continuous with respect to $\sigma(A'',A')$ and $\sigma(B'',B')$, Lemma 2.1 implies that T maps the identity of A'' onto that of B''. If T is bipositive (resp. isometric), so is T^{**} , as was noted above. Thus Theorem 1.1 may be applied to show that (iv) combined with either (ii) or (iii) implies (i).

Note. As Kadison observes in [5], p. 502, his generalized Schwarz inequality may be used to show independently of the corresponding result for C^* -algebras with identity that in the above theorem (ii) and (iii) together imply (i).

For any C^* -algebra A, let H_A denote the real Banach space of the self-adjoint elements of A.

THEOREM 3.2. Let A and B be C^* -algebras and $T: A \rightarrow B$ a vector space isomorphism. If T maps H_A isometrically onto H_B , then T is isometric.

Proof. By Lemma 2.4 T is bounded, so we have the bounded maps $T^*\colon B'\to A'$ and $T^{**}\colon A''\to B''$. The real Banach space $H_{A'}$ of the continuous Hermitian linear forms on A may be identified with the Banach space dual of H_A (see [1], p. 5). Similarly, $(H_{A'})'$ identifies with $H_{A''}$. This follows form Corollary 12.1.3 (iii) in [1] and the fact that for any two vectors ξ and η in the Hilbert space underlying A'' the linear form $x\mapsto (x\xi,\eta)$ belongs to the predual of A''. The argument used in [1] 1.2.6, p. 5 may be adapted to show that this identification preserves norms. Similar statements hold for B. We have $\|T'\mid H_A\| = \|T''\mid H_B\| = \|T^{**}\mid H_{A''}\mid$, and applying this result also to T^{-1} we see that T^{**} is isometric on $H_{A''}$. Theorem 2 in [5] combined with Theorem 5 in [4] then shows that T^{**} , hence T, is everywhere isometric.

References

- J. Dixmier, Les C*-algèbres et leurs représentations, (Cahiers Scientifiques 29), Paris 1964.
- [2] N. Dunford, J. Schwartz, Linear operators, Part I: General theory. New York 1958.
- [3] A. Grothendieck, Un résultat sur le dual d'une O*-algèbre. J. Math. Puros Appl. 36 (1957), pp. 97-108.
- [4] R. V. Kadison, Isometries of operator algebras, Ann. Math. 54 (1951), pp. 325-338.
- A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. Math. 56 (1952), pp. 494-503.
- [6] S. Sherman, The second adjoint of a C*-algebra, Proc. Intern. Congr. Math. Cambridge 1 (1950), p. 470.
- [7] Z. Takeda, Conjugate spaces of operator algebras. Proc. Japan Acad. 30 (1954), pp. 90-95.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HELSINKI

Received December 10, 1971

(453)

Some more Banach spaces which contain l^1

by

JAMES HAGLER (Berkeley, Cal.)

Abstract. Let X^* be a conjugate Banach space containing a subspace isomorphic to $L^1(\mu)$. Sufficient conditions on the measure μ are given which insure that X contains a subspace isomorphic to l^1 .

Introduction. The purpose of this paper is the extension of the results of Pełczyński [11] concerning the embedding of $L^1(\mu)$ spaces into conjugate Banach spaces. The main result is the following:

THEOREM 1. Let X be a Banach space. Assume that either

- (I) X^* contains a (closed) subspace isomorphic to $L^1(\mu)$ where μ is a non purely atomic measure; or
- (II) X^* contains a (closed) subspace isomorphic to $l^1(\Gamma)$ and the dimension of X is less than the cardinality of Γ .

Then X contains a subspace isomorphic to l¹.

It is an immediate consequence of this theorem and results of Rosenthal [13] that if X is a separable Banach space with X^* non-separable and X is either an \mathscr{L}_{∞} space or a quotient space of C [0, 1], then X contains a subspace isomorphic to l^1 . (For the definition and properties of \mathscr{L}_p spaces, see [9] and [10].) It also follows from Theorem 1 and results in [11] that if X is separable and X^* satisfies either (I) or (II) of Theorem 1, then C [0, 1] is isomorphic to a quotient space of X.

