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TemoREM 4.3. Let f and ¢ be essentially countable to one bounded com-
plexw valued Borel function on X and Z respeciively. Then T, and T, are
unitarily equivalent if and only if the corresponding first Tind Hellinger—
Halm decompositions of X and Z are equivalent, i.e., if and only if f and P
are equivalent.

Remark. It can happen that f is essentially uncountable to ome, ¢
is countable to one and Ty and 7', are unitarily equivalent. Indeed any

bounded normal operator on a separable Hilbert space is unitarily equiv-

alent to T'y where (y) is the function on I x € (I = Set of positive
integer) given by (w) (%, #) = 4, and where a measure on I X C is deter-
mined by the eperator in question. Note that () is always countable to one.
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measure theory” (Amer. Math. Soo. Trans. Series 1, 10, pago 45). Theorem 3.1 also
follows from his result on the “existence of independent complement for measurable
decompositions which are not one sheeted on any set of positive measure”. I am
grateful to D. Ramachandran for pointing this out to me and for acquainting me
with the contents of Rohlin’s paper. Rohlin’s proofs of the results mentioned rely
on the existence of canonical mysterm of measures and they are obtained in the
process of giving a complete classifications of measurable decompositions of
a Lebesgue Space. Our proof of Theorem 2.2 is directly in the gpirit of classiocal
Hellinger-Hahn theorem for spectral measures. Theorem 3.1 also does not depend
in anyway on canonical system of measures. '
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Linear topologies which are suprema
of dual-less topologies*

by
N. T. PECOK and HORACTO PORTA (Urbana I1L.)

Abstract. Tho first result of this paper is that overy topological linear space
of algebraic dimension at least the continuum is lineamly homeomorp?ﬁc to a sub-
gpace of a dual-less space (i.0., a topological linear space with zero dual) in such a way
that the dimensgion and codimension of the image are equal. Using this result, it is
then proved that the norm topology of many of the classical separable Bmm.ch gpaces
can be written as the supremum of a finite number of dual-less topolog_les. $0mc
extensions of this are given for the non-separable case and for other topologieal linear
SPACES.

0. INTRODUCTION

It is ‘well known that the topology of convergence in measure is one
of the weakest topologies on a function space; for example, on the space
of all Lebesgue measurable functions on [0, 1] the only linear funct:lonal
which is continuous for convergence in measure is the zero functional.
In view of this it may be somewhat surprising that the norm topology
on the classical Banach spaces can be expressed. as simultaneous conver-
gence in three topologies, each of which is an inverse image of a topology
of convergence in meagure. Thig is proved below as a consequence of more
general results concerning the following problems: .

a) which lineax topologies on a vector space are restrictions of “very
weak” topologies on a larger space?

b) which linear topologies on & vector space can be expressed. as
suprema of families of “very weak?” topologies on it )

By a “very weak?” topology we mean a& linear topolo_gy tham: is at
least dual-less in the sense that it does not have any non-trivial continuous
lineaxr functional. Theorems A, B, O below provide some answers to these
problems. ‘. _

Questions of this sort were investigated by Klee in [5], to which we
refer the reader for background. In this paper, Klee proved that the supre-

* Research gupported by NSF Grant GP 28577
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mum of dual-less topologies need not be dual-less and asked whether
every linear topology is the restriction of a type se dualless topology
(to be defined below). Theorem A below answers this question.

‘We shall wse B, T, X,... to denote real vector spaces, o, 7, u, ...
for linear topologies on them and shall talk about the “linear topological
space (I, 0)”, ete. A we said above, a topology ¢ on I is dual-less if
(H, ¢) has no non-trivial continuous linear functionals. This will surely
be the case if all absorbing convex (resp. semi-convex) sots are overywhere
dense. Such a topology will be called dualess of type ¢ (resp., type se)(Y).

In the first section we prove

TepormM A. Hvery topological linear space (1, o) with dimB > 2%
i8 linearly homeomorphic under o limear map ng to o subspace of a dual-less
space (S(B), (o)) of type se such that AmX = codimny X in S(B) and
such that the density chavacters of Il amd S(H) are the same.

