functions Spaces
and. Modular Spaces, Poznad, 1 ~ B, October 1971 '

‘We start in Seetion 1 with a more detailed study of the structure
spaco K taking into account the: specific norm stucture of E. In doing
50, wo observe that certain rarve subsets of IC are in some way neglected
by the norm of . We call these sets “Z-null sets”. Using this concept
we ave able to formulate a necessary and sufficient condition for a sub-
lattice H to be dense in B (see Section 2). It is easily seen that the classical
Stone-Weierstrass theovem is subsumed. Further applications are dis-
cussed. in Section 3.

This paper relies strongly on [9], whose terminology is used.
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1. Null sets in the structure space. For the following, B denotes always
a Banach lattice. Let  be a quasi-interior point of the positive cone B (2).
‘We assume now that B is represented according to the above theorem,
such that each ze¥ is identified with a continuous numerical () function
on the compact structure space I, u being the unit fanction. Consequently,
the ideal B, can be identified Wlﬂl the space C(K) of all continuous real-
valued functions on XK.

DErFINITION. A subset N of K is called an H-null set if the ideal
Iy: = {@weB: 5(N) = {0}} is dense.in B.

From Iy = Iy it follows that the closure of an F-null set iy still an
E-null set. If the interior of N is not empty, there exists 0 7 y <C(X) ortho-
gonal to every wely. Hence, Iy cannot be dense in #, and we gee that
every H-null set is a rare subset of K. But for additional information on
B-null sets we have to consider the specific norm structure of H.

Exavmpre 1. Let ¥ = ((K). For every gpekK, I ( 18 a closed proper
ideal in C(K). It follows that the empty set is the only O(K)-null set in K.

ExAwpre 2. Let X be a completely regular space and denote by
0,(X) the Banach lattice of all bounded continuous real-valued functions
on X endowed with the sup-norm. For a strictly positive function 0 veCy (X),
let I be the closed ideal generated by v in 0y(X), i.e. ' = U Nn[—ov,v]

« Cy(X). Since the vector lattice 7,

=Un[—v,0] is 1°Lomorph10 to
neN

0y (X) we conclude that the structure space K of # is homeomorphic to
the structure space of (,(X), hence to the Stone-Tech compactification
BX of X. Denote by 7 the continuous extension of v to X and set N,:
= {pefX: ¥(p) = 0}. N, is contained in fX\ X, and one can show that N,
is a F-null set containing all other F-null sets.

If v is the unit function, we retrieve example 1 and get N, =@,
If X is locally compact and v vanishes at infinity, we have F = (,(X)
(the Banach lattice of all continuous functions vanishing ab infinity)
and N, = X\ X.

Examerr 3. Bvery AL-space F having a weak order unit can be
represented according to the above representation theorem. Since I
is always order complete, the structure space K is extremaly clisconnectod.
Moreover, the closed ideals in F' correspond precisely to the open-and-
closed subsets of K (see [9]: § 3, prop. 7 and § 2, prop. 3, corollary). From
this it follows that, for a rare subset N of K, I, is not contained in a prop-
er closed ideal of 7. Hence every rare subset of K ig a F-null set.

() This means that Hy: =) n[—u, u] is dense in JH.
neN
(3) By a numeérical function we understand a map into the two-point compacti-
fication of R.
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ProposITION 1. Let N be a closed subset of K. The following eonditions
are equivalent:

(a) N is an T-null sel.

(b) For all ¢ > O there exists a neighborhood U of N satisfying: ||z]| < &
for all 0<a<u and o(CU)= {0‘L

(¢) There ewists yell such that y(N) == {oo}.

(A) NV is @ p-null set for all 0 < MeE'(s).

Proof. “(a)=(b)". By assumption, » can be approximated by ele-
ments in Iy Iy is an ideal in B, hence we can find 0 <o << u, rely
such that Hu—mzll < ef2 for a given £> 0. Set ¥ =2(u—2) and U
= {pell: ylp)>1}. T acH satisties 0 <oy, ®(CU)= {0}, then
o<y le’l(l consequently [z| < |lyll < e

“(b) = (¢)”. Choose neighborhoods U, of N satisfying condition (b)
for &, = 27", neN. Then we can find a,cH, 0 < 2, < u, such that #,(N)
= {1}, 2.(CUa) = {0}. For y: = X o, wo get y(N) = {oo}.

