Semigroup algebras having regular multiplication

by

N. J. Young (Glasgow)

Abstract. We obtain both algebraic and topological characterizations of those locally compact semi-topological semigroups whose measure algebras have regular multiplication (in the sense of Arens). The condition obtained also characterizes regularity of multiplication in the l_1-algebra of the semigroup.

A Banach algebra is said to have regular multiplication if the two Arens products on its bidual coincide. It is well known from the work of Day [2] that l_1-algebras of suitable semigroups afford examples of irregular multiplication; in fact it suffices to take any semigroup admitting two distinct invariant means. This is not the only way the multiplication can be irregular: Givin and Yood [1] find wide classes of groups whose algebras comprise further examples, and in [9] it is shown that the multiplication is irregular in the L^1-algebra of any infinite locally compact Hausdorff group. However, the Banach algebra $M(G)$ of finite regular Borel measures on an infinite locally compact Hausdorff semigroup S can have regular multiplication, as is shown by trivial examples: take $xy = y$ for all x, y, or take the multiplication in S to be constant. In the present note an algebraic characterization is given of those locally compact semigroups whose measure algebras have regular multiplication. Some related results can be found in a paper of N. Maci [5].

We are concerned throughout with semi-topological semigroups—that is, semigroups in which multiplication is assumed only to be separately continuous. Basic facts about measure algebras on semigroups can be found in [3]. We begin by giving the purely topological content of the characterization. βX denotes the Stone–Cech compactification of the completely regular space X.

1. An extension theorem. If X and Y are completely regular spaces and Z is compact Hausdorff, in order that a separately continuous mapping $f: X \times Y \rightarrow Z$ should admit a separately continuous extension $\tilde{f}: \beta X \times \beta Y \rightarrow Z$ it is necessary and sufficient that, for all pairs $(x_n), (y_n)$ of sequences in X, Y respectively, the double sequence $f(x_n, y_m)$ should have a double cluster point in Z ([7], Theorem 1). Here ωZ is called
a double cluster point of the double sequence \((x_{m n})\) if every neighbourhood of \(x\) meets infinitely many rows and columns of the double sequence, each in an infinite number of terms. This concept was introduced by Grothendieck [4].

Theorem 1. Let \(X, Y\) and \(Z\) be completely regular spaces and let \(f: X \times Y \rightarrow Z\) be separately continuous, \(f\) admits a separately continuous extension \(f': \beta X \times \beta Y \rightarrow \beta Z\) if and only if there is no pair of sequences \((x_m), (y_n)\) in \(X, Y\) respectively such that the sets

\[A = \{f(x_m, y_n): m > n\}, \quad B = \{f(x_m, y_n): m < n\} \]

are contained in disjoint zero-sets in \(Z\).

Proof. To prove necessity consider any pair \((x_m), (y_n)\) of sequences in \(X, Y\) and suppose \(\xi, \eta\) are cluster points of these sequences in \(X \times \beta Y\). It is then easily seen that \(f(\xi, \eta)\) is a double cluster point in \(\beta Z\) of the double sequence \(\{f(x_m, y_n)\}\), and hence is a cluster point in \(\beta Z\) of the two sets \(A\) and \(B\) above. If, however, \(A, B\) are contained in disjoint zero sets they have disjoint closures in \(\beta Z\).

Conversely, suppose that \(f\) admits no separately continuous extension. By the result cited there exist sequences \((x_m), (y_n)\) in \(X, Y\) such that \(f(x_m, y_n)\) has no double cluster point in \(\beta Z\) — that is, every \(\xi \in \beta Z\) has a cozero-set neighbourhood \(U\) which meets only finitely many rows infinitely often (say type 1) or meets only finitely many columns infinitely often (type 2). By compactness we can write \(\beta Z\) as a finite union \(U_1 \cup \ldots \cup U_p\) of such sets. Let \(P, Q\) be the unions of the \(U_i\)’s of types 1, 2 respectively. \(P, Q\) are cozero-sets and are themselves of types 1, 2 respectively. By discarding finitely many \(x_m, y_n\)’s if necessary, we can arrange that \(P\) meets no row of the double sequence \(\{f(x_m, y_n)\}\) infinitely often and \(Q\) meets no column infinitely often. Set \(H = \beta Z - P, K = \beta Z - Q\). Then \(H, K\) are disjoint zero-sets in \(\beta Z\) containing almost all terms of every row and column respectively of \(\{f(x_m, y_n)\}\). We now select subsequences of \((x_m), (y_n)\) inductively. Set \(n_1 = x_1, y_1 = y_1\). Let \(n_1, n_2\) be the first \(x_m\) such that \(f(x_m, y_n) \in K\) for \(1 \leq j \leq 2\); this is possible since \(n_1 = f(x_1, y_1) \in K\). Likewise we may choose \(n_2, n_3\) to be the first \(y_n\) such that \(f(x_m, y_n) \in H\) for \(1 \leq j \leq 3\). Then