If ® is a linear space, let o, B (respectively, o,.F) denote the finest
linear topology (respectively, the finest locally convex linear topology)
on F. Using Theorem A we prove

THEOREM B. 1) For an infinite-dimensional linear space B, o, B and
o. B can each be expressed as the supremum of three lincarly homeomorphic
dual-less Hausdorff topologics on H;

2) If dim® = 2%, then o, B0 is the supremum of three linearly homeo-
morphio type se dual-less Hausdorff topologies on H.

The main, result of the second section ig

TrEOREM C. Let X be a separable infinite-dimensional normed space.
If n > 2, the norm topology on X X ... XX (n times) is the supremum of
n+1 linearly homeomorphic dual-less topologies.

In particular, if X is isomorphic to X x X, the norm topology on X
" ig the supremum of three dual-less topologies. This is the case of the classi-
cal Banach spaces L,, ¢, C, etc.

In the third section, we consider problem b) for locally convex topol-
ogies on. infinite-dimensional vector spaces. We provide some angwers
in a few cases and consider some related problems.

A corollary of Theorem B (Corollary 1.3) angwers some other ques-
tions of Klee [5]; Theorem A generalizes Theorem 1.1 in [6].

Throughout,; we use the following notation: if Z is a linear space,
dim 7 is the cardinality of a Hamel basis for E; if &, F ave linear spaces
with B < F, then “codim¥ (inF)” is the codimension.of B in F. For
linear spaces K and F', H X F is the algebraic direct product of B and F;
if, in addition, ¥ and I’ are topological linear spaces, @ F is the direct

(*) These topologies were called “nearly exotic”, “exotic” and “strongly exotic”
by Klee in [5], which explains the choice of the symbols ¢ and se used here.
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product I/ x F with the product topology. If A is a set, y, will denote
the characteristic function of 4. A pseudo-norm on a vector space E
is a non-negative, positive-homogeneous function p on B such that p (v -+vy)
< o(p(@)+ p() for all @,y in B and a fixed constant ¢ Finally, a set O
is” semi-convex if O+ 0 < 0 for some k> 0.

1. EMBEDDINGS IN DUAL-LESS SPACES OF TYPE gse

Let B be a vector gpace. We will say that & function f: [0,1] - &
is measurable if. the values of f all lie in a finite dimensional subspace F < B
(which depends on f), and f is Lebesgue measurable as a function from
[0, 1]into ', where I is provided with its unique Hausdortf linear topology.
As usual, operations are defined pointwise and functions agreeing almost
everywhere are identified. The resulting set of classes of equivalent meas-
urable functions iy a vector space S(H). Observe that two constant
functions agree almost everywhere if and only if they are identical. This
shows that there is & one-to-one linear map #z: H — §(B) that assigns
to- each wel the (class of the) constant function f(f) =, 0 <<t 1.

Assume that H is expressed as an algebraic direct sum B = > ¥,

46l
where dim.J); = 1 for all 4, Then it is eagy to see thati S(F) can be identi-

fied with the algebraic direct sum. Z‘S (Hy), that is,

(3] - Js

[ il
LaMMA L1, The dimension of S(H) and the codimension of nzpE in
8(T) coincide, and they are equal to 2% dimB.
Proof. Let us represent B as B = 2E¢ with dim#, = 1 for each 4.

Then dimJ = CardI. Now uging (1.1) we have dlmS( = dim. Z}’S ;)
q

= dimS(R) Card I ==2%. dxmlﬂ, gince dimS(R) = 2%. For feS(H)
let now f* e»S‘( 1)) be the function f*(¢) = f(2¢), 0 < $<1/2 and. f*(t) =0
for 1/2 < 121, Olently f-»f* is linear and one-to-one. It is also clear
that the quotiont map 8(H) > 8(8)/yull is one-to-one on the subspace
{f's feS(H}. Thus dim (8 (B) ?/MTJ) ,,,,,, dim 8 (1), and the opposite ine-
quality being obvious, the proof is complete.

