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i s with respect to o(4”, A') and o(B”, B'), Lemma 2.1 implies
E}gzzlg‘ufrll;pzvthe idell}ltity of A" onto that of B”. If T is bipositive (resp.
isometric), so is T™, as was noted abow?. Thuﬁ The(?.r.en{l 11. may be
applied to.show that (iv) combined with either (ii) or (iil) implies (i).

Note. As Kadison observes in [5], p. 502, his generalized Schwz.wz
inequality may be used to show independently of the eorresp'qn(hng
result for C*-algebras with identity that in the above theorem (ii) and
(iil) together imply (i). ‘

For any C*-algebra 4, let H, denote the real Banach space of the
self-adjoint elements of A.

TaworeM 3.2. Let A and B be O*-algebras and T': A - 15" a vector
space isomorphism. If T maps H 4 isometrically onto Hy, then T' is isomelric.

Proof. By Lemma 2.4 T is bounded, so we have the bounded maps
T*: B — A’ and T*: 4" — B”'. The real Banach space H, of the con-
tinuous Hermitian linear forms on 4 may be identified with thg Ba.mwh
space dual of H, (see [1], p. B). Similarly, (H ) identifies with I7 ..
This follows form Corollary 12.1.3 (iii) in 1] and the fact that for any
two vectors & and # in the Hilbert space underlying A" the .li,neam fOI‘IT).
@ — (@&, n) belongs to the predual of 4". The argument used. in [1] 1.2.6,
p. 5 may be adapted to show that this identification preserveﬁwnornm.
Similar statements hold for B. Wehave |1 | H,| = |T* | Hpl = [ARY: TN
and applying this result also to T~' we see that ™ ig isometric on H%.
Theorem 2 in [5] combined with Theorem 5 in [4] then shows that 7™,
hence T, is everywhere isometric.
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Some more Banach spaces which contain I*
by
JAMES MAGLER (Berkeley, Cal.)

Abstract. Lot X* ho a conjugate Banach space containing a subspace isomorphic
to Lt (), Sutlicient conditions on the measure # are given which insure that X contains
a subspace isomorphie to It

Introduction. The purpose of this paper is the extension of the results
of Petezyniski [11] concerning the embedding of L* (1) spaces into conjugate
Banach spaces. The main result is the following :

. TuHEOREM 1. Let X be a Banach space. Assume that either

(I) X* contains a (closed) subspace isomorphic to L*(p) where u is
@ non purely atomic measure; or
(IT) X* contoing a (closed) subspace isomorphic to 1M(I") and the dimension
of X s less than the cardinality of I
Then X containg a subspace isomorphic fo I

It is an immediate consequence of this theorem and resulis of Rosenthal
[13] that if X is a separable Banach space with X* non-separable and X.
is either an %, space or a quotient space of C[0,1], then X containg
a subspace isomorphic to I (For the definition and properties of .,
spaces, see [9] and [10].) It also follows from Theorem 1 and results in
[11] that if X is separable and X* satisfies either (I) or (IT) of Theorem 1,
then [0, 1] is isomorphic to a quotient space of X.

The proof of Theorem 1 involves a modification of methods introduced
by Pelezyniski in [11] (excopt in (II) in the case where X is not separable).
Pelezyfiski proved. Theorem 1 under the added agsumptions that the
subspace of X* isomorphic to L) or (I is & “seminorming” subspace
of X*, and, in cano (11), that X ig separable. (Ior the definition of seminorm-
ing, see [1L], p. 232.) Delbaen [2] idependently proved Theorem 1 (I)
and & (II) in the ease where X is separable (using essentially the same
idea as in Proposition 2 and the remark ‘which follows it). Johnson and
Rosenthal [6] have recently given a different proof of Theorem 1 (I)
using weak-* basic soquences.

The author wishes to express his appreciation to Professor Rosenthal

for suggesting this problem and for many helpful conversations concerning
it,
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Preliminaries. All Banach spaces will be real Banach spaces, and
will be denoted by B, X, and Z. B will be said to be a subspace of X if
B is a closed linear submanifold in X. Sy denotes the unit ball of X, i e,

= {we X: [zl < 1}. We willrefer to a bounded linear operator 1': X' — B
as an operator. An operator I': X - B is an isomorphism if it is one-one
with closed range. If 7 is an isomorphism from X onto B, then X and B
are said to be isomorphic. A sequence (#,) in X is a basic sequoence if given
any @ in the closed linear 5pan of the z,’s, there exists a unique sequence

of scalars (a,) such that o == Zanmq, If (i) and (z,) are basic sequences
Ml

in Banach spaces X and Z then (7,) and (z,) are cqmv‘zﬂeut if given a ge~

quence (a,) of scalars, then 2 a, @, converges if and only if 5’ (1, 2, COTLVOLZES

ﬂwl
If (@,) and (2,) are eqmvalen‘o then. it follows from the closed graph theorem
that their closed linear spang are isomorphic.

