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The compact endomorphisms of the metric linear spaces £,

by
DIETHARD PALLASHKE (Birlinghoven)

Abstract. For a topological linear space X, the relationship between the exis-
tence of mon-trivial continuous linear functionals and the existence of non-trivial
compact endomorphisms for X is studied. In this connection, several examples of
topological linear spaces having only the trivial compact endomorphism are given.

0. Introduction. Starting-point of this paper is a result, found by
J. H. Williamson in 1953, according to which for every topological linear
space the existence of a compact endomorphism with an eigenvalue
different from zero always implicates the existence of a non-trivial econ-
tinuous linear functional. In this connection the question arises if there
exist non-trivial compact endomorphisms for topological linear spaces
with no continuous linear functionals but zero.

In this paper we treat this question for the metric linear spaces
Z, of the p-integrable functions defined on some measure space (X, A, u)
(see S. Cater [1], B. Gramsch [4] and W. Orliez [6]). ‘We begin with some
general results concerning the relations between compact endomorphisms
and. continuous linear functionals. A chapter on % -spaces follows. The
main part of this paper is concerned with the problem of the existence
of compact endomorphisms for these spaces.

The author would like to express his heartly thanks to Professor
Dr. Stefan Rolewicz for numerous useful suggestions given during the
preparation. of this paper.

1. General results. Let B and F' denote real topological linear spaces.
Then a linear mapping
T: B—~F

is called “bounded” (resp. “compact”) if it maps a O-neighborhood of B
into a bounded (resp. compact) subset of F.

A real topological linear space B is said to be “yniformly bounded”
if for any O-neighborhood U of E there exists a positive integer » such
that ’

U":=U+...+U =KH.

n
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Then we have:
TEBOREM 1.1. Let F be a real topological linear space and B & uni-
Sformly bounded real topological linear space.
If a Vinear mapping
r: E—-F
is bounded, then
T =09.

Proof. Let us suppose that there is a non-trivial bounded linear
map

T E-—~F.

Then there exists a 0-neighborhood U in B such that 7(U) is a bounded
subset of F and an element w<E\ {0} such that

y:= TweF\{0}.

Since F 1s uniformly bounded there is a positive integer # such that for
any positive integer % there exist elements

V] ]
Lyyenny Bpel
with

n

Consequently we have

n n
ky = T(kz) = ZT(w‘?)GZT(U)’
and therefore = =

by | keN} = D'7(D),

i=1

this being contrary to the boundedness of Zn,‘ T(U)m
. d=]

. SOR;)LE'AI;YZ. The only compact linear mapping of a uniformly bounded
real topological linear space imto a real topological Ui 3 i
i pological linear space is the zero-

In order to enter into the relation between ﬂl

. b : e compact endomor-
phisms of a topologlgail linear space and its continuous linear functionals
we rzeall the following notion introduced by A. Pelezyriski 7

real topological linear space & is said to be itive” i
oo poin | e “transitive” if for any
@, ye EN{0}

icm®
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there exists a continuous endomorphism

A: E—~E
with
A =y.

The following result is due to A. Pelezynski:

THEOREM 1.2. Let E be a transitive real topological linear space.

Then the following -assertions are equivalemt:

(i) There ewists a non-trivial continuous linear funciional on K.

(i) There ewists a mon-trivial compact endomorphism of B.

Proof. i) = ii). Let f be a non-trivial continous linear functional
on E and zyeE\{0}. Then

T: BB with T(x):=f(®)z,

is a non-trivial compact endomorphism of Z.
(ii) = (i). Let
T: E~E

be a non-trivial compact endomorphism of E. Then there is an element
ze B\ {0}, such that
y:=Tx
is also in EN\{0}.
Since F is transitive there is a continuous linear mapping

A: B-E
with
Ay =
and consequently
ATls = x.