\[f(x_m, y_n) \in \begin{cases} H & \text{if } m > n, \\ K & \text{if } m < n. \end{cases} \]

\(H\) and \(K\) being disjoint zero-sets. It is easily seen that if \(X = Y = Z\) and \(f\) is an associative operation then its separately continuous extension \(f'\) to \(\beta X\) is also associative (when it exists). We have therefore:

Corollary. If \(S\) is a completely regular semi-topological semigroup then \(S\) admits the structure of a semi-topological semigroup with \(S\) as a sub-semigroup, if and only if there is no pair of sequences \((x_m), (y_n)\) in \(S\)

such that the sets \((x_m y_n) : m > n\) and \((x_m y_n) : m < n\) are contained in disjoint zero-sets in \(S\).

We note in passing that, on setting \(Z = X \times Y\) in the theorem, we obtain a necessary and sufficient condition for \(\beta X \times \beta Y\) to have a natural separately continuous embedding in \(\beta(X \times Y)\).

2. Biduals of semigroup algebras. We now examine the question of how non-trivial the algebraic structure of a semigroup can become before its measure algebra loses its regularity of multiplication. \(S_0\) denotes \(S\) in its discrete topology.

Theorem 2. The following are equivalent for any locally compact Hausdorff semi-topological semigroup \(S\):

(a) \(M(S)\) has regular multiplication;
(b) \(l_1(S)\) has regular multiplication;
(c) \(\beta S\) admits the structure of a semi-topological semigroup with \(S\) as a sub-semigroup;
(d) there is no pair of sequences \((x_m), (y_n)\) in \(S\) such that the sets \((x_m y_n) : m > n\) and \((x_m y_n) : m < n\) are disjoint;
(e) every bounded scalar-valued function on \(S\) is weakly almost periodic.

Moreover, if these conditions are satisfied, the bidual of \(l_1(S)\) is the measure algebra of the compact semigroup \(\beta S\).

In the above statement \(l_1(S)\) denotes \(M(S_0)\), the scalar field can be taken to be either the real or the complex field throughout, and a bounded function on \(S\) is said to be weakly almost periodic if the set of all its translates is relatively weakly compact in the Banach space of all bounded scalar functions on \(S\) with supremum norm. The equivalences (b) \(\iff\) (c) can easily be deduced from the results of Pym [6].

Proof. The equivalence of (c) and (d) is the Corollary above. We prove (a) \(\iff\) (d). A bounded scalar valued function defined on the product of sets \(X, Y\) is said to “cluster” if, for all pairs of sequences \((x_m)\) in \(X, (y_n)\) in \(Y\), the two repeated limits of the double sequence \(\{f(x_m, y_n)\}\) are equal whenever they both exist (or equivalently, the double sequence \(\{f(x_m, y_n)\}\) has a double cluster point in the scalar field). A Banach algebra \(M\) has regular multiplication if and only if, for every continuous linear functional \(\phi\) on \(M\), the function \(\phi(\sigma x)\) clusters on \(\sigma_1 \times \sigma_2\), where \(\sigma_1, \sigma_2\) is the unit ball of \(M\) (see [6], Th. 4.2 or [8], Th. 9).

