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Added inproof. 8. Dineen introduced in his paper Fonctions analyti-
ques dams les espaces vectoriels topologiques localement convexwes (C. R. Acad.
Sei. Paris 274 (1972), Ab44—A546) the notion of N-projective limits being
essentially the basic systems with open projections and studied the poly-
nomial convexity and pseudoconvexity in locally convex spaces with
such systems.

Theorem 2.1 holds for every t.v.s. I (not necessarily locally convex).
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On a functional representation of the lattice
of projections on a Hilbert space

by
M. J. MACZYNSKI (WARSZAWA)

Absteaet, Lot (I, <, ’) Do a o-orthocomplemented partially ordered set with
a full sot of states M. The dual M’ of M is defined as the set of functions &: M — [0, 1],
ae L, where &(m) == m(a) for all meM. It is shown that M’ iy isomorphic to L, and
necessary and sufficient eonditions are given in order that a set of funetions M < [0, 11¥
be the dual of some full set of states on a ¢-orthocomplemented poset. If (I, <, )
is tho o-orthocomplementod lattice of projections on a Hilbert space H and M the
set of pure statos induced by unit functionals in H*, M = {y(u): we H*, lul = 1},
then for each geM’ there is a unique continuous antilinear map p,: H* — H** guch
that gy (u) = gy () (w) for all we H*, Jul = 1.

Let L (H) be the set of orthogonal projections on a Hilbert space H.
L (H) ig an orthomodular lattice with respect to the natural order (P, < P,
if and only if R(P,) = B(P,) where R(P) denotes the range of P) with
the orthogonal complementation P —P' (wheve R(P') = R(P)'). This
lattice belongs to a more general clags of o-orthocomplemented partially
ordered sets which admit a full set of probability measures. Before we
state a theorem about I () we shall discuss some properties of this clags
of partially ordered sets.

Let (L, =) be a partially o'rdered get (abbreviated to poset) with
% one-to-one map @ -~ & of L onto L. (L, <, ') is said to be a g-orthocom-
plemented posel provided
(a) o' == a for all aeL.
(b) a= b implies b’ = o',
(¢) If @y, ag, ... I8 & sequence of members of L where a; < a; for 4 # j,
then the leagt upper bound ay Wa, V... exists in L.
(d) e’ ==p Ul for all @ and b in L. (We denote a Ua' by 1.)

A o-orthocomplemented poset is said to be orthomodular (see [6]) if
(e) a<< b implies b = a V(Y Va)'.

Let L be a o-orthocomplemented poset. A map m: L —[0,1] is
said to be a state om L if m.is a probability measure, i.e. if m (1) =1 and
mayVa,U...) = m{ay) +mas)-+... whenever ;< a; for ¢  j.
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If for some @, be I we have ¢ < b’, then we say that a is orthogonal
to b and we write @ | b.

‘We now assume that L is a o-orthocomplemented poset and let
m: L - [0,1] be a state on L.

A set of states M on L is said to be full (see [B]) if m(a) << m(b)
for all me M implies ¢ < b. Not every c-orthocomplemented poset admits
a full family of states. It follows e.g. from Theorem 1 that such a poset
must necessarily be orthomodular. But this is not a sufficient condition.
P. D. Meyer [8] has given examples of orthomodular posets which admit
no states at all.-As shown by R. J. Greechie [3] there are also orthomod-
ular lattices without states. But on the other hand there are important
clagses of c-orthocomplemented posets which do admit full families of
states. It follows from Gleason’s theorem, to be discussed in the sequel,
that the o-orthocomplemented lattice of projections on o Hilbert space
admits in a natural way a full set of states.

Let F be a set of functions from 4 into B, F < B4 Bach member a
of A gives rise to a function @: F — B defined by @(f) = f(«) for all
fe F. The set of all such functions 7’ = {a@: aeA} is called the dual of F.
We have ' < BT. .