By this we have found a compact endomorphism with 1 as an eigen-
value. According to the result of J.H. Williamson [10] the existence
of a non-trivial continuous linear functional f is proved. m

2. The Spaces #,. In the following let (X, A4, u) be a o-finite
measure space on a set X. Furthermore let I denote the real linear space
of all p-measurable functions on X, which is partially ordered by the
relation < induced from R, let @ be the linear subspace of L consisting
of all functions, which are equal to the zero almost everywhere on X
with respect to u, and finally let be Lx: = L/e.

Now we call two elements » and y of Ly “orthogonal”-indicated
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by the symbol & | y — if there ave representants ' and y’ of the clagses z
and y respectively such that
pfteX| &' (1)y' (1) # 0} = 0;

%, YeLx are said to be “equi-measurable”-denoted by x ~y — if there
exists representants ' and g’ of # and y respectively such that

peX| @' () >0} = u{teX| y' (1) > 1}
holds for all 7<R.

A sequence (@,),.y of elements of Ly is said to be “monctonely in-
creasing®™ (resp. “monotonely descending”) it x, < @,,, (vesp. «, > Tpp1)
holds for any nelN.

DerinrrioN 2.1. Let (X, 4, u) be a o-finite measure space on. a set X.
A linear subspace L(X, u) of Ly endowed with a metrie d, invariant
under translations is called an “%-space on X7, it the following condi-
tions hold: i

(1) (L(X, u), d) is a veal complete metric linear space;

(i) for any AeA with p(4) < co the characteristic function %y
satisfies xy e L(X, u),andif y e L(X, u), w e Ly and |#] < |y| then xel(X, p)

(i) if @, yeL(X, p) and |z| < |y|, then d(x,0) < d(y, 0);

H

(v) it yel(X,u),wely and @ ~y, then #<L(X,u) and d(xz, 0)

= d(y; 0)5
(v) it @, yeL(X, p) and o1y, then d(z,y) = d(z, 0)+d(y, 0);
(vi) any monotonely descending sequence (#,),. @, eL(X, u) con-
verging to 0 almost everywhere satisfies

lime, = 0.
n

In [2] L. Drewnowski and W. Orlicz gave an axiomatic description
of modular lattices. Definition 2.1 originates from that paper and
characterizes the metric linear spaces &, studied by 8. Cater [1],
B. Gramsch [4] and W. Orlicz [6]. According to [2] the metric of an
Z-space is monotonic, additive and absolutely continuous with respect
© to the measure u and it follows from the theorem of Radon-Nikodym
that d can be represented by an integral.

The following theorem is given in [2].

- THEOREM 2.2. Let (X, A, u) be a non-alomic o-finite measure space
on a set X and (L(X, u), d) an Z-space on X.
Then there is o unique continuous monotonely inereasing subadditive

Sunction
p: RT—>R* @(0) =0,

(@, 0) = [g(ln))dp
X

with
such that

holds for amy weL(X, u).

icm®
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The function ¢: R*—R™, gpecified in the proposition of this theorem
is called the “modular function of the metric @”. Its computation is rather
easy (see [2]), since we can take an element 4ed with 0 < u(4) < oo
and determine

¢: R*—R* by o(t):= (/J(A))—ld(tXAz 0).

The concept of the #,-spaces is derived from the representation of the
metric as an integral by means of the modular function. Therefore an
Z-space (L(X, p), d), to the metric d of which the modular function

@: RT—R*
belongs, is shortly called an “%,-space”.

3. Special compact endomorphisms. If (X, 4, u) is a non-atomic
. measure algebra, i.e. a non-atomic measure space with u(X) < oo, and

it (L(X, p), d) is an Z-space with a bounded metric, we easily realize
that L(X, ) is topologically isomorphic to the space S(X, u) of all clagses
of, y-measurable functions on X endowed with the topology of conver-
gence in measure. Since this space is uniformly bounded we get in par-
ticular:

TueorEM 3.1. Let (X, A, u) be a non-atomic measure algebra defined
on a set X and let 8(X, u) denote the real topological linear space consisting
of all classes of u-measurable functions on X endowed with the topology of
CONVErgeNnce i Measure.

Then there exists mo mnon-trivial bounded linear mapping of S(X, u)
into @ real topological linear space, especially the ideal of the compact endo-
morphisms of S(X; u) is identical with the zero-operator.