Suppose (d) fails, so that there are sequences \((x_m), (y_n)\) in \(S\) for which \((x_m y_n) > m > n\) \(\cap (x_m y_n) : m < n = \emptyset\). Let \(x_m, y_n\) be unit masses at \(x_m, y_n\) respectively and define \(\delta\) on \(S\) to be the characteristic function of \((x_m y_n) : m > n\). Then \(\delta\) is a bounded Borel functional on \(M(S)\) by \(\mu = \delta d\mu\). We have

\[H(\delta x_m, y_n) = \delta(x_m y_n), \]

which is one or zero according as \(m > n\) or \(m < n\),
so that H does not cluster on the unit ball of $M(S)$. Thus (a) implies (d).

If (e) is false then, by Grothendieck's criterion [4], there are sequences $(m_n), (n_m)$ in S and a bounded function h on S such that

$$\lim_{n \to \infty} h(m_n y_{m_n}) = a,$$

$$\lim_{n \to \infty} h(m_n y_{m_n}) = b,$$

with (say) $a < b$. Choose $0 < c < d < h$, and set $A = \{s: h(s) < c\}$, $B = \{s: h(s) > d\}$. Then A and B are disjoint sets, and on discarding finitely many of the m_n and n_m if necessary, we have that, for fixed $m_n, n_m y_{m_n} A$ for almost all m_n and, for fixed $n_m, n_m y_{m_n} B$ for almost all n_m. Proceeding by induction as in the proof of Theorem 1 we may extract subsequences such that $n_m y_{m_n} A$ for $m > n$ and $n_m y_{m_n} B$ for $m < n$. Thus (d) implies (e).

If (a) is false then by the criterion cited above there exist sequences $(\mu_n), (\nu_n)$ in the unit ball of $M(S)$ and a continuous linear functional H on $M(S)$ such that the two repeated limits of $(H(\mu_h, \nu_n))$ exist and differ. Pick a $n \in M(S)$ such that the subalgebra of $M(S)$ generated by $(\mu_n, \nu_n: n \geq 1)$ is contained in $L^1(c) \subseteq M(S)$. The restriction of H to $L^1(c)$ agrees with integration of some bounded Borel function h on S, so that

$$H(\mu, \nu) = \int \int h(xy) \mu(dx) \nu(dy)$$

for $\mu, \nu \in L^1(c)$. However, if (e) holds, then (again by Grothendieck's criterion), $h(xy)$ clusters on $S \times S$, and so by (5), § 4.1, Example 2) the bilinear form (1) clusters on bounded sets of $L^1(c) \times L^1(c)$. Thus (e) implies (a).

We have so far shown (a), (c), (d), and (e) to be equivalent. The remaining equivalence is obtained by applying (a) \iff (d) to S_q.

The dual of $L_1(S)$ is the space $m(S)$ of bounded scalar functions on S which is isometrically isomorphic to $C(S_q \setminus S)$, the space of continuous scalar functions on $S_q \setminus S$, as a Banach space in the natural way. The bidual of $L_1(S)$ can therefore be identified with $M(S_q \setminus S)$ as a Banach space. If (e) holds then $M(S_q \setminus S)$ is also a Banach algebra under convolution; its multiplication is separately of $M(S_q \setminus S), C(S_q \setminus S)$-continuous and extends that of $L_1(S)$. It therefore coincides with both Arens products on $M(S_q \setminus S)$.

This last step shows that the equivalence of (a) with the other conditions can be obtained without appealing to Theorem 1; however, if one were interested only in the topological portion of Theorem 2, it would be somewhat rooccoo to prove it using the theory of Banach algebras.

The class of semigroups satisfying the above conditions is quite restricted, as is best seen from (d). Suppose that S satisfies the condition

(f) for every pair of finite subsets $A, B \subset S$ there are $a, y \in S$ such that $aB \cap A = \emptyset = By \cap A$.

Then S does not satisfy (d). One may select sequences inductively as follows: pick y_1, y_2 arbitrarily, and choose y_{n+1}, y_{n+1} so that

$$\{y_{n+1}(y_1, \ldots, y_n) \cap (y_1, y_2; r, s, r, s \leq n) = \emptyset \}$$

$$\{y_{n+1}(y_1, \ldots, y_n) \cap (y_1, y_2; r, s, r, s \leq n + 1, s \leq n) = \emptyset \}.$$

Then the points $y_{n+1} y_{n+1}$ are all distinct and so a fortiori have the property required.