Let L be a o¢-orthocomplemented poset with a full set M of states.
Thus M is a set of functions from I into [0, 1], M < [0,1]% As above,
each member ae L gives rise to a function @: M - [0,1] defined by
a(m) = m(a) for all me M. Let M be the set of all such functions, i.e.
the dual of M. We have M' < [0, 11™. A function in [0, 1% will be called
a numerical function. It is easy to see that M’ is a c-orthocomplemented
poset with respect to the matural order of real funetions (@< b if and
only if @(w) < b(») for all me M), with the complementation @ = 1—@
where 1 denotes the function in M’ equal to 1 for all zeM. The corre-
spondence ¢ — @ is one-to-one and gives the natural isomorphism between.
(L, <, ) and (M, <, ). In fact, we have a <) if and only if m(a) < m(D)
for all meM (M is full); thus @ < b in L if and only if @ = b in M. Hence
aU b exists in I if and only if U b exists in M’ and eU b = @U 5. More-
over, we have aU &’ =1 and a_|a’ for any ae L; thus m(a)--m(a’) = 1
for all meM, and consequently @+ = 1. Hence @ = 17 == a. If
@b, then a< b’ and consequently @< b’ = b, i.e. @ |05 If & «- a v
Ua, U...
mel and consequently & = @ UE, V... = G ~+Ty--...

‘We see that the representation of I by M’ is very convenient because
in M' the order is the natural order of real functions, the orthogonal
complementation is the subtraction from 1, and the least upper bound
of orthogonal members is simply the sum of functions. Moreover, if L
is represented by M’ < [0,1]%, every member m in the domain of the

with a@; | a; for ¢ % j, then m(a) = m(a,)--m (o) ... for all’
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funetions in M, meM, induces a state 7 on M where (f) = f(m) for
all feM, and the set of all such states is full. Thus we do not have to specify
o full seb of states on M as we did originally when we started with L.

There ariges @ converge problem, namely when, for an arbitrary
sot M, a set L of functions from M into [0, 1], T = [0, 11%,is a a—orthoe_om-
plemented poset with rospoct to the natural order of real functions in I
with the complomentation f == L—f. The following theorem gives an.
angwer to this problem.

Trmorim 1. Let I be a sob of functions from a set M imto [0, 1] saitis-
Sying the following conditions:

(i) The zero fumetion belongs to L.

(i) feI implics 1L—Fe L

(iil) For any sequence fi,Tuy ...
for i = j we hawe fyA-fa-t-. . e L

Then T is a g-orthomodular poset with respect to the natural order of
real functions in [0, 11 with the complementation f' = 1—f If jE gf ,
£, ge Ly, then fUg = f--g. Bach meM induces @ state T on Lﬁwhere w{f)
== f(m) for all fe L, and the family of states M == {m: meM} is full.

Conversely, if L is a oc-orthocomplemented poset with @ full set M of
states, then the dual M’ of M satisfies conditions (1)—(ili) and consequently L
is isomorphic to M’ and is orthomodular.

Proof. Assume that I < [0, 1] satisties conditions (i)—(ijii)_. We
must show that (L, =, ) satisties conditions (a)-(e) of the deﬂnrbl_on' of
a c-orthomodular poset. Conditlons (a) and (b) aie evidently satisfied.
‘Wa ghall prove (¢). Observe first that taking in (iii) _fnﬂ‘—: Frgz = -
-vs= 0 we geo that for any finite sequence fy, fa R saﬂsf{ymg .fi—i—fj <1
for ¢ st j we have fi-+fat... Afne L V\lfe have in'L i< f» equivalent to
f1 s < 1. We first prove that, for fy < fa, f1 Uf, exists and fl'u fo=1r +f2:
We have f == J;-fac L. Let, for ge L, fi< g and f,? < g. C,Dhls means .th_a,t
fikg' <1 and fy-¢ < 1. Hence the sequence fisfar 9y 0y S?LtleJ‘.eS
the assumption in (iif) and consequently f; +j2'+ g’f:L, which npphes
Fobfatg <1, de. fi4fis<g Thus f< g, which implies that f; Uf m:f.
‘We now proceed by induction. Assume that, for {Lll sequences fi, fay ooy Jn
of length n, fie L, satistying fi--f; << L for ¢ #1, the least upper bpund
£, Ufa .. UL oxists and f Ufy U Ufy == fubfat oo f-fne 108 Jay fas -
eevs Fuy fuss e any sequence of nmmbers'(,)f. L where fi w%-f? = 1 for § f'_)
By (i) we infer that fi+fo-t oo +fagas Lo BY the induction rhypot,heﬁm,
F o= forbSat oo fu == fo Sfa VoI Consequently f-+fui< 1. By ' .Lhe
part just proved, fUfuyy = f-fus. Honce FLUfau.. Y fn,!.l == fy —‘|~f2 +
dove - fugr. Now 1ot fi, fa, ... e & sequence where f;--f; < 1Afor z % 4.
By (iil) we have f = fy+fo+...« L. We must ghow that f = ;fl Ufg U.es
Let f; < gy ¢ =1, 2, ... Then f; UfyU... U, exists for v =1,2,..., and

of members of L satisfying f+f; <1
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fivfeu.. Vf, =fitfot...+f, < g Consequently M f;<g for n =1,
o« =1 )