The proof of Theorem 1 involves a modification of methods introduced by Pelczyński in [11] (except in (II) in the case where X is not separable). Pelczyński proved Theorem 1 under the added assumptions that the subspace of X^* isomorphic to $L^1(\mu)$ or $l^1(\varGamma)$ is a "seminorming" subspace of X^* , and, in case (II), that X is separable. (For the definition of seminorming, see [11], p. 232.) Delbaen [2] idependently proved Theorem 1 (I) and 1 (II) in the case where X is separable (using essentially the same idea as in Proposition 2 and the remark which follows it). Johnson and Rosenthal [6] have recently given a different proof of Theorem 1 (I) using weak-* basic sequences.

The author wishes to express his appreciation to Professor Rosenthal for suggesting this problem and for many helpful conversations concerning it. **Preliminaries.** All Banach spaces will be real Banach spaces, and will be denoted by B, X, and Z. B will be said to be a subspace of X if B is a closed linear submanifold in X. S_X denotes the unit ball of X, i. e., $S_X = \{x \in X : \|x\| \le 1\}$. We will refer to a bounded linear operator $T : X \to B$ as an operator. An operator $T : X \to B$ is an isomorphism if it is one-one with closed range. If T is an isomorphism from X onto B, then X and B are said to be isomorphic. A sequence (x_n) in X is a basic sequence if given any x in the closed linear span of the x_n 's, there exists a unique sequence of scalars (a_n) such that $x = \sum_{n=1}^{\infty} a_n x_n$. If (x_n) and (x_n) are basic sequences in Banach spaces X and X, then (x_n) and (x_n) are equivalent if given a sequence (a_n) of scalars, then $\sum_{n=1}^{\infty} a_n x_n$ converges if and only if $\sum_{n=1}^{\infty} a_n z_n$ converges If (x_n) and (x_n) are equivalent, then it follows from the closed graph theorem that their closed linear spans are isomorphic.

If X is a Banach space, then the conjugate or dual space of X is denoted by X^* . If $T\colon X\to Y$ is an operator, then $T^*\colon Y^*\to X^*$ denotes the adjoint operator to T. By the weak-* topology on X^* we mean the X topology on X^* . (See for example [3], p. 420.) If Y is a subset of X^* , then $\operatorname{cl}^*(Y)$ denotes the weak-* closure of Y in X^* .

A subset Y of X^* is said to be *norming* if there exist δ , K>0 such that $\delta ||x|| \leq \sup\{|y(x)|: y \in Y\} \leq K ||x||$ for all $x \in X$, i. e., if $||x||' = \sup\{|y(x)|: y \in Y\}$ defines a norm equivalent to the usual norm on X.

Remark. It follows easily from the Hahn-Banach Theorem that if Y is a bounded convex subset of X^* , then Y is norming if and only if there exists $\delta > 0$ such that $\operatorname{cl}^*(Y) \supset \delta S_{X^*}$.

Let Γ be a set. Then $l^1(\Gamma)$ ($l^\infty(\Gamma)$ respectively) is the Banach space of real valued functions $f\colon \Gamma \to \mathbf{R}$ such that

$$\|f\|_1 = \sum \{|f(\gamma)| \colon \gamma \, \epsilon \, \varGamma\} < \infty \; (\|f\|_\infty = \sup \{|f(\gamma)| \colon \gamma \, \epsilon \, \varGamma\} < \infty \; \text{respectively}).$$

If $\operatorname{card}(\varGamma) = \aleph_0(\operatorname{card}(\varGamma))$ denotes the cardinality of \varGamma), then we write $l^1 = l^1(\varGamma)$ and $l^\infty = l_\infty(\varGamma)$. The usual basis for l^1 is the basis (e_n) where

$$e_n(m) = \delta_{nm} = egin{pmatrix} 1 & \text{if } n = m, \\ 0 & \text{if } n \neq m, \end{pmatrix}$$
 for all integers m .