Now we give more examples for the Theorems 1.1 and 1.2. Let for
this purpose be ([0, 1], 4, 1) the measure algebra generated by the Le-
besgue-measure 4 on the interval [0, 1]. For the complete metric linear
space S([0, 1], A) of all classes of J-measurable functions on [0, 1], N. T.
Peck [7] constructed a decreasing sequence (z,),.n of metrizable linear
topologies, all of them being weaker than the topology of convergence
in measure.

Especially the spaces (8([0,1], 4), 7,) as well as the completions
of them are uniformly bounded and hence do not have any non-trivial
compact endomorphisms.

If we consider ‘0 < p <1 and the mapping
p: RY->R* given by o(t):=1"

we are able to show that the appropriate % ,-space L?([0,1], 1) is tran-
sitive.
(See [8], Theorem IX. 6.4.).

3 — Studia Mathematica XTLVIL2
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THEOREM 3.2. The complete metric linear space LF([0, 1], A) with
0 < p < 1 -has no non-trivial compact endomorphisms.

More complicated is the case for general .Z,-spaces. Under certain
restrictions concerning the measure space S. Rolewicz found the fol-
lowing result:

TaeorEM 3.3. Let X be a separable metric space, such that it is borelian
in its completion X. Let u be a non-atomic borelian measure defined on X
and suppose that (L(X S M), d) is an L-space on X.

Then the following assertions are equivalent:

(i) There evists a non-trivial continuous linear functional on L(X , u).

(ii) There exists a non-trivial compact endomorphism of L(X, u).

Proof. (i) = (ii) is obvious.

(ii) = 1) is based on the following lemma:

Levma. Let A and B be two separable melric spaces borelian in their
completions and let uy, up be non-atomic borelian measures on A and B
respectively such that py(A) = ug(B) < co.

Then there is a one-to-one mapping

F: A—-B

such that B and F~* are borelian and moreover up(F(H)) = uy (E for
each measurable borelian set B in A.
(See for example [9], Ch. VL § 5 BEx. 27.)
Let
T: L(X, p)—L(X, u)

be a non-trivial compact endomorphism of L(X, u). Since the simple
functions are dense in L(X, u) and the measure is borelian, there is a bore-
lian set A of finite positive measure such that

g:= Ty e L(X, u)\{0}.

Moreover we may assume that there is a ¢ > 0 and a borelian set B of
finite positive measure such that for any teB, z(t) > ¢. Let us put

0 for teX\RB,
j): = .
‘ | 20 for teB.
The operator
J: L(X, p) - L(X, )
given by the product
) J(%):=
is continuous and we have

JTy4 = 1p-

icm
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#(B)
u(d)’
to the set A and let up be the measure u restricted to B. The sets 4, B
and the measures p 4, up satisfy the hypothesis of the lemma. Therefore
there exists a measure preserving mapping

Let us write-b: = Let uy be the measure by restricted

F: A->B
of A onto B.
Let us define a linear map
P: L(X, p)~>L(X, u)
as follows
0 for te X\ 4
Pa: =
. o(F(2))  for ted.

It is easy to verify that P is continuous and that Pyg = y4.

Thus PJTy, = x4 and the compact endomorphism PJT has 1 as
an eigenvalue. According to the result of J. H. Williamson [10] the ex-
istence of an feL(X, p)'\{0} is proved.‘n

For a compact subset of an & -space on any measure space we have:

LeMMmA 3.4. Let (X, A, u) be a o-finite measure space on a set X. Tur-
thermore lot (L(X, u), cZ) be an L-space on X with an unbounded meiric
and K = L(X, u) a compact subset.

Then the following statements hold:

i) sup d(z, 0) << oo,

xe B

. ii) for each &> O there exists a 6> 0 such that for each A A with

/,L(A) <'é
sup d(@y4, 0) < .
xeK

Using this lemma we get: .