Assumeo now that o is o linear topology on J. We recall that the topol-
ogy on S(H) of o-convergence in measure, which, we denote here
by u(s), is defined as the linear topology on §(X) for which a neigh-
Dborhood. base at 0 is given by the family of sets {feS(H): m{t; f(1) )4V} < g}
where m denotes Tebesgue measure, V rung over all o-neighborhoods of 0
and ¢ > 0. In Theorem 1.1 of [6] it is proved that (o) is always dual-less.
Actually the following stronger result holds:

(1.1)
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LammA 1.2. The topology u(o) is olways dual-less of type se. More-
over u(o) is Hausdorff if and only if o is Hausdorff.

Proof. It is known. (see [B]) that S(R) is dual-less of type se; the
same proof gives that (8(F), u(o )) is dual-less of type se for all finite
dimensional I. Congider now the general case. Let (1, o) be given, and
let ¢ = S(B) be an absorbing semi-convex set. Lot foed(H) and let V
be a u(c) neighborhood. of fy. Consider w finite dimensional subspace F < B
containing the range of f,. We can identity S(¥) with the gubspace of

S(E) of all functions with range in F, and it is easy to seo that the rela-
tive topology of u(o) on. S(F) coincides with u(r), where « is the relative
topology of o on F. Thus, by the preceding remark, S is of type sa
and therefore, by definition, ¢ N §(F) is dense in S{F). In particolar
C n 8(F) intersects V n S(F) (which is not empty since foeV N S ()
and a fortiori ¢ intersects V. This shows that ¢ is dense, and the proof
is complete. ‘

Proofs of Theorems A and B. For the proof of Theoren) A, it is easy
to see that ng: (B, o) — (S(H), ,u(o‘)) is a linear homeomorphism, and
Temma 1.1 and Lemma 1.2 complete the proof.

‘We now prove Theorem B in the order 2), 1).

Proof of B.2). Let dimXE be at leagt 2% and let B’ < S(H) be the
range of 7. According to Theorem A, we can d(scompo&e S(B) into an
algebraic divect sum §(B) = B +B" with dimE" = dim B’ = dimS(E).
Consider now the linear maps Ty, T, from S(¥) into S(B) defined by
Ty 46"y =¢—¢"(6 B, ¢ <B") and T, is any linear map satislying
TE = E" and T? = Id. Clearly T,, T, are one-to-one and onto. Denote
by 7., 7, and 7, the topologies on S(H) defined as: 7, and 7, ave the images
of x(0,B) under T, and T, respectively and v, = u(0,H). These topolo-
gies are linearly homeomorphic and from Theorem A it follows that they
are dual-less of type se. Let v = Sup 7; and assume that the net {o; 6.}

1<i<3

converges to 0e¢S(E) for 7. Then also e,—e, =T, (6, --0y) converges
to 0 for = and therefore ¢, — 0. Since 7y is a homeomorphism, 7, induces
the finest linear topology on ', and v being finer than Ty we have 4|
=17|p = o, B, whence e, — 0 for o, B'. Tf T, i 18 apphed to e, -+ a“, the eubove
procedure leads to ¢, ~0 for o,H"'. Thus ¢, +6, ~ 0 for (0, H )>< (o, B").
However, it is easy to see that o (B X 17”) (0, B') % (0, B"), which
implies that 7 (is finer than, and therefore) coincides with o,(Z'--H")
= ¢, 8 (E). This shows that B.2) holds for §(Z) and since dim 8 (H) = dim 7,
it also holds for B. This completes the proof of B.2).

Proof of B.1). Let T be infinite dimensional and let o be either of
0,8 or 6, 8. Let 8,(F) be the linear span in. 8 (B) of the functions ¢ — y, 5 (1)@
(0 < ¢ < 1), where 7 and s are rational, r < s, and w<; it is not hard to
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geo that dimB = dimS,(¥) and that S,(H) is w(o) — dense in S(H),
hence dual-less. The argument in the proof of Lemma 1.1 shows that
the codimension of #gzH in §,(H) equaly dim JF.