If Ω is a set, Σ a σ -algebra of subsets of Ω and μ a (positive) measure, then by $L^1(\mu) = L^1(\Omega, \Sigma, \mu)$ we mean the Banach space of equivalence classes of μ -measurable functions on Ω such that $||f||_1 = \int |f| d\mu < \infty$. If $\Omega = [0, 1]$, Σ the σ -algebra of Borel subsets of [0, 1], and μ Lebesgue measure, we denote $L^1(\mu)$ by L^1 .

If X is a Banach space, the dimension of X, denoted $\dim(X)$, is the least cardinal number m such that there exists a set $\mathscr A$ in X of cardinality

 \mathfrak{m} whose closed linear span is all of X. Similarly, the density character of a topological space K is the least cardinal number \mathfrak{m} such that there exists a dense set in K of cardinality \mathfrak{m} .

Results. The first proposition and the remark which follows give a sufficient condition for a Banach space X to contain a subspace isomorphic to l^1 . In what follows, let $\chi \colon X \to X^{**}$ denote the natural embedding of X into its second conjugate X^{**} .

PROPOSITION 2. Let $T\colon Z\to X^*$ be an isomorphism. Assume that $Y=T^*(\chi S_X)$ contains a basic sequence equivalent to the usual basis in l^1 . Then X contains a subspace isomorphic to l^1 .

Proof. Let (y_n) be a basic sequence in Y equivalent to the usual basis in l^1 . For each n, pick $x_n \in S_X$ such that $T^*(\chi x_n) = y_n$. It is easily verified that (x_n) is a basic sequence in X equivalent to the usual basis in l^1 .

Remark. In Proposition 2, the set Y is a bounded convex subset of Z^* such that $\operatorname{cl}^*(Y) \supset (1/\|T^{-1}\|) S_{Z^*}$. (For

$$\begin{split} \|z\| &\leqslant \|T^{-1}\| \ \|Tz\| = \|T^{-1}\| \sup \{|\chi(x)(Tz)| \colon \ x \in S_X\} \\ &= \|T^{-1}\| \sup \{|T^*(\chi(x))(z)| \colon \ x \in S_X\} \\ &= \|T^{-1}\| \sup \{|y(z)| \colon \ y \in Y\} \end{split}$$

and the fact that $\mathrm{cl}^*(X) = (1/\|T^{-1}\|)S_{Z^*}$ now follows from the remark on norming sets in the preliminaries.)

The next lemma provides the principal means in this paper of showing that certain Banach spaces contain a subspace isomorphic to l^1 . In it, we examine certain bounded norming convex subsets of Z^* for the spaces $Z = L^1(\mu)$ (μ non purely atomic) and $Z = l^1(\Gamma)$.

LEMMA 3. (i) Let μ be a non purely atomic measure. If Y is a bounded convex norming subset of $[L^1(\mu)]^*$, then Y contains a basic sequence (y_n) equivalent to the usual basis in l^1 .

(ii) Let I' be an infinite set and Y a bounded convex norming subset of $l^{\infty}(I')$ with the norm density character of $Y < \operatorname{card}(I')$. Then Y contains a basic sequence (y_n) equivalent to the usual basis in l^1 .

The proof of (i) is identical to those of Propositions 2.2 and 2.3 of [11] together with the following observations: In the proofs of these propositions, Y is a closed subspace rather than a bounded convex set. However, the assumption that Y be closed is used there only to conclude that Y contains a subspace isomorphic to l^1 , rather than elements (y_n) equivalent to the usual basis in l^1 . Moreover, a linear manifold Y norms $[L^1(\mu)]^*$ if for some $\delta > 0$, $\operatorname{cl}^*(S_Y) \supset \delta S_{[L^1(\mu)]^*}$. The set S_Y is what we have called "Y".

The proof of (ii) is an immediate consequence of the next technical lemma, which generalizes Proposition 2.4 of [11]. In what follows, let m

denote an infinite cardinal number and \mathfrak{m}^+ the successor cardinal to \mathfrak{m} . We use the fact that \mathfrak{m}^+ is not the sum of $\leqslant \mathfrak{m}$ cardinals each $\leqslant \mathfrak{m}$.