2,... Hence Y f;<g, i.e. f<g. This shows that f =f, Uf, U... exists
i=1

and f =f;-+f.+... Hence (¢) holds. For any feL we have f(1L—f)
< 1; i.e. f and f' are orthogonal. By the already proved part of the theo-
rem fUf exists in L and fUf =f4+f =f+(1~f) =1. So (d) holds.
To show that (e) also holds, let f < ¢, f, g L. This implies that ¢’ +f < 1
and g’ Uf = g'+f = (1 —g)+f. Consequently, b = (¢’ Uf) =1L — (1 —g-+f}
=g—feL. Hence f+h ==g<1. Hence fUh =f-+h We see that
Ffulg vfY =f+(g—f) =g, which means that (e) holds. Hence the first
part of the theorem has been proved. The remainder of the theorem
follows from the discussion preceeding the theorem.

For some applications in quantum mechanics, it is important to
decide when a o-orthocomplemented poset with a full family of states
(or a subset of it) is & Boolean s-algebra. Using the representation of L
by M’ we easily get the following criterion.

TEEOREM 2. Let L < [0,1]" be a set of functions from a set M into
[0, 1] satisfying conditions (i)-(ili) of Theorem 1. Then I s a Boolean o-
algebra (with respect to the natural order of real functions with the comple-
mentation f' = 1—f) if and only if the following condition holds:

(iv) For any f,ge L there ave hy, hy, hye L, hy-+h; < 1 for i = §, such
that f = hy+hoy g = hy+ g,

Proof. By Theorem 1, L is a c-orthomodular poset. We ghall show
that L is a lattice. For f, ge L, we have f = hy+h,, ¢ = hy-+hs, where
hy+h; < 1 for 4 5 j. Consequently, by Theorem 1, f = hy Uhy, g = hy Uy
and hy+ by +hye L. Henee iy +hy+ly = hy Uly Uhy = (hy Uhy) U (Bry Uy)
=fuyg and the join of any two elements exists. Since fng = (f* ug'y,
the meet of any two elements exists. Hence L is a o-orthomodular Iattice.
It is known that an orthocomplemented lattice is distributive if and only
if for any f, geL there are hy,hy, hye L, hy Lh; for ¢ s£7j, such that
S ="hyUhy, g = hy Uh, (this fact is due to Fullis [1]), Hence L is a o-
orthomodular distributive lattice, i.e. a Boolean ¢-algebra. The only if
part of the theorem is evident. For a more detailed discussion of nurmerical
representation. of Boolean algebras see [7].

