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STUDIA MATHEMATICA, T. XLVI. (1973)

On linear functionals in Hardy-Orlicz spaces, IL

by
R. LESNIEWICZ (Poznax)

Abstract. This paper is the second part of a paper under the same title which
is aldo published in Studia Mathematica, The paper contains two gections:
III and IV. In the Section III we give the representation of linear functionals on
a Hardy-Orlicz space H*® (H°?) for the general case, where g i8 a log-convex @-function
(Theorem III. 3.1-3.4). Section IV contains a more precige representation of linear
functionals on a Hardy-Otlicz space H*¥(H®¥) for convex g-function 3 (Theorems
1V.1.1-8.4) and the representation of linear functionals on the dual space for H*v
(Theorems IV.4.1-4.6). Throughout the whole paper the investigations concern
three types of linear functionals on a Hardy-Orlicz space: norm continuous, modular
continuous and very weakly continuous ones.

This paper is a continuation of paper [6]. We adopt the notation
and continue the section mumbering of paper I. We cite the results of
both parts, I and IV, writing the number of the section and the number
the result in the section; within the same gection the section number
ig omitted. ‘

1II. REPRESENTATION OF LINEAR FUNCTIONALS

1.1. Let ¥, and I, be two analytic functions in the circle D and let

oo ‘o0
Tye) = V(B and  Fy(e) = D ya(Fa)e"  for zeD.
R l) ()

The radius of convergence of both these power series is not less than 1,
and go the radius of convergence of the series

o

(BT (2) = D ya(Fo)yn(Fo)"

Nl

is also not less than 1. The function I+, will be called a convolution
of the functions Iy and Fy.

It is easy to verify that convolution has the following properties
on the space of all analytic functions in D:
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1° By« Fy = Fyx By (convolution is commutative),

2° (Fy*y)%Fy = Fyx (Fax Iy) (convolution is associative), _

3° (Fy+Fy) % Iy = Fyx Py Fo4 Py (distributivity of convolution with
respect to addition),

4° (al\) % Fy = Fyx(aly) =

5° The function,

I(2)

a(l' x 1) for any number a,

o

mZz“ (2eD)

fhrsl)

= (L—2)"!

is a convolution unity (i.e. IxF == I for every function J* analytic in D),
1.2, For functiony F, and I, analytic in .D the following is true

on
(Fo %) (2) =~21;-f By (2,6 Fy(ego~ @t for zeD,
where 2y, #, are number from the circle .D such that 2 = 2,2, ( (L),
13. For zeD and & =1,2,... let
Ii(2) = 2" I* " (2) = &F(1—2)"*"1,
Then for any fundtion F analytic in D

(T4 T) (@) = 0 7o)

for zeD and & =1,2,...
Proof. Let zeD. We have, by 1.2, for an r such that el <r<1,

1 5 gt
(L* P (2) = T.of f ml
1 ()
i f T -0 (2),

{C: 18] =7} with the positive orientation.

Ik (- 6-”) 7’6’”) at = nj_“._ Vi (7‘0'“) dt

2n

w

d(?wz]

where C, =

14. For any functions T, and Ty amalytic in D the following two re-

lations hold:

(TrFl)*Fz = Fl*(Ter) == Tr(Fl*Fz) Jor 05

and

(8 I)x P, = Fywe (8, 0,) = 8y (T % 1y

The easy proof of this lemma iy omitted.

for real h.
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1.5. Let f be an integrable funcmon on [0, 27). An analytic func-
tion in D defined by
2'n:f 1—

is called a Cauchy integral of fumdtion f.
It is evident that the Cauchy integral of a function f can be repre-
sented in the form of the following power series

9= Snme

ne=0

I

o ai  (zeD)

(zeD),
whose coefficients are given by

o
Yl =51;ff(t)e“’"‘dt Jorn=0,1,2, ...
0

L1.6. If I' is an analytio function in D and G is the Cauchy integral
of & function g integrable on [0, 2n), then

in
(TH@) () = f F(ee~g(tydt for veD.
2n J
Proof. From 1. 5 we have for zeD

fﬁ* o= g (1) dt = Z'yn F)z“-f g(t) e~ a \

N

:meyn(w - (F16)(2).

w0

1.7, If f is am integrable funciion on [0, 2) such that

ff(t Yo il =0  for mo=1,2,...

th(m a fundion I being the Qauchy imtegral of f is the Poisson integral of f1
Hence in this case the Cauchy integral T of f belongs to the Hardy olass H
({187, Chap. VIL §9).

1.8. If for some constants d >0 and w, >
< dg(u)

0 we have the inequality
Jor u > u, N

5 — Studia Mathematica XLVIL3
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(then L** = I*) and if a function f belonging to L*? (resp. to L%, L°") satisfies
the condition

an
[ fwyemar =0 for'n=1,2,..,
g7

then the Cauchy integral F' of f belongs to H*" (vesp. to H®, H 7.,

an
Proot. Let feL*® satisty the condition [ f(1)é™dt = 0for n =1, 2, ..,
. 0

Then feI'. In virtue of 1.7 the Oauchy integral I' of f belongs*to o and
F(6") = #() for almost every ¢[0, 27). Thus FeN' and ]J_"(g") L7 (IP, I,
This implies, in view of L. 3.3, that FeH™ (resp. H", H).