LEMMA 4. Let Γ be a set of cardinality $\geqslant \mathfrak{m}^+$, and Y a bounded convex subset of $l^{\infty}(\Gamma)$ of norm density character $\leqslant \mathfrak{m}$ such that $\mathfrak{cl}^*(Y) \supset S_{l^{\infty}(\Gamma)}$.

Let $\Gamma_1, \ldots, \Gamma_n, \Gamma_{n+1}, \ldots, \Gamma_{n+m}$ be pairwise disjoint subsets of Γ with card $(\Gamma_i) \geqslant m^+$ for all $1 \leqslant i \leqslant n+m$.

Then there exists $y \in Y$ such that

$$\operatorname{card} \{ \gamma \in \Gamma_i : \ y(\gamma) \geqslant 1/2 \} \geqslant \mathfrak{m}^+ \qquad \text{for } 1 \leqslant i \leqslant n$$

and

$$\operatorname{card}\left\{\gamma \in \varGamma_i\colon \, y(\gamma) \leqslant -1/2\right\} \geqslant \mathfrak{m}^+ \quad \text{ for } n+1 \leqslant i \leqslant n+m \,.$$

Proof. Let $\mathscr A$ be a set of cardinality $\leqslant \mathfrak m$ and $\{y_a\colon a\in\mathscr A\}$ a dense set in Y. Put $\varDelta=\varGamma_1\times\ldots\times\varGamma_n\times\varGamma_{n+1}\times\ldots\times\varGamma_{n+m}$. We claim that for each $(\gamma_1,\ldots,\gamma_{n+m})\in \varDelta$, there exists an $a\in\mathscr A$ such that

$$y_a(\gamma_i) \geqslant 1/2$$
 for $1 \leqslant i \leqslant n$ and

(*) $y_a(\gamma_i) \leqslant -1/2 \quad \text{ for } n+1 \leqslant i \leqslant n+m.$

To prove the claim, define $r \in l^{\infty}(\Gamma)$ by

$$r(\gamma) = egin{cases} 1 & ext{if } \gamma \epsilon igcup_{i=1}^n arGamma_i, \ -1 & ext{if } \gamma \epsilon igcup_{i=n+1}^{n+m} arGamma_i, \ 0 & ext{otherwise.} \end{cases}$$

Also define (for $1 \le i \le n+m$) $f_{i \in l^{1}(\Gamma)}$ by

$$f_i(\gamma) = \begin{cases} 1 & \text{if } \gamma = \gamma_i, \\ 0 & \text{otherwise.} \end{cases}$$

Then since ${\rm cl}^*(Y)\supset S_{l^\infty(I')}$ and $\{y_\alpha\colon \alpha\in\mathscr{A}\}$ is norm dense in Y, there exists an $\alpha\in\mathscr{A}$ such that

$$\left|\sum_{\gamma \in \Gamma} r(\gamma) f_i(\gamma) - \sum_{\gamma \in \Gamma} y_{\alpha}(\gamma) f_i(\gamma)\right| < 1/2 \quad \text{ for } 1 \leqslant i \leqslant n + m.$$

Computing the left hand side of (1), we see that

$$|1-y_a(\gamma_i)| < 1/2$$
 for $1 \le i \le n$ and

$$|-1-y_{\alpha}(\gamma_i)| < 1/2$$
 for $n+1 \leq i \leq n+m$.

The inequalities (*) are immediate from (2), proving the claim.

Now let Γ' be a set of cardinality \mathfrak{m}^+ , and for each $i, 1 \leq i \leq n+m$, let $\varphi_i \colon \Gamma' \to \Gamma_i$ be an injection. Then the subset $\Delta' \subset \Delta$ defined by $\Delta' = \{(\varphi_1(\gamma'), \ldots, \varphi_{n+m}(\gamma')) \colon \gamma' \in \Gamma'\}$ is a set of cardinality \mathfrak{m}^+ with the

property that if $(\gamma_1, \ldots, \gamma_{n+m})$, $(\delta_1, \ldots, \delta_{n+m}) \in \Delta'$ and $\gamma_i = \delta_i$ for some i, then $\gamma_i = \delta_i$ for all i.