“(c) = (d)”. This is obvious.

“(d) = (a)”. Assume that N is a w-null set for all 0 < uef’. Then N
has to be a rare subset of I, and hence, sup@ = « for G: = {wel: velyn
N[0, u]}. In addition, since u is a regular Borel measure on K it follows
that sup{<w, u>: @G} = (Bup@, gy = (w, p), N being a u-null  set.
The corollary 1 of ([8], V. 4.3) shows that u <@, hence Iy = E.

COoROLLARY 1. The countable union of an E-null sets is an E-null set.

Proof. The assertion follows easily by applying condition (d) of
the above proposition.

COROLLARY 2. Let N be a closed E-null set in K. Then K = f(K\N),
i.e efueﬁy bounded continuous real-valued fumction on ENN has a unique
continuous ewtension to K.

Proof. Let # be a bounded continuous real-valued function on K\ .N.
For every #eN choose an open neighborhood U, of ¥ which satisfies the
condition of (b) for &, = 2~" Then we can find ¥,<0(K) which coincide
with 2 on C U,, and form a Cauchy sequence in H. Denote its limit by y < H. y
has to coincide with z on the complement of every U,. Again from condi~
tion (b) it follows that M = ﬂ U, is an B-null set, hence is a rare subset

of K. This shows that the extensmn o of 2 restricted to CM is unique.
A fortiori, y is the unique extension to K of 2. o
We are now able to characterize the two extreme cages occuring In
the Bxamples 1 and 8 by properties involving the norm structure of the
Banach lattice 7, Recall for this that « is an interior point of H, iff iﬁ

(3) B’ can be identified with a subspace of O(XK)".
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is an order unit. In this case & iy isomorphic to an A M-space with order
unit ([87], V. 6.2.C2). On the other hand, the norm of I ig said to be order
continuous it m,eH, x,}0 implies {l,)]0.

Prorvogirion 2. Let B be a Banach latiice, w o quasi-interior point
of B, and let K be the structure space of Il. The empty set is the only B-null
set an I iff u is an interior point of I, . Bvery rare subset of K is am H-null
set iff the norm of B is order continous.

Proof. If w is an interior point of I, , the assertion follows from lxam-
ple 1 and from the remark preceding the proposition. Conversely, let O
be the only H-null set in K. Then, condition (¢) above shows that every
@eli takes only finite values on K. Since K is compact, we can conclude
that » is an order unit and hence an interior point of 7 .

For the proof of the second part of the proposition assume first that
the norm of # is order continuous. Then it is well known that B is order
complete and that the closed ideals in B (which are always bands) corre-
spond precisely to the open-and-cloged subsets of K. Repeating the argu-
ment of Example 3 yields the assertion. Conversely, denote by {w,: Ae)
a downwards directed family in B, with inf,», = 0. This implies inf,x, (@)

=0 for all p< X\ N, N a subget of first category of K. By assumption -

and Corollary 1, N is an H-null set. Choose an open neighborhood U of ¥
satisfying the condition of (b) for &> 0. {;} converges uniformly to 0 on
the complement of U. Hence, there is a ®,e{w,} such that |ja,|| < 2e.

2. A Stone-Weierstrass theorem. As in Section 1, 7 denotes a Banach
lattice with quasi-interior points in the positive cone, represented as a
Banach lattice of continuous numerical functions on a compact gpace K
such that C(K) is dense in . We suppose now that a (linear) sublattice H
of B be given containing a quasi-interior point « of B, . Without loss of
generality we will assume that « is the unit function on K. Under which
(necessary and sufficient) conditions is H dense in B2

For B = ((K) the classical Stone-Weierstrass theorem asserts that H
is dense in O(XK) iff H separates the points of K. In general, H is the com-
pletion of C(K) with respect to a lattice norm coarser than the sup-norm
on O(K). Hence, if H separates the points of K it is eerbainly dense in J.
But as the following example shows, this is far from being necessary.