It is easily seen that any infinite cancellation semigroup satisfies (f) and in particular the additive semigroup of positive integers does.

It follows that any semigroup satisfying (a)–(e) is periodic and has no infinite cancellation subsemigroup. One can also show (using (d)) that its semilattices of idempotents contains no infinite chains.

An example of a commuting semigroup of idempotents (thought of as a lower semilattice) which does satisfy (a)–(e) can be obtained by identifying the least elements in any collection of finite chains. One can make this example slightly more complicated (as was pointed out to me by Dr. J. Hickey) by adjoining a greatest element and taking the ordinal product of the resulting semilattice with itself. Another type of example, this time with a unique idempotent, is due to N. Macl. Let S be a set with distinguished elements 0 and 1 and define $ax = 0$ unless $x = y = 1$, in which case $ax = 1$. In all these cases, though, the multiplication on βS is rather trivial: $\xi \xi$ is constant for $\xi \in S \setminus \{1\}$. It would be interesting to have an example in which this was not true. It would be especially interesting if S satisfied (d) by βS did not, as this would yield an example of a Banach algebra which had regular multiplication but whose bidual did not. I believe it is unknown whether such a thing is possible.

Finally, it may be worth pointing out that conditions (a)–(e) offer no guarantee about the ideal structure of the bidual. In any of the above examples $(\delta \equiv \delta), M(\beta S) = (\emptyset)$ where δ denotes point mass and $\xi, \eta \in S \setminus S$.

References

Krzysztof Maurin

METHODS OF HILBERT SPACES

MONOGRAFIE MATEMATYCZNE, Vol. 45

552 pp., cloth bound

Although Hilbert spaces are the oldest known infinite-dimensional topological vector spaces and have many important applications and methods arising from them, recent monographs are the first comprehensively descriptive and treatment of the theory of Hilbert spaces, which may be used as a new outlook upon modern mathematics. The book requires a very thorough study on the part of the reader (even the elementary facts of topology and the theory of the integral have been included in the Appendix) and leads to the most beautiful and most profound results of modern analysis and geometry.

The monograph is sure to be of interest not only to mathematicians but also to physicists (the chapters on decomposition into direct integrals, strict justification of P. A. Dirac’s anticipation, representations of Lie groups, the method of Fourier, the ergodic theory) and engineers (the chapters on the theory of vibrations, on expansions in eigenfunctions, on boundary problems, on variational and approximation methods).

Władysław Ślebodziński

EXTERIOR FORMS AND THEIR APPLICATIONS

MONOGRAFIE MATEMATYCZNE, Vol. 52

428 pp., cloth bound

A comprehensive exposition of the theory of exterior forms and their applications, particularly in the theory of connections, the theory of infinite transformation pseudogroups and in the theory of infinite Lie-Cartan groups.

The first part comprises the notions of linear algebra used in the theory of differential forms. It contains an exposition of Grassmann’s algebra of exterior forms and of algebraic exterior equations. The extensive treatment of the theory of these equations prepares the theory of Pfaff systems, particularly systems in involution. It treats also of real and complex vector spaces whose automorphism groups are classical linear groups. The symplectic space and the symplectic groups are accorded particular attention.

The second part contains the theory of exterior differential forms. The theory of Pfaff systems is given a full treatment. The author presents in detail Cartan’s fundamental theorems on the existence of solutions of the general Pfaff system. Considerable space is devoted to connections on differentiable manifolds and various connections constructed by means of the main fiber spaces of different structural groups. Then follows a presentation of Cartan’s infinite transformation pseudogroups and of the foundations of the theory of abstract infinite groups. The use of the notion of connection simplifies the exposition. Integral invariants, the Lie derivative, applications to mechanics, and generalized exterior differential forms are dealt with in the final chapters.

All volumes of MONOGRAFIE MATEMATYCZNE may be ordered at your book-seller or at ARS POLONA-RUCH, Krakowskie Przedmieście 7, 00-068 Warszawa, Poland