It follows from the claim that for each $\delta = (\gamma_1, \ldots, \gamma_{n+m}) \epsilon \Delta'$, we can choose an $\alpha = \alpha(\delta) \epsilon \mathscr{A}$ such that y_α satisfies (*) for δ . Thus the function $\psi \colon \Delta' \to \mathscr{A}$ defined by $\psi(\delta) = \alpha(\delta)$ is well defined, and so, $\Delta' = \bigcup \{\psi^{-1}(\alpha) : : a \epsilon \psi(\Delta')\}$. Therefore, since $\psi^{-1}(\alpha) \cap \psi^{-1}(\beta) = \emptyset$ if $\alpha \neq \beta$, $\mathfrak{m}^+ = \operatorname{card}(\Delta') = \mathcal{E} \{\operatorname{card} (\psi^{-1}(\alpha)) : a \epsilon \psi(\Delta')\}$. But now, since $\operatorname{card} (\psi(\Delta')) \leqslant \operatorname{card} (\mathscr{A}) \leqslant \mathfrak{m}$, it follows from the remark preceding this lemma that for some $\alpha \epsilon \mathscr{A}$, $\operatorname{card} (\psi^{-1}(\alpha)) = \mathfrak{m}^+$.

We claim that this α satisfies the conclusion of lemma. To see this, let $H_i\colon \varDelta \to \varGamma_i$ be the projection of \varDelta onto \varGamma_i . Then, by the definition of \varDelta' , card $\left(H_i\left(\psi^{-1}(\alpha)\right)\right) = \mathfrak{m}^+$ for all $1\leqslant i\leqslant n+m$. Moreover, $y_a(\gamma)\geqslant 1/2$ for all $\gamma\in H_i\left(\psi^{-1}(\alpha)\right), \ 1\leqslant i\leqslant n, \ \text{and} \ y_a(\gamma)\leqslant -1/2 \ \text{for all} \ \gamma\in H_i\left(\psi^{-1}(\alpha)\right), \ n+1\leqslant i\leqslant n+m.$ This completes the proof of Lemma 4.

Proof of Lemma 3 (ii). By considering if necessary the set rY instead of the set Y (for some sufficiently large r>0), we may assume $\operatorname{cl}^*(Y) = S_{l^\infty(I)}$.

By Proposition 2.2 of [11], it suffices to show the following:

(**) Given an integer m and a finite collection $\Gamma_0, \ldots, \Gamma_{2^m-1}$ of pairwise disjoint subsets of Γ each of cardinality $\geqslant m^+$, there exists $y \in Y$ such that card $\{\gamma \in \Gamma_i : (-1)^i y(\gamma) \geqslant 1/2\} \geqslant m^+$ for $0 \leqslant i \leqslant 2^m - 1$.

But defining $\Gamma_i' = \Gamma_{2i}$ for $0 \le i \le 2^{m-1} - 1$ and $\Gamma_{2^{m-1}+i}' = \Gamma_{2i+1}$ for $0 \le i \le 2^{m-1} - 1$, we can select (by Lemma 4) a $y \in Y$ such that (**') card $\{\gamma \in \Gamma_i' \colon y(\gamma) \ge 1/2\} \ge m^+$ for $0 \le i \le 2^{m-1} - 1$ and card $\{\gamma \in \Gamma_i' \colon y(\gamma) \le -1/2\} \ge m^+$ for $2^{m-1} \le i \le 2^m - 1$.

This is equivalent to (**), and completes the proof.