For ¢ == 0,0, the proof is completed exactly as in the proof of B.2).
Tn order to apply these arguments when o = 0,0, it is necessary to know
that the topologies 7, 7y and 74 are weaker than ¢,8,(#). This is clear
since p(o.H) on 8, (H) is weaker than the locally convex topology of uni-
form convergence (fuu(mmm in 8(#) are bounded). Tt is also necessary
to know that o,(B' x B"') = (¢,8') x (¢, 0"'). This is casily veritied, and
the proof of Theorem B is complete.

Tf dimK == 8, & category argument shows that there are no non-
trivial type se¢ dual-less topologies on X, and therefore the conclusion
in B.2) does not hold in this case. Without using the continuum hypo-
thesis, we do not have a version of B.2 for 8, < dim® < 2%. Since no

 non-trivial tiype se dual-less topology can be wealker than a locally convex

topology, there is no form of B.2) for o, .

Given. a vector sgpace X, we denote by o, E (vesp., .8, o, 1) the
supremum of all dual-less (resp., of type ¢, of type se) linear topologies
on B (this agrees with the notation in [8]). Theorem B has the following
immediate

JOROLLARY 1.8. For all infindle dimensional vector spaces K, we
s if AimI > 2% then also 0B = 0,8 = 0,7 = ¢, H.

Since o, X is complete [3], Cor. 1.3 trivially implies that o, F
is always complete and that 0,7 and o, 7 are complete for dim B > = 2%,
This settles some conjectures in [B] (paragraphs preceding 2.3 and 3.7
in [B]), but in the absence of the continuum hypothesis, it remains
unknown whether o, B and o, J are complate when ¥, < dimF < 2%,

2. THE NORMED SPACE CASE

It U: Y - (%, o) is o linear map, the inverse topology U~'(o) is defi-
ned to he the linear topology on. ¥ having {U~'(V)} as a neighborhood
base at 0, wheve V runs through & o- nmghboxhood base at 0 in Z. It is
cloar thwl, a net (y,) converges to ¥ in U~ (o) if and only if U(y,) conver-
ges to U (y) in o The proof of the following statement is routine:

IﬂuMMA o0 Let U: Y (4, o) be a linear map.

) If o i a pseudo-norm topology, then U™ (o) is aho b psaudo%mm
Lopologa/,

(i) if o 45 dual-less and the ramge of U is dense in Z, then U~ (o) s

also dual-less.

Now we prove:
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IeMMA 2.2. Let (X, 1) and (Z, o) be linear topological spaces and
let 8 and T be continuous linear maps from X to Z. Assume that

(i) T is a homeomorphism of X with T(X);

(i) The ramge of S is dense in Z.

Asswme further that o is the supremum of n dual-less (resp., pseudo-
norm) topologies on Z. Then the product topology on X@ ... X (& times,
L>2) is the supremum of n(k--1) dual-less (rvesp., pseudo-norm)
topologies.

Proof. Assume that o is the supremum of the dual-less topologies
Gyy Oy eio 000 Z. Define U: X@ ... BX —Z by U(wyy ..., @) = T(w,) -+
+8(®,), and let 7y = U~ (o)), Since the range of U iy o-dense (because
it contains the range of 8), it is also o;-dense, and by Lemma 2.1, (ii) applied
to ¥ = X@... X, 7 is dualless for each j. Clearly 7; is weaker than
the product topology X ... Xx7. Now let I;: ¥ — ¥ be defined by
Ly (@yy oy very By) = (Byy — By ooy — &), and for j=2 let L;: ¥ —» ¥
be defined by L;(@y, Bay ..., By, Byy Bjpry oy Bpp) = (By, Byy o vny Byoyy Dy,
@yp1y-e-y @) The topologies ., = Lit(w), L<ji<h 1<Ii<n are
all dual-less and weaker than 7X ... X7 Thus, the supremum of all
T, L<h<n(k+1) is also weaker than v X ... X7

We shall prove that the reverse is true as well. Assume a neb
o* = (af, ..., ®F), aed, converges to 0 for each =, L<h < n(k+1).
Then also IL;(s*) -0 for each 1,, and therefore (2f,0,...,0)
=} (@*+ Ly (#%) — 0. This means that U(af, 0 = T(a) -0 for
g;, 1< j<m, and hypothesis (i) implies that af — 0 for 7. Similarly,
since Ly;(2") =0 for 2 < j<k, we also get af — 0 for 7, (2<j< k), and
therefore a® —0 for zx .., X7, as claimed. It follows that zx ... X7
coincides with the suprem%m of {z;}, I<h<n(k+1). It is clear that
if all o; are pseudo-norm topologies, then so are the topologies t;, and
this completes the proof of the lemma.