If X is a Banach space, then the conjugate or dual space of X is
denoted by X*. If T: X — Y is an operator, then 7*: T*-» X" denotes
the adjoint operator to 7. By the weak-* topology on X* wo mean the X
topology on X*. (See for example [3], p. 420.) If ¥ is a subset of X*, then
cl*(Y) denotes the weak-* closure of Y in X*.

A subset Y of X* is said to be norming if there exist §, K > 0 such
that 8zl < sup {|y(@)|i ve ¥} < K| forallee X, i e., if o]’ = sup{|y(e)|
ye Y} defines a norm equivalent to the usual norm on X.

Remark. It follows easily from the Hahn-Banach Theorem that
if ¥ is a bounded convex subset of X*, then Y is norming if and only if
there exists 6 > 0 such that e*(¥) o 68 x.

Let I' be a set. Then I*(I') (I°(I") respectively) is the Banach space
of real valued functions f: I"-> R such that

[iflly = Z{ IF: yeIt < o0 (Ifle = sup{lf(y)]: ye I} < oo respectively).

If card(l") = N,(card(I") denotes the cardinality of I"), then we write '

T =TI") and 7° =1,(I"). The usual basis for I* iy the basis (¢,) where

(m) . 1 it = m, ; 1 int
0, (M) = 8y == for all integors m.
" b 0 if n s m, .

If Qs a set, £ a o-algebra of subsets of £ and o (positive) moeasure,
then by L'(u) = I}, 2, u) we mean the Banach space of equivalonce
classes of w-measurable functions on Q such that ||f]l, = [|fldp < cc.
It © = [0,1], 2 the o-algebra of Borel subsets of [0, 1], and u Lebesgue
measure, we denote I'(u) by L'

If X is a Banach space, the dimension of X, denoted dim (X), is the
least cardinal number mt such that there exists a sob s in X of eardinality
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m whose closed linear span is all of X. Similarly, the density character of
a topological space K is the least cardinal number m such that there
exists a dense set in K of cardinality m.

Results. The firat proposition and the remark which follows give
a sufficient condition for a Banach space X to contain a subspace isomor-
phic to I'. In what follows, let y: X — X** denote the natural embedding
of X into ity second conjugate X™**,

ProvosrrroN 2. Let T: Z-+ X" be an isomorphism. Assume that
Y = T*(x8x) contains a basic sequence equivalent to the usual basis in I,
Then X containg a subspace isomorphic to '

Proof. Let (y,) be a basic sequence in ¥ equivalent to the usnal
basis in I, For each n, pick @,¢ Sy such that T* (ym,) = y,. It is easily
verified that (»,) is & basic sequence in X equivalent to the usual basis
in 7%

Remark. In Proposition 2, the set ¥ is a bounded convex subset
of Z* such that el*(¥) > (1/177Y) 8z (For

lell < 1T T2l == (T sup{ly (@) (Te)|: we Sy}
= [ sup {| 7% (1 (@)) (2)|: e Sy}
----- = |1 sup {ly (2)]: ye ¥}
and the fact that o*(¥) = (L/1T]) 8z now follows from the remark on
norming gets in the preliminaries.)

The next lemma provides the principal means in this paper of showing
that certain Banach spaces contain a subspace isomorphic to I'. In it,
we examine certain bounded norming convex subsets of Z* for the spaces
Z = I'(u) (u non purely atomic) and Z = 1*(I).

LeMmA 3. (i) Let w be a non pwcl y atomic measure. If Y is a bounded
convex norming subset of [L'(w)]*, then ¥ contains o basic sequence (y,)
equivalent to the usual basis in Z‘

(ii) Let I be an dnfinite set ond ¥ a bounded comvex norming subset
of 1°(I") with the norm density character of ¥ < card(I"). Then Y contains a
basie sequence (11,) equivalent to the uswal basis in 1.