Theorem 1 now follows immediately from Proposition 2 and Lemma 3. For if $T\colon L^1(\mu)\to X^*$ ($T\colon l^1(\varGamma)\to X^*$ respectively) is an isomorphism and μ,X , and \varGamma are as in the statement of the theorem, then $Y=T^*(\chi S_X)$ is a bounded convex norming subset of $[L^1(\mu)]^*$ (of $l^\infty(\varGamma)$) and the density character of $Y\leqslant \dim X< \operatorname{card}(\varGamma)$, respectively. (This last is true since the density character of $S_X=\dim X$ and Y is a continuous image of S_X . Hence the density character of $Y\leqslant \dim X$ density character of S_X .) In either case, Y contains a basic sequence (y_n) equivalent to the usual basis in l^1 , and the theorem follows from the remark following Proposition 2.

We remark that Theorem 3.4 of [11] can now be stated without the assumption that the subspace isomorphic to $L^1(\mu)$ or $l^1(\Gamma)$ is seminorming. We state some of these equivalences for the sake of completeness.

THEOREM 5. Let X be a separable Banach space. Then the following are equivalent:

X contains a subspace isomorphic to l¹;

- (ii) C[0,1] is isomorphic to a quotient space of X. (If K is a compact Hausdorff space, then C(K) is the Banach space of continuous functions on K with $||f|| = \sup\{|f(x)|: x \in K\}$ for $f \in C(K)$.)
 - (iii) X* contains a subspace isomorphic to L¹.
 - (iv) X^* contains a subspace isomorphic to $l^1(I)$ with $card(I) = \mathfrak{C}$.
 - (v) X^* contains a subspace isomorphic to $C[0, 1]^*$.
- (i) \Rightarrow (iii) \Rightarrow (iii), (iv), and (v) were all proved in [1.1.]. (iii) \Rightarrow (i) is a restatement of Theorem 1 (I) (since if μ is non purely atomic then $L^1(\mu)$ contains a subspace isometric to L^1), and (iv) \Rightarrow (i) is a special case of Theorem 1 (II). (v) \Rightarrow (iii) is immediate since $C[0,1]^*$ contains a subspace isometric to L^1 .

Remark. The result of Gelfand [5] that L^1 is not isomorphic to a subspace of a separable conjugate space now follows directly from the implication (iii) \Rightarrow (v) in Theorem 5 since $C[0,1]^*$ is non separable.

We also have the following corollaries to Theorem 1.

COROLLARY 6. Let X be either

- (i) a separable \mathscr{L}_{∞} space with a non separable dual; or
- (ii) isomorphic to a quotient space of $C\left[0,1\right]$ with a non separable dual.

Then X contains a subspace isomorphic to l.

- Proof. (i) The assumptions imply that X^* is a non separable space such that X^{**} is injective. (Cf. [10], p. 335.) It now follows from the remark following Theorem 2.3 of [13], p. 217, that X^* contains a subspace isomorphic to $l^1(\Gamma)$ for some uncountable set Γ . (Otherwise, it would follow from the remark that X^* is isomorphic to a subspace of L^1 , which is impossible since X^* is non separable.) Hence, by Theorem 1 (II) X contains a subspace isomorphic to l^1 .
- (ii) Let $\varphi\colon C\left[0,1\right]\to X$ be an operator from $C\left[0,1\right]$ onto X. Then $\varphi^*\colon X^*\to C\left[0,1\right]^*$ is an isomorphism so (by assumption) $\varphi^*(X^*)$ is a non-separable subspace of $C\left[0,1\right]^*$. It now follows from [13], Lemma 1.3, that $\varphi^*(X^*)$ contains a subspace isomorphic to $l^1(\Gamma)$ for some uncountable set Γ . (Otherwise, it would follow from this lemma that there exists a positive $\mu\in C\left[0,1\right]^*$ (which we identify by the Riesz, Representation Theorem ([3], p. 265) with $M\left[0,1\right]$, the Banach space of regular Borel measures on [0,1]) such that $\varphi^*(X^*)$ is a subspace of $L^1(\mu)$. But this is impossible, since for every $\mu\in M\left[0,1\right]$, $L^1(\mu)$ is separable). Hence X contains a subspace isomorphic to l^1 . This completes the proof of the corollary.