Talke the Banach lattice I*(N). The sequence u = (2~") is a quasi-
interior point of the positive cone, and the sublattice H spanned by u
and all finite sequences is dense in 7*(N). It is easy to see that the ideal
generated by w« in I*(N) is isomorphic to I°(N). Hence, the structure
space K of I*(NV) is homeomorphic to AN and under the canonical repre-
sentation, the elements of 11(V) become continuous numerical functions.
on AN. In particular, H can be identified with all continnous functions
on N which are constant on SN\ N. This shows that H does nob sepa-
rate the points of the structure space of I*(N).
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© Butb by recalling the results of Section 1, we observe that SN\ N is

priate criterion for the denseness of H in ¥ has to take into account the
existence of F-null sets in K. In particular, separation of points in K
seems o be inadequate. Instead, we will say that the subsets X,, X, of K
are separated by B, F < H, if for every ;e X, pye X, there is a wel satis-
fying @(g.) # @ (@) _

DEPINITION. A subset 7' of I is said to separate the structure space IC
B-essentially if for every pair M, M, of disjoint closed subsets of K,
there oxists am J0-null set N such that F separates M\ N from M\ N,

For B == ((K), the emply set is the only ¢ (K)-null set. Hence a subset
of ((K) separates the structure space K C(K)-essentially iff it sepa,ratgs
the points of K. For the Banach lattice I*(N) it is clear that ﬂN‘\N is
a IH(AN)-null get containing all 1*(N)-null sets. Since the sublattice H
in the above example separates the points of N it separates SN I*(N)-
essentially. .

TumoreM. Let B be o Banach lattice and let H be a sublaitice containing
the quasi-interior point weB, . H is dense in I if and only if H separates
the structure space K of 1 H-essentially.

The following lemma is essential for the first half of the proof of the
theorem and it is also interesting in its own right.

LmvMA. Bvery (norm)-convergent sequence in B contains o subsequence
which converges pointwise on K ewcept for an E-null sel. .

Proof.(*) Tt is sutficient to suppose that (z,) is a positive sequence
in B converging to zero. Choose a subsequence (&, ) of (2,) for which
g, | < 27%, keN. Set mow y: xmzzvmﬂk and M: = {peK: y(p) = oo}

By condition (¢) in Section 1, M is an F-null set. For ¢ ¢M we have}%w% (@)

s ¢ (@) < oo. This proves that wnk(qa) converges to zer_o‘f(‘)r @dM.

Proof of the theorem: ¢ =", If M,, M, are disjoint closed subsets
of K, then exists a continuous function 0 <o < Uy wel, such that o (M)
= {0}, w(M,) = {1}. Assume that H is dense in B. By the above
lemma we can find a sequence in H which converges pointwise to @
except on an H-null set N. This already shows that H separates
M\ N and M,\N. : )

“e ™ Tt s> 0 andweld, 0 < o << w be fixed. Choose 6;<R, 0 < 8 =< 1,

n .
for i =1,...,n such that K =)V, for V=~ ([0 —8, 6;+&l)

il
Tale now a fixed index ie{l,..., n}and set V:= V. The complement CV
of V in K is a countable union of closed sets. Hence it follows from Corol-
lary 1 in Section 1 that H separatesV and Cv excepﬁ for an E-nu.n. set N.
For N we can find an open neighborhood U satisfying the condition (b)

(*) This simple proof is due to M. Wolff,
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of Proposition 1 for ¢/n. C U is a compact space and the elements of H
restricted to C U separate VA CU and CVn CU.

‘We proceed now by using the method known from the proof of the
lattice theoretical Stone-Weierstrass theorem (see [8], V. 8.1): For every
eV CTUand yeCVn CU there exists a 2, , I such that 2, ,(¢) = 2(p)
and 2, ,(y)= &(y). Using the compactness of CU we can find p,, ..., pe
«C VN CU such that for g,:==SUp (2, ;s - ),y ©(#) ) WO haive 2,(p)
=z (p) and z,(p) > 2(y)—2¢ for all 'lpeC U. Repeat this construction
for all pe VN CT. Agam, Vn CU is compact and we can take the infi-
mum Over 2, ..., #,,<H such that #: =inf(e,,...,, )eH and 2(v)
> o () — 2¢ for all 1/JeC U and z(yp) < () + 2 for all veV 0 cu.