The proot of (i) is identical to those of Propositions 2.2 and 2.3 of
[11] togother with the following observations: In the proofs of these
propositions, ¥ iy a closed subspace rather than a bounded convex set.
However, the assumption that ¥ be closed is used there only to conclude
that Y contains a subspace isomorphic to I*, rather than elements (y,)
equivalont to the wsual basis in . Moreover, a linear manifold ¥ norms
[LMu)]* it for some &3>0, l*(8p) > 08pye- The set Sy is what
we have called “Y”.

The proof of (ii) is an immediate consequence of the next technical
lemma, which generalizes Proposition 2.4 of [11]. In what follows, let m
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denote an infinite cardinal number and m™ the sucecessor cardinal to m.
We use the fact that m™ is not the sum of < m cardinals each < m.
i LemMA 4. Let I be o set of cardinality >=m*, and Y a bounded conver
subset of 1™ (I") of morm density character <m such that cl*(Y) o Sporry -
Let Iy ooy Iy Dypias ooy Dy be pairwise disjoint subsets of I' with
card (I) =m™ for all L<i<<n+m. :
Then there exists ye ¥ such that

card{yeI3: y(y) =12} > m* for L<ign
and

card{yel;: y(») < ~12} zmt  for n+LliLnbm,

Proof. Let o be a set of cardinality <m and {y,: ae &} a denge
st in Y. Pubt 4 =IyX ... x DX X X Iy We claim that
for each (yi,..., ¥pym) € 4, there exists an ae & such that

Yolve) = 1/2  for 1<i<n and
(*) '
Yolye) < —1/2

To prove the claim, define re1°(I") by

for n+1l<i<ntm.

n

1 i yeJ Iy,
iml

nelm

it ye U Iy,

t=n1
0 otherwise.

Also define (for 1< i< n+m) fie*(I") by

r(y) =] -1

L iy =
fily) = v

0  otherwise.

Th.en since el*(¥) o Spory and {y,: ae o} is norm dense in Y, there
exists an ae of such that
€N ly%’v(ym(y) —wz[ Y <12 for 1<i<n+m.
Computing the left hand side of (1), we see that
. L=y (v} < 1/2 forl<i<n and

‘ [~1—y.(p)l<1/2 for a+l<i<ntm,
The 1nequalitie§ (*) are immediate from (2), proving the claim.

Now rlet I be a set of cardinalify m*, and for each Hh1<t ntm,
lep @ I - I; be an i]lljection. Then the subset 4’ = 4 defined by
4 ={{e200) ooy Pram)): ¥ e } is a. set of cardinality m™ with the

icm
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property that if (1, ..., Yurm) (81) -y Snym)e 4" and y, = §; for some i,
then y; = ¢; for all 4.

It follows from the claim that for each 8 = (y;,..., Ypym)e 4’y We
can choose an o = a(d)e o such that y, satisfies (*) for 6. Thus the function
p: A" of defined by 9 (8) = a(0) is well defined, and so, 4’ = {J{p~(a):
rae p(4)}. Therefore, since p™(a) N () =@ if « % f, m+ = card(4)
= X {eard (y~(a)): acyp(4')}. But now, since card (y(4") < card ()
<m, it follows from the remark preceding this lemma that for some
ae o, cord (p*{a) =m™.

We claim that this o satisfies the conclusion of lemma. To see this,
let I7;: 4 — I be the projection of 4 onto I;. Then, by the definition
of 4', card (IL- (1/)'1(a))) =m* for all 1< i < n-m. Moreover, y,(y)=>1/2
for all yell(y~*(a), L <i<n, and y,() < —1/2 for all yell(yp~}(a)),
n-+1< ¢ n+m. This completes the proof of Lemma 4.

Proof of Lemma 3 (ii). By considering if necessary the set rY
instead of the set ¥ (for some sufficiently large » > 0), we may assume
A* () = Speopry-

By Proposition 2.2 of [11], it suffices to show the following:

(#%) Given an integer m and a finite collection Iy, ..., I'ym_; of pairwise
disjoint subsets of I" each of cardinality >m™, there exists ye ¥ such
that card {yel}: (—1)Yy(p) =12} =m" for 0<<i<2™—1.

But defining I} =TIy for 0<<i<2™ ' —~1 and Iym-1y; = [y
for 0< i< 2™ —1, we can select (by Lemma 4) a ye Y such that (++)
card{ye I';: y(»)=1/2} 2=m™ for 0<i<2™'—1 and card{yeI;:y(y)
< —1/2}zmt for 2™ g2 1 '

This is equivalent to (#*), and completes the proof.