Lewis and Stegall [7] have proved that if X is a separable \mathscr{L}_{∞} space and X^* is separable, then X^* is isomorphic to l^1 . Combining this result with Corollary 6 (i), we have the following:

COROLLARY 7. Let X be a separable \mathscr{L}_{∞} space. Then either X^* is isomorphic to l^1 or X contains a subspace isomorphic to l^1 .

A final corollary to Theorem 1 is a topological result which depends heavily on work of Pelczyński and Semadeni [12] on spaces of continuous functions. Recall that a topological space K is dispersed if it contains no non-empty perfect subset. The weight of a topological space K (wt(K)) is the least cardinal number m such that there exists a base for the topology of K having cardinality m.

COROLLARY 8. Let K be a dispersed compact Hausdorff space. Then $\operatorname{wt}(K) = \operatorname{card}(K)$.

Proof. It is well known that $\operatorname{wt}(K) = \dim C(K)$, that $\operatorname{wt}(K) \leq \operatorname{card}(K)$ ([4], p. 105), and that $C(K)^*$ contains a subspace isometric to $l^1(\Gamma)$ with $\operatorname{card}(\Gamma) = \operatorname{card}(K)$. If $\operatorname{wt}(K) < \operatorname{card}(K)$, then by Theorem 1 (II), C(K) contains a subspace isomorphic to l^1 . But by the Main Theorem of [12], p. 214, K is not dispersed if C(K) contains a subspace isomorphic to l^1 . Therefore $\operatorname{wt}(K) = \operatorname{card}(K)$.

Final Remarks. It can be shown that Theorem 1 (II) cannot be improved in the following sense: There exist Banach spaces X with $\dim X > \aleph_0$ such that X^* contains a subspace isomorphic to $l^1(\Gamma)$ (even as a complemented subspace) and such that $\dim(X) < \operatorname{card}(\Gamma)$ but such that X does not contain a subspace isomorphic to $l^1(\Omega)$ with $\operatorname{card}(\Omega) > \aleph_0$.

To see this, let m be an uncountable cardinal number such that $\mathfrak{m}^{\aleph_0}=2^{\mathfrak{m}}$, (cf. [14], pp. 153–154), and let \varDelta be a set of cardinality m. Let \varDelta^* be the one point compactification of the (discrete) set \varDelta . Then, by Propositions 3.1 and 3.2 of [8], the space $K=\varDelta^*\times\varDelta^*\times\varDelta^*\times ...$ is homeomorphic to a weakly compact set in a Banach space. Thus by Proposition 1 of [1], C(K) is a weakly compactly generated (WCG) Banach space. It is easily seen that $\dim C(K)=\mathfrak{m}$ and $C(K)^*=M(K)$ contains a complemented subspace isometric to $l^1(\varGamma)$ with $\operatorname{card}(\varGamma)=2^{\mathfrak{m}}$. However, it is well known (cf. [13], Remark 2, p. 214) that no WCG Banach space contains a subspace isomorphic to $l^1(\varOmega)$ with $\operatorname{card}(\varOmega)>\aleph_0$. (For another example, see [13], p. 236.)

A corresponding problem for $L^1(\mu)$ spaces is the following: If X^* contains a subspace isomorphic to $L^1(\mu)$ where μ is a finite homogeneous measure, does X contain a subspace isomorphic to $l^1(\Gamma)$ with $\operatorname{card}(\Gamma) = \dim (L^1(\mu))^*$ This was conjectured in [11] (under the additional assumption that $L^1(\mu)$ is embedded as a seminorming subspace of X^*). This problem appears still to be unsolved.

Finally, we mention that Theorem 1 and the corollaries which follow provide a positive solution in special cases to the question of Lindenstrauss: If X is separable and X^* is not, then does X contain a subspace isomorphic to l^1 ?