Proof ofATheorem C. Let X Dbe the completion of the normed space X,
and let L}(X) be the completion of 0([0,1], X) under the pseudo-norm
1
Il = (SIF@)IFa?. Tt is not hard to see that L¥(X) iy dualless. Let
o
{@n}n1 be 2 sequence of elements in LX) satistying g, () < 1, 0 <1 < l,
#=1,2,..., and such that the linear gpan of the g, iy denge in L (_X )H

this is posmble, since X is separable. Let {w,, f,} be a biorthogonal family

for X (i.e.; fu(#m) =0 if n # m, f,(@,) 5 0 — see-[4]) such that ||f,| <1
for all ». Now for <X and t¢[0, 1], we have

D+ »+8
| X 2 f@ont]| < ol 3 2
n=p

n=n
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thus
B+8
| D 2" fu@enl, <
=y

This shows that the series S(x) = Z

D48
lwll 3 27",
=D

“nf. (%)@, is convergent in LHX),

and moreover |Swl, << |l thereforo S X — I#(X) iy continuous. Since
the range of S contains all linear combinations of the g, (by the bicrthogon-
ality), it is clearly dense, Finally, for »eX, define fmsl}*(f() by f, ()= m,
0t=1; it I is the map o —f,, T is clearly ap isometry. Lemma 2.2
applies to complete the proof.

CoROLLARY 2.8. The norm topology on each of the following Banach
spacos: LP[0, 1], (1 <l p < o0), O[0, 1], and ¢, is the supremum of three
dual-less topologies.

Proof. Just observe that for each of the separable Banach spaces X
listed above, X ig isomorphic to X@X. .

Since any locally convex topology is a supremusw.of semi-norm topo-
logies and the proof of Theorem O carries over to semi-normed spaces,
'we have

COROLLARY 2.4, If X is o separable locally convew space, the prod-
uot topology on X ... DX (k times, k= 2) is the supremum of a family
of dual-less topologies.

For an infinite-dimensional normed space which is not isomorphic
to the square of a Banach space, we have a shgh‘uly weaker version of
Corollary 2.3:

PROPOSTLION 2.5. Let X be am infinite-dimensional sepamble normed
space which has a decomposition X = X,®X, with dim X, = dimX, = oo
Then the norm topology on X is the supremum of four dual-less pseudo-norm
topologies. A

Proof. Weproceed as in the proof of Theorem C. Let X be the comple-
tion of X. For i = 1,2 lat Ty X, — LHX ) be defined by T;(2)(t) = #,
0 <t 1, and let S; be a co:ntin‘nmm linear map of X, onto a dense sub-
space of L‘(Jf) (constructed as in the proof of Theorem C). Let Vy(w, ¥)
= Ty(@) -+ 8y(y)y Valar, ) = Lo(@) — 8o(y), Val(, y) = 8u(0) + Toly), Val@, 9)
=R, (@) ~Ty(y). Yot » be the pseudo-norm topology of I}X) and
leb 7 = Vy 1(a») Tach v, is w pseudo-norm dualless topology on X.
If 7 = gup =;, v is weaker than the norm topology on X; we show thatb

Tegiugd
it (5011101(1:;‘3 with the norm topology.