Theorem 1 now follows immediately from Proposition 2 and Lemma 3.
Tor if T: L*(u) - X* (T: (I') > X* respectively) is an isomorphism and

u, X, and I" are as in the statement of the theorem, then ¥ = T™(ySx)

is a bounded convex norming subset of [L*(u)]" (of I°(I")) and the density
character of ¥ < dim.X < card(I"), respectively. (This last is true since
the density character of 8y = dim X and Y is & continuous image of Sx.
Hence the density character of ¥ < density character of Sx.) In either
case, Y contains a basic sequence (y,) equivalent to the usual basis in 7,
and the theorem follows from the remark following Proposition 2.

‘We remark that Theorem 3.4 of [11] can now be stated without
the asswmption that the subspace isomorphic to L) or (I is semi-
norming. We state some of these equivalences for the sake of complete-
Ness.

TrmoruM 5. Let X be a separable Banach space. Then the following are
equivalent:

(i) X contains o subspace isomorphic to T
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(ii) 070, 1] is isomorphic o a quolient space of X. (If K is a compact
Hausdorff space, then ¢(K) is the Banach space of continunous functions
on K with [fll = sup{|f(z)|: we K} for fe O(K).)

(iii) X* contains a subspace isomorphic to L\,

(iv) X* contains o subspace isomorphic to 1*(I') with card (L") = @.

(v) X* contains a subspace isomorphic to ([0, 175

(1) = (i) = (ili), (iv), and (v) were all proved in [11}. (iii) = (i) i
a restatement of Theorem 1 (I) (since if 4 is non purely atomic then L' ()
contains a subspace isometric to L'), and (iv) = (i) iy a special case of
Theorem 1 (II). (v) = (iii) is immediate since [0, 1]* containg a subgpace
isometric to L%

Remark. The result of Gelfand [5] that L' is not isomiorphic to
a subspace of a separable conjugate space now follows directly from the
implication (iii) = (v) in Theorem & since € [0, 1]" is non separable.

We also have the following corollaries to Theorem 1.

COROLLARY 6. Let X be either

(i) o separable &, space with a non separable dual; or

(i) dsomorphic to a quotient space of € [0,1] with & non separable
dual.

Then X contains o subspace isomorphic to 1%,

Proof. (i) The assumptions imply that X*is a non Heparable spaco
such that X* is injective. (Cf. [10], p. 835.) It now follows from tho
remark following Theorem 2.3 of [13], p. 217 , that X* containy a subspace
isomorphic to I(I") for some uncountable set I, (Otherwise, it would follow
from the remark that X* is isomorphic to a subspace of L', which. is impos-
sible sinee X™* is non separable.) Hence, by Theorem 1 (II) X contains
a subspace isomorphic to I

(ii) Let @: C'[0,1]— X be an operator from ¢ [0y 1] onto X. Then
¢*t X* > C[0,11* is an isomorphism so- (by asswmption) ¢*(X™) s
4 non-separable subspace of ¢ [0, 1]%. It now follows from [13], Lemma
1.3, that p*(X*) contains a subspace isomorphic to I*(I") for some uneount-
able set I'. (Otherwise, it would follow from this lemma that there exists
& positive ue C [0, 1T* (which we identify by the Riesz, Representation
Theorem ([3], p. 265) with M [0, 1], the Banach space of rogular Borol
measures on [0, 1]) such that ¢*(X*) iy a subspuce of L} ( ) Budt this is
impossible, since for every pe M0, 1], L' () is separable). Tence X
contains & subspace isomorphic to I*. This completes the proof of the
corollary.

Lewis and Stegall [7] have proved that if X is a separable £, space
and X* i3 separable, then X* ig isomorphic to . Combining this result
with Corollary 6 (i), we have the following :

e © :
Im Some more Banach spaces which contain It . © o4l

CoroTLARY 7. Let X be o separable 2., space. Then either X* is isomor-
phic to 1 or X contains a subspace isomorphic to 1.

A final corollary to Theorem 1 is s topological result which depends
heavily on work of Pelezyriski and Semadeni [12] on spaces of continuous
functions. Recall that a topological space K is dispersed if it contains
no non-empty perfect subset. The weight of a topological space K (wt(K))
is the least cardinal number nt such that there exists a bage for the topology
of I having cardinality ni.

JOROLLARY 8. Let IC be a dispersed compact Hausdorff space. Then

CwH(K) = card (K).