We shall now investigate the case where I = L(H) is the ortho-
modular lattice of (orthogonal) projections on a Hilbert space H. A state
m: L(H) - [0,1] on L(H) is said to be pure if m = oMy ~+ (1 —0) my,
0 < ¢<1, for any states m,, m, on L(H) implies m = m, = m,. Lot M
be the set of all pure states on L(H). If ue H is a unit vector loe|| =1,
then m(P) = (Pu, u), Pe L(H), defines a pure state on L(H). A. M. Glea-
son has shown in [2] that every pure state on L (H) arises in the above
way; that is, there is a unique map y from the unit sphere 8§ = {ue H:
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(] =1} onto M,w: 8 - M, such that p(u) (P) == (Pu,w) for all ue g,
Pe L(H). We call » the Gleason map. The map p is not one-to-one since u
and ou, [o] =1, induce the same state. Gleason’s theorem implies that M
ig o full set of states on L (). In fact, m(P,) << m(P,) for all m <M implies
(P, w) < (Pou, w) for all we §; that iy, (Pe~Py)u, u)>> 0 for all we H,
lel} = L, which means that Py < Py. .
Since M is o full set of states on L(H), Theorem 1 applies and we
can form the dual M’ of M. We thus have a triple (L(H), M, M') which
is reflexive in the sense that M’ is isomorphic to L(H). We have a similar
gituation whon we congider the Hilbert space H, the conjugate space H*
and the second conjugale space J™. Ax a Hilbert space iz reflexive,
wo have ™ = I, Wormally, ™ is the set of all continuous linear func-
tionals on H, i.e. H* < 0%, and by tho reflexivity of I, H*" is the dual
of H*, H™ = (I*)'. So wo have again a triple (H,H", (H")), wvher2
(H"Y = H™ o H. Since by Riesz’s theorem every functional weH’
arigsos from & unique vector %e H where u(x) = (v, @) for all ze H, and
the map w -~ % is norm-preserving, we see that there is a unique map
w: § - M from the unit sphere of H* onto M such that y(u) (P) = (P, 7)
for all we S and Pe L(H). We again call y the Gleason map. We see that
we have & natural map v from the unit sphere of H* onto M. We may
asl whethet it is possible to obtain the numerical functions in M’ < [0, 11
from. functions in (H*)' = H™ = ¢™". We shall show that this can be
accomplished by applying some “selecting functions” to thg funcmpr;s
in H™. Namely, if wo have a seti ¥ of functions from 4 into B, F = B ,
we can form a new function f from 4 into B by applying any function
@: A — T, where f is defined by f(u) = ¢(u) () for all e A: Thus for
any % from the domain A ‘we obtain the value f(u) by selecting first a fune-
tion ¢(u) from the set F' and then calculating the vgmlue of p(u) at the‘
point «. This motivates calling ¢ a selecting function. We shall show that
the functions in M’ are obtainable from functions in H** by way of the
above procedure. We have the following theorem. ,
Trmmoxws: 3. Let H be o Hilbert space and let L(H) be the a-0rthocom-
plemented lattice of projections on H. Let M be the set of all pure states on
L(H) and lot M’ be the dual of M. Let w: 8 ~= I De the Gle_aso'n, map from
the unit sphore of H* onto M. For each ged " there is a unique aomtnuous
antilinoar map g, H* — H*™ such that gy (u) = p,(w) (u) for all ue 8.
Proot. For each geM' wo define a map ¢,: H*—H" as follows.
Since M’ =< L(H), there is a unique projection Pe L*sgch tham 'm,_(l’a)
= g(m) fox all m M. By Riesr's thoorem for every e H therg is & unique
%e H such that w(o) = (v, %) for all e H. Then Pue¢ H gives rise to
a functional j(P,@)e H™, where j: H — H** denotes the na‘tum*l igo-
morphism. of H onto H* satistying (@) (f) = f(w) for all jelf and
we H. We now define a map ¢, by ¢,(u) = j(P@) for all uve H*. This
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ig a map from H* into H**. Since % > ¥ iy continuous antilinear, P, and j
are continuous linear, we infer that ¢, is continuous antilinear. We now
show that gy(u) = p,(u) (w) for all ue 8, where 8 = {ue H*: JJul| =1}.
We have gyp(u) = (u) (P,) = (P4, %) by the definition of ¢, and ¢, (u) (u)
= j(Pm) (u) = u(P,®) = (P&, v). Hence gyp(u) = g (u) (v) for all wel.
We now show that ¢, is uniquely determined. Let @, be a continuous
antilinear map of H* into H™* such that g,(u) (1) = @,(u) (u) for all
we 8. We have to show that (p;(u) = g, (u) for all u ¢ H*. Since @, 18 & contin-
uous antilinear map of H* into H**, p,(u) (w) is a Hermitian form on I*
(linear in w and antilineat in u). Hence there is a continuous linear operator
A: H*> H* such that g,(u) (w) = (Aw, u) for all u, we H*. Similarly we
have g,(u) (w) = (4w, u). By assumption we have (Au,u) = (4 u,n)
for all we 8. Hence two quadratic forms coincide on the unit sphere. This
implies (see e.g. [4]) that A = A" and consequently g,(u) (w) = g (u) (w)
for all u, we H*. Hence p,(u) = ¢,(w) for all uc H. Hence ¢, = ¢, and ¢,
is uniquely determined. This concludes the proof of the theorem.

We see from Theorem 3 that by applying the selecting funetions
@y, geM’, to functions in H™ we obtain the set of numerical functions
{gv: geM'} = [0, 1]5. Although this is not the original set M’, it is easy
to see that {gy: geM'} is a o-orthomodular poset with respect to the
natural order of real functions with the complementation f' = 1 —f which
is isomorphic to M'. In fact, since v is onto M, g, < ¢,y is equivalent
to g, <g, and L—gy = (1—g)y. Hence the set {gy: geM'} also forms
a representation of L(H) by & set of numerical functions satisfying the
conditions of Theorem 2. Consequently we can state the following corollary.

COROLLARY. The o-orthomodular lattice of projectioms on a Hilbert
space H can be isomorphically represented by a lattice of numerical (real)
fumctions, where all the fumctions can be obtained from funciions in H™
by applying to them suitable continuous antilinear selecting functions.
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