If (@*, y°) — 0 for 7, then 7y (a%) 4+ 8y (y*) — 0 and Ty(#")—8:(y") =0
in L (A” ). Hence T,(a®) -0, so since Ty is a homeomorphism, a* —~ 0 in
the norm topology of X,. Similarly y* ~ 0, and the proof is complete.
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Remark. Observe that the conclusion of Theoremn U is true, in partic-
ular, for LOL, LOLOL, ete., where L ig the space considered by James
in [2]. We do not know whether the norm topology on L ifiself is & supre-
mum of dual-less topologies. Also, observe that if B is any separable
infinite-dimensional reflexive Banach gpace, and ¥ == L@B, Theorem 0
does not apply to ¥ (¥ is not isomorphic to X® ... @X (n times, n > 2)
for any Banach space X) but Proposition 2.5 does apply. ‘

THrROREM. 2.6. For every infinite set I', the norm topology on 6, (1)
and (I, 1< p< oo, is the supremum of thres dual-less topologies.

Proof. For P(I"), 1 p < oo, let Z be the space (I, I4) consisting
of all families f = (f,)er With £, e L}[0, L1for each y and [Ifll; = (3| 1 07)

el

I
finite (if p = oo we require ||flz == sup |If,l; << o0). It iy casy to seo that
pel’

Il [y is & pseudo-norm on Z, and when p < oo, the elements f with only
finitely many non-zero coordinates are dense in Z, so Z is dual-less. When
p = oo, Z is dualless by Proposition 2.1 of [6].
Choose a sequence {p,}2., in I* satistying |p, ()] = 1 for ull £ and whose
ol
linear span is dense in I}, and define@: 17 - I* by Q(z) = 3 27w,
R ]
The map @ hay dense range, and we easily obtain 1 (@)l < ll@ll,; ¢ then
induces a map §: P(I',1? ) -~ Z, again continuous and with dense range.
But since (I, I¥) is isometric to P (I"), we have a map satisfying (ii) of
Lemma 2.2. If g(¢) =1 for all t¢[0, 1], the map T': W(I') —Z defined
by T(#) = (,¢), i8 an isometry of 1(I") into Z. Thus Lemma 2.2 applies
and the morm topology on P(I') (~ ¥(I')+¥(I") is the supremum of
three dual-less topologies. The proof for ¢, (I") follows from the preced-
ing proof for I®(I") by observing that the image of ¢, under @ is still
dense in T} -

For topological linear spaces X, ¥ let X ~ ¥ mean “X ig isomorphie.

to ¥”. If a is a cardinal number, let I* = T I, where I == [0, 1] and
card 4 = a. acd :

LeMmA 2.7. For amy cube I* and any Bamach space B, (1% B)
~ 0(I B)®O0(I% B).

Proof. We first take B = R, so that €(I% B) == (/(I%). 1f a is finite,
the result follows from ([7], Theorem 8.5). If « iy infinite, I* is homeo-
morphic to I°xI. But for any compact Hausdorff space K, ((K x1I)
~ O(E x IY®C(K xI). In fact, C(K xI) ~ C(K, O(I)) ~ O(K, O(IdOI))
~0(E, O(I)®C(K, 0(I)) ~ O(E x H@C(K xI).

Now let B be an arbitrary Banach space. Denoting by F&F tho
completion of B ® F under the topelogy of bi-equicontinuous convergence,
we have (B,®QE,)8F ~ (B,8F)®(E,8F) for locally convex  spaces
By, B,, F — see [1] for definitions. By ([1], 1.3.3), C(I%, B) ~ ¢ (I%& B; the
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foregoing implies C(IDEB ~ (C(INDOIY)EB ~ (0(IM8 B)@(0(I*8B)

w018 B)@O(IY B), a8 claimed.

TunorEM 2.8. For any oube I* awd any Bamnach space B, the norm
topology on O(I B) is the supremwm of thres dual-less topologies.

Prootf. Tt « is finite, 0(I% B) ~ O{I, B) ~ O()8B ~ 0(Ix )& B
~ O X1, B) ~ 0,0, B). It aig infinite, I* is homeomorphic to
1*x I, whence O(I%.B) m O(IxI%B) ~C(I,C(I%B). Thusy in either
cae, it X = 0% B), X ~ C(I, X). Let u be the topology of convergence
in measure on ¢(I, X) introduced in Section 1 above; u iy weaker than
the norm. topology and. (C(I, X), M) i8 dunl-less. Since the constant func-
tions in ¢'(I, X) under the topology of measure convergence are & sub-
space linearly homeomorphic to X, Lemma 2.2 applies and the proof is
complete.