J. Hagler

42

References

- D. Amir, and J. Lindonstrauss, The structure of weakly compact sets in Banach spaces. Ann. of Math., 88 (1968), pp. 35-46.
- [2] F. Delbaen, A remark on A. Pelczyński's paper "On Banach spaces containing $L_1(\mu)$ ".
- [3] N. Dunford, and J. T. Schwartz, Linear operators. Part I. New York 1958.
- [4] R. Engelking, Outline of general topology, Warsaw 1968.
- [5] I. M. Gelfand, Abstrakte Funktionen und lineare Operatoren, Mat. Sb., 4 (46), 1938, pp. 235-286.
- [6] W. B. Johnson, and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), pp. 77-92.
- [7] D. R. Lewis, and C. Stegall, Banach spaces whose duals are isomorphic to l₁(Γ), J. Functional Analysis, 12 (1973), pp. 177-187.
- [8] J. Lindenstrauss, Weakly compact sets their topological properties and the Banach spaces they generate, Proc. of the Symposium of Infinite Dimensional Topology, Princeton 1972.
- [9] and A. Pełczyński, Absolutely summing operators in \mathcal{L}_p spaces and their applications, Studia Math. 29 (1968), pp. 275-326.
- [10] and H. P. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math. 7 (1969), pp. 227-239.
- [11] A. Pełozyński, On Banach spaces containing $L_1(\mu)$. Studia Math. 30 (1968), pp. 231-246.
- [12] and Z. Semadeni, Spaces of continuous functions (III) (Spaces C(Ω) for Ω without perfect subsets). Studia Math. 18 (1959), pp. 211-222.
- [13] H. P. Rosenthal, On injective Banach spaces and the spaces L[∞](μ) for finite measures μ. Acta Math. 124 (1970), pp. 205-248.
- [14] W. Sierpinski, Cardinal and ordinal numbers, Warsaw 1958.

Received December 28, 1971 (456)

STUDIA MATHEMATICA, T. XLVI. (1973)

Smooth partitions of unity on some non-separable Banach spaces

b

H. TORUŃCZYK (Warszawa)

Abstract. It is shown that every Hilbert space, any space of the form $L_{2n}(X,\mu)$ and any space $c_0(A)$ admit O^{∞} -partitions of unity. Moreover, all reflexive Banach spaces admit partitions of class C^1 . The above results are obtained by verifying that a sufficient (and necessary) condition for a space to admit O^k -partitions of unity is satisfied in those cases; the condition is stated in Theorem 1.

Let X be a metric space and let S be a set of real functions on X. We say that X admits S-partitions of unity if, given an open cover $\mathscr U$ of X, there is a locally finite partition of unity $(f_U)_{U\in\mathscr U}$ with $f_U|X-U=0$ and $f_U\in S$ for any $U\in\mathscr U$. It is of interest to know whether or not a given Banach space admits C^k -partitions of unity, $k=1,2,\ldots,\infty$. In the case of separable spaces Bonic and Frampton ([2], Th. 1), extending the method of Eells (cf. [7], pp. 28–30), proved:

(BF) A separable Banach space E admits C^k -partitions of unity iff there exists a non-constant function in $C^k(E)$ with bounded support.

From this it follows that the separable Hilbert space and the spaces c_0 , l_{2n} and $L_{2n}(0,1)$, $n=1,2,\ldots$ admit C^{∞} -partitions of unity (the C^{∞} -partitions of unity on l_2 were first constructed by Eells, see [7]). Combining (BF) with the result of Kadec–Restrepo ([6] and [11]) one obtains also that any separable Banach space with a separable dual admits C^1 -partitions of unity. For further discussion of smooth partitions of unity on separable Banach spaces we refer the reader to [2].

However, it is not known whether the statement (BF) remains true for non-separable Banach spaces, and only very recently Wells [13] showed that each Hilbert space admits partitions of class C^1 . The aim of this paper is to prove that each of the spaces $c_0(A)$, $l_2(A)$, $L_{2n}(X, \mu)$ (A-an arbitrary set, $(X, \mu) - a$ positive measure space, $n \in N$) admits C^{∞} -partitions of unity. We will also prove that any reflexive Banach space admits partitions of class C^1 . Our approach is different from that of Wells and depends on the construction of some σ -locally finite base of open sets in $c_0(A)$.

The author would like to thank Cz. Bessaga and S. Troyanski for helpful discussions during the preparation of this note.