Proof. It is well known that wh(K) = dimC(K), that wt(K)
< eard (I0) ([4], p. 105), and that ¢(K)* contains a subspace isometric
to IM(I") with card(l") = card (K). If Wt (K) < card (K), then by Theorem
1 (IT), O(K) contains a subspace isomorphic to I'. But by the Main Theorem
of [12], p. 214, K is not dispersed if C'(K) contains a subspace isomorphic
to 1. Therefore wt(K) = card(K).

Final Remarks. Tt can be shown that Theorem 1 (IT) cannot be
improved in. the following sense: There exist Banach spaces X with dim X
> N, such that X* contains a subspace isomorphic to I*(I") (even as a com-
plemented. subspace) and sueh that dim(X) < eard(I") but such that X'
does nof; contain a subspace isomorphic to I*(2) with card (2) > N,.

To see this, lot m be an uncountable cardinal number such that
m¥0 = 2%, (af. [14], pp. 153-154), and let 4 be a set of cardinality m. Let
4" be the one point compactification of the (discrete) set 4. Then, by
Propositions 3.1 and 3.2 of [8], the space K = A*x A*x A*x% ... is
homeomorphic to a weakly compact set in a Banach space. Thus by
Proposition 1 of [1], ¢ (K) is a weakly compactly generated (WCG) Banach
space. It is easily seen that dimC(K) =m and C(K)* = M (K). contains
& complemented subspace isometric to (") with ecard(I") = 2™ However,
it is well known (cf. [13], Remark 2, p. 214) that no WCG Banach space
contains & subspace isomorphic to 1*(£2) with eard (Q) > §¥,. (For another
oxample, see [13], p. 236.)

A corresponding problem for L(u) spaces is the following: If X*
containg a subspace isomorphie to L' (u) where u is a finite homogeneous
measure, dooy A contain a subspace isomorphic to *(I) with card(l”)
= dim (LM (@) % This was conjectured in [11] (under the additional
agsnmption that L'(w) iy embedded as a seminorming subspace of X*).
This problem appears still to be unsolved.

Finally, we mention that Theorem 1 and the corollaries which follow
provide a positive solution in special cases to the question of Linden-
strauss: Tf X is separable and X* is not, then does X contain a subspace
isomorphic to [*%
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Smooth partitions of unity
on some non-separable Banach spaces

by
H. TORUNCZYK (Warszawa)

Abstract, 1t is shown that every Hilbert space, any spswe’of the form Loy (X, u)
and any space ¢,(4) admit 0%-partitions of unity. Moreover, all reflexive Banach |
spaces admit partitions of class O'. The above results are obtained by verifying that
a sufficient (and necessary) condition for a space to admit OF.partitions of unity is
satisfied in those cases; the condition is stated in Theorem 1.

Let X be a metric space and let § be a set of real functions on X.
We say that X admits S-partitions of unity if, given an open cover % of X ,
there is a locally finite partition of unity (f)y. With fiy| X — U= 0 and
fueSior any Ue. It is of interest to know whether or not a given Banach
space admits O"-partitions of unity, % =1,2,..., co. In the case of
separable spaces Bonic and Frampton ([2], Th. 1), extending the method
of Bellg (cf. [7], pp. 28-30), proved:

(BY) A separable Bamach space B admits OF-partitions of wnity iff
there ewists a non-constant function in O%(H) with bounded support.

TFrom this it follows that the separable Hilbert space and the spaces
gy by and Ly, (0,1),n =1,2,... admit *-partitions of unity (the C*-
partitions of unity on I, were first constructed by Eells, see [7]). Combining
(BF) with the result of Kadec—Restrepo ([6] and [11]) one obtaing also
that any separable Banach space with a separable dual admits C?-
partitions of unity. For further discussion of smooth partitions of unity
on separable Banach spaces we refer the reader to [2].

Howover, it is not known whether the statement (BF) remains true
for non-geparable Banach spaces, and only wvery recently Wells [13]
showed that each Ililbert space admits partitions of clags % The aim
of this paper is to prove that each of the spaces ¢,(4), Iy(A), Ly, (X, u)
(A-an arbitrary set, (X, u}) — a positive measure space, neN) admits
J-partitions of unity. We will also prove that any reflexive Banach space
admits partitions of class C'. Our approach is different from that of Wells
and depends on the construction of some o-locally finite base of open
sets in ¢,(4). '

The author would like to thank Oz. Bessaga and 8. Troyanski for
helpful discussions during the preparation of this note.
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