TaroreM 3.5. Let (X, A, u) be a non-atomic o-finite measure space
on o set X. Furthermore suppose that (L (X, u), d) is an Z-space on X such
that the modular function

' ¢: RT—R
belonging to d satisfies the following conditon
—17,
'lim}_«(p (_——(p (w,)) =a>0.
e 7

Then the ideal of compact endomorphisms of L(X
of the zero operator.
Proof. Let

u) consists only

T: L(X, p)~L(X, u)
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denote a non-trivial compact endomorphism. Then, without restricting
generality, we may suppose that the image of the open unit ball B(0, 1)
under T is contained in a compact subset of L(X, u). Since the simple
functions are dense in L(X, u), there exists an Aded with 1 > p(4) > 0
such that
#i= Ty eL(X, p)\{0}.
Since 2 % 0 there is a real number ¢ > 0, such that

0 < ufteX| [2(t) >}
and we define

B:= {t<X]| |2(t) > ¢}.
The mapping

J:L(X, p)L(X, p),
given by the product

J(x):= j=,
where
j:X—>R

denotes the bounded u-measurable function defined by
teX\B

csigne(t), teB,

signe (1),

Jj@):=
is a continuous endomorphism. Therefore the composition
Ty=dJoTl: L(X, u) - L(X, u)

is again a compact endomorphism, which maps the open unit ball B(0, 1)
into a compact subset K; of L(X, u) and for which ’

< T2
is valid.
Since pu(A) = a <1 there is a partition 47, ..
welN, such that for each ie{l,..., n}

., Ay of A for each

a
r(AT) = P
consequently, for each neN and each ie{l,...,n}
yi:= g7 ()7 peB(0, 1)
“and the equation

)
n

1
a4 = ;(yi”+...+y3:)

holds for each meN.

icm

Compact endomorphisms of metric linear spaces Zy ’ 131
If we set .
~1
P~ (1)
1 = x| 1T o1 > 22

for each neN and each ke{l,...,n}, then we obtain from

-1 -1 =
¢~ (n) o (n) )H 1 ( 1 11.)
o AB < T:( 4| = i; T.y;

that

@~ (n)

n }{BQHI&X{[le?]xI?, veey tTl?/mXJ”}'
n

By Lemma 3.4 (i)
M:=supd(z,0) < oo

zeK)
and this implies
-1
M)
<P( )ﬂ(lk) <M
n
for each meN and each ke{l,...,n} and therefore
M
IR = —F——~-
TR0
A

As consequence of the assumption

]imwl-¢(£;—b(l)) =g>0

n T

there exists a subsequence (u,),.n of the positive integers such that the
sequence
—1
((p(w (%r)))“N
n"

is strictly monotonely increasing and unbounded.

Now, for any positive & < }{au(B)), let us select according to Lemma
3.4 (if) the positive real number é proper to K,. For é > 0 there exists
again an roe N — set m:=n, — such that for each ke{l,...,m}

pI¥) <6
holds. Since .
Tyy <K,
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for each ke{l,...,m}, it follows from

- i1l it U lors in 1 logical spaces, J.
g~ (m {101 J. H. Williamson, Compact lincar operalors in linear topolog paces,
XBgmaX{lleﬁxlT’ o !le%[xlﬁ} London Math. Soc. 29 (1954), pp. 149-166.
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GRSELLSCHAFT FUR MATH. U. DATENY.
1 m BIRLINGHLOVEN
—(m 7 :
o[ T < Y a1, 0) <,

m = & Teceived March 1, 1972 (495)

hence

() e

m m 2

and this contradicts the assumption.m

Providing an example for such an #-space we take for X the unit
intervall [0, 1] and for s the Lebesgue measure A. The desired .&-space
then is the £ -space (L([0, 1], 4), ) studied in detail by B. Gramsch [4],
which belongs to the modular function

o :RT—>R"

with
' o(t):=log(L+1).
Here we have for each nelN

1 ~1 . 7 ‘s
~_(p(i_(_'fli) = ilog (”%l _}_f__) > i]og(i) = 1.«.!.0_%_73'_’

n » k(] W » " n
hence
—1
- 113
lim —¢ g () =1
- % n
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