Construct such functions #z; for each V:=7V,;, ¢ =1,...,n and

w .
= inf(zy, ..., 2,) eH. Set now U,: = JU;. We can conclude
1

f=
that |¢(p)—y (@) < 4e for all @¢U,. But U, satisfies the condition (b)

define y:

for n% = ¢ Since we can assume that |y| < u, it follows that [ —y|

< 4e4& = be. Thig finighes the proof.

COROLLARY. Let B be a Banach lattice of continuous numerical functions
on a compact space K such that O (K) is dense in B and let H be a subalgebra
of C(K) containing the constants. Then H is dense in H iff H separates K
EB-essentially.

_Proof. Let H, be the closure of H with respect to the sup-norm.
Evidently, H, separates the same sets as H does. But H, is a sublattice
of B (see [1], § 4, no. 2). Since the norm of ¥ is coarser than the sup-norm,
the closure of H in P containg H,.

Remark. Since there are no non-trivial O(XK)-null gets in K, the
classical Stone-Weierstrass theorem is retrieved.

3. Applications. a) Let X be a completely regular gpace and let
ve(y(X) be a strietly positive function on X. We consider the Banach

lattice B: = | n[—v,v] < 0,(X) as in Example 2 of Section 1. Let H
neN

be a sublattice (or subalgebra) of B containing ». The structure space of B
is (homeomorphic to) AX and the E-null sets are all contained in the great-
est H-null set N, (consisting of all pefX on which the continuous exten-
sion of » vanishes). Hlence we can apply our theorem. But it would be
interesting to conclude denseness of H in ¥ from the behaviour of the
elements of H on X alone (and not on the whole of #X). For this purpose
we adopt the following diction: two subsets X, X, of X are completely
separated by F,F < B, if there is a z<F such that 2(¢) < —1 on X,
2(p) =1 on X,.

~ ProrosrrioN. H is dense in B iff every pair X,, X, < X, complotely
separated by E, is already completely separated by H.
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Proof. Every function wel can be extended continuously to fX.
We denote this extension also by #. On the other hand, let # be the Banach
lattice of continuous numerical functions on X which is isomorphic
to . If we choose » to become the unit function 4 on X, the isomorphism
from F onto 7l is the multiplication of the functions in F by the

pumerical function o~

From our main theorem and from the characterization of the Z-null’

sots in 42X it Tollows that H is dense in 2 itf H separates the points in fX\ N,
The above consideration implies that we can talke I instead of ir. Consequen
Iy, we have to prove thati I separates the points of X\ N, iff the condition
of the proposition is satistied.

Lot X,, X, < X bo completely separated by H. Then X,, X, « X
are digjoint, compact and contained in AX\ N, Hence H separates X,
and X,. By the standard argument, we can construct a zeH separating
X, and X, completely. Conversely, let g, , p,be two points in £ X\ N¥,. One can
find neighborhoods of ¢, @, which are completely separated by F. The func-
tion y <M, which separates these sets completely, separates also ¢, and ¢,.

Remark. For v the unit function on X and F = 0,(X) the above
proposition containg the result of B. Mewitt [4] as a special case. If X
is locally compact, » vanishes at infinity and F = (y(X), the subsets
of X completely separated by K are exactly the relatively compact sets
in X. Hence, it follows from the proposition that H is dense in C,(X)
ift H geparates X.

b) Let (X, I, u) be a finite measure space and set B = L?(X, I, u)
for 1 < p < oo. We assume that H is a sublattice of I” containing the
constants. In analogy to the previous example, we say that feI” sepa-
rates completely the measurable sets Xy, X, « X if f(t)< —1 a.e. on X,
f® =1 ae. on X,.(%

ProrosrTioN. H is dense in L” iff the following condition is satisfied:
For every pair of disjoint measurable subsets X, X, of X there ewist meas-
urable sets X, X,, which are completely separated by H for all neN
and for which X, is equal to ) Xy, up to a u-null set.

neN

Proof. B = LP can be ropresented ag a Banach lattice B according
to the representation theorem and in such a way. that L™ ig isomorphic
to ¢ (K), K the structure space of H. Denote by H the isomorphic image
of H in J. Tt turns out that H satisfies the above condition iff for every
pair of disjoint open-and-closed subsets M,, M, of I there exist open-and-
closed sets M, M,, which are completely separated by H and for which
M; is up to an F-null set equal to “% M., i =1,2.