3. MISCELLANEOUS RESULTS

In this section we prove some results which are velated to those of
the preceding section but do not conveniently {it into the earlier discussion.

PROPOSITION 3.1 If (H, || ) 45 an infinite dimensional normed linear
space, the morm topology on T is weaker than the supremum of three pseudo-
notm, dual-less topologies on 1. :

Proof. Let {¢,} be a Hamel basis for B consisting of elements in. the
norm unit ball. Define & new morm p on B by setting p () == X4, if
@ = X6,; the p-topology on K is clearly finer than the | |Ftopology .
By 2.6, the norm topology on I,({s.}) is the supremum of three dual-less
pseudo-norm topologies; sinee (H,p) is linearly isometric to a dense
subspace of T,({e,}), the same is true for (¥, p), and the proof of 3.1 is
complete.

Since & symmelric linearly Lounded convex absorbing set is the
unit ball for a suitable novin, from 3.1 we obtain

JOROLLARY 8.8, If 1 s an infinite dimensional lincer space, each
locally convew topology on 1 is wealer than the supremum of & Jawily of
psoudo-norm, dual-loss lopologios on I

‘We do not know whoether in Proposition 3.1 “dual-leds” can always
Dbe replaced by “type ¢”. The following particular case may be of interest:

PROVOSITION 8.3, The norm topology on a separable Hilberi space
is woaker tham the supremum of throe linearly homeomorphic, pseudo-norm,
dual-less topologies of type o.

Proof. Congider the space IM* and write it as I'? = J -+ F where H
is the closed linear span of the Rademacher functions and ¥ is an algebraic
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complement of B (# NF = {0}). The L'*-pseudo-norm on ¥ is equiy-
alent to the L*mnorm, because of the Xhintchin inequalities ([8], Theorem
V. 8.4]. The argument given in § 1 to prove Theorem B shows that the
supremum of the I'*-pseudo-norm topology (which is of type ¢) and its
images under suitable maps, is finer than the product of two separahle
Hilbert space topologies, and the proof is finighed.

TozormM 3.4. Let (H, o) be a Li.s. with o Hausdorff. Let f,,..., 7,
be linearly independent Vinear fumctionals on B. Then there is a linear topol-
ogy o' on B with (B, o) and (1, o') linearly homeomorphic such that fy, fs, ..

*r
very Jn are all contimuous for the supremum of o and o',

Proof. This is a reworking of the construction on p. 248 of [5]. We
begin by picking @, ..., &, in ¥ such that () = 26, (Kronecker delta).
n

Define I': B —F by T =ao— 3 f;(e);. Clearly T iy linear, and it i
=1

easy to see that I = Xd. Thus 7T is invertible. Define o' as the image of ¢
under 7. In order to show that f; is continuous for the supremum of o

n
and o', pick a o-neighborhood of 0 in Z such that D had U—T if at
=1

least one |4;| exceeds 1. This can be done, since o is Hausdortt. Now assumne
#eU N T(U). Then 9 =g~ 3f;(2)w, for some z¢U, or Sf,(e)a; =2 —u
€U~ U. This implies that |f;(¢)| <1 for all j =1,...,n. But since Ji (o)
= — f;(#), it follows that |f;| < L on. U n T(U), and therefore each I is
continuous for the supremum of ¢ and o’

Theorem. 3.4 shows in particular that the supremum of two type e
or type se dual-less topologies may fail to be dual-less. This contradicts
Proposition 2.2 in [B].

Observe that in the proof of ¢,# = 0, B given in § 1, we exploited
the fact that the family of dual-less topologies is invariant under linear
invertible maps.
follows:

COROLLARY 3.5. Let X be a family of linear topologies on & vector space 1
such that X is invariant under invertible lincar maps and containg some

non-trivial topology. Then the supremum oy of the Jamilty X is finer than the
Sinest weak topology o,H.

Prootf. It is easy to see that oy is Flausdorit and that the image of oy
under any invertible linear map coincides with oy. Theorem 3.4 applies
to show that all linear functionals are oz-continuouns and this means that oy
is finer than o,%.
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