(%) Here, f denotos simultancously & function and it equivalence class in L2,

6 — Studia Mathematica XLVIL1
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Let H be dense in }}”. By the theorem, H separates K E-essen.tiaylly.
Hence there exists an F-null set N in K such that H separates M,\ N
and M,\N. Using the condition (b) of Proposition 1 in Section 1 for
¢ = 1/n and applying the usual compactness argument, we can construct
the sequences of sets which are completely separated by i and whose
u}lion is equal to M,\ DN resp. M,\N. Conversely, let M,, M, be two
“disjoint closed subsets of K. Since the LP-norm is order continuous, K
is extremely discomnected and every rare subset is an F-null set in JK.
Hence we can agsume that M, and M, are open-and-closed. It is now clear
that thg above condition impliex that o separates M, and M, except
for an H-null set.

Remark. First, it is clear that the proposition holds also if H is an
algebra contained in L*. Moreover, the case of a o-finite measure space
can be treated similaxly. This shows that the result of R. F. Farrell [8]
is included. If F.is a Banach function space on (X, I, u) with absolute-
ly continuous norm (see [7]), . Nakano [6] has shown that the norm
of B is even order continuous. Hence nothing essential has to be changed
and Theorem 2.2 of M. M. Rao [7] follows also.

CoroLLARY. Lot X be a compact space, u & finite Borel measure on X
such that every non-empty open set in X has positive measure. C (X) can
be ‘(canonically) identified with a dense sublatiice of L?(X, p), 1< p < oo
if and only if u is regular. ) 7
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Existence of some special bases in Banach spaces

by
P, WOJTARZCZYK (Warszawa)

Absteact. The main result of the paper is that if X is a Banach space with
o basis and ¥ has a normalized basis which is woeakly convergent to zero and sabisties
o cerbain condition, then X --¥ has a normalized basis which is weakly convergent
o zero. A fow similar results for other classes of hases are stated. New bases in 00, 1]
and Iy [0, 1] are construeted. A few results about universal bases are stated.

0. Introduction. In this paper we consider the following problem:
Suppose we have a Banach space X with, a basis and a Banach space Y
with a basis possessing some additional properties. Can we construct
a Dbasis possessing some additional properties in the space X+Y% We
solve this problem for webases and for p-Hilbertian and p-Besselian
bages (for the definitions see below).

Section 1 contains the definitions, notations and gome known facts
which. ave used later. .

The central section of the present paper is Section 2. In this section
we prove one fact on bages in the finite-dimensional Banach space (Prop-
osition 2.1). This proposition is our main tool in Sections 3 and 4.

In Section 3, Proposition 3.1, we prove that if X has a basis and Y
has & wo,-basis satisfying some technical conditions, then X +Y has
a we,-basis. Tn particular, from our results it follows that if ¥ has a shrink-
ing bagis, then X - ¥ has a we-basis.

In Section 4 we prove some analogous theorems for Besselian and
Tilbertian bases. As an application we obtain the existence of some inter-
esting bages in O[0,1] and Ly[0,1] Those examples answer certain
questions of A. Pelezydski [8] (ef. also [10] Problem 11.1). )

Section § is devoted. to universal bases. We prove the non-existence
of we,-basis universal for all wa,-bases. We obtain some information about
bases universal for all shrinking bases. Since the proof of this result is a
simple modification of the preof of Szlenk [12], we only point out the
necessary changes in-his proof. ‘ -

The author is greatly obliged to prof. A. Pelezyhiski for suggesting
the problem and many useful comments during the: preparation’of the
present paper. In particular, the possibility of applying Proposition 2.1
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