2.1. Let @ be an analytic function in D. We shall designate
¥y(2; G; B) = sup (2 [(F*G)(#)|: Fe™, | P, < R}
fot 2eD and R > 0, and
9,(G; R) = sup{v,(¢; G; R): 2D}  jfor B> 0.
For any function G analytic in D and for arbitrary R > O the following
relations hold:

1° v,(2; G; R) = v,(l2]; &; R) for 2D,
90 w;,(r; @; R) is a non-decreasing function of v in [0,1). Thus

v, (G; B) = limy,(r; G; R).

rerl—
Proof. Let z = re®, Since for every F<H** we have |87, = |F,,
by 1.4 it follows that
Y (#; G5 B) = sup {2n|(F*@)(re")|: FH*, |\F||, < R}
= sup (2 |(S,F @) (r)|: FeH*, |8, Fll, < R} = v,(r; &; B).

Let now 0 <7, <7, <1, In virtue of the Maximum Principle for every
F eH* such that |F)l, < R there is a 2 such that [¢| == r, and

2m|(F @) (r)| < 2n|(F*@) (2)] < vy (25 G5 R) = vy, (ry; G5 R).

This yields v(ry; &; R) < v, (ry; &; R).

2.2. (H**Y will denote the class of all functions & analytic in D
for which v,(@; RB) < oo for some number R > 0, and. (H*?), — a class
of all functions @ analytic in D for which »,(&; E) < oo for all-R > 0.
Besides, for B > 0 we introduce the class (H*?), of all functions @ analytic
in D for which »,(G; R) < oo,
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We observe that

0 o
(H*?)" = UI(H*”’)Q/,L and  (H™), = () (H*),.
N ne=l
2.3. Tor any function @ analytic in D
70(#; G R) = sup {2n (Fx@) (2)|: FeH, |, < R}
Sfor arbitrary zeD and B > 0.

On this account there is no need to introduce analogous .classes to
those in 2.2 for H°%.

Proof. Clearly, for arbitrary zeD and B> 0
sup {2 [(Fx@)(a)]: PeH™, P, < R} < v, (2; & R).
Let FeH"™ be any function such that IFll, < R. Then T.FeH® and
T, < R for every 0 <7 < 1. Hence for every 0 <7 <1 we get
(@) (r2)] = (T, %) (2)| < sup {[(F*@)(2)|: FeH", 1Fl, < R}.
Passing to the limit with » — 1~ we obtain
(1% @) (2)] < sup {|(F* &) (2)|: FeH®, |F|, < R}.
Trom this follows the required inequality
vp(2; @ B) < sup {27 |(Fx@) ()| : FeH, |F|, < R}.

2.4. If Ge(H")n, where R > 0, then for amy fumction FeH* such
that [P, < B and arbitrary zeD the inequality
2n|(F*@) (2)| < B™'v,(G; R) |7,
holds.

Proof. It I = 0 then also F*G = 0 and so in this case our inequality
is -satisfied. Let us assume then that 0 < [Fll, < B. X.3.4 implies that
also |[RF/|1||,ll, < R. Thus for arbitrary zeD we get

27| (RF | T)l,)* ) (2)] < vy (2; G; R) < v,(G; B).
The desired inequality now follows. '

2,5. Tor any function G analytio in D the term R79,(G; R) is a non-
docreasing . funciion for B > 0. More procisely '
Bl (@ R) = sup {2 [(Fx@)(2)|: FeH™, u,(F) < R,2eD}  for R> 0.

Proof. This result iy obtained from the following verification:’

Ju"lw;(G; R) = gup {2n (R FxQ)(2)|: FeH*?, B, < R, zeD} ‘
= sup {2n |[(F*G)(2)|: F¢H*, |RF|, < R, zeD)}
= sup {2n|(F+@) (2)|: PeH", i, (F) < R, 2eD}.
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2.6. (H:?)’ will denote the class of all functlon @ analytic in D for
which B™'v W(G R) —0.as B—0.
Since B~,(G;R) >0 as B 0 implies v,(@; R) < oo for some

R > 0, we have
(H)
Now the following notations will be introduced.
(HAPY = (HI2) 0 (HY), and (Hp)p = (H)) 0(H)  for B> 0.
2.3. For any Ge(H™Y and any T <H the function FxG is bounded
i D.
Proof. Since Ge(H*?), it meang that there is & number R > 0 such

that v,(@; R) < oo. For F e H*” we take a number o > 0 such that |a2, < B.
Then we have

< (H'7Y.

2 |(al* @) (2)] < vy (G5 B)
and :
[(F*@)(2)] < (27 a) ™9, (& B)

for every #eD. This proves that Fx@ is bounded in .D.

2.8. For any Ge(H*®) and any F<I°" the function Tx@ has the ra-
dial limits :
lim (I @) (re®)

rsl—-

= (F@)(")

everywhere on the ciroumference {z: |2| = 1}, the: function Fx@G completed
with these limits is continwous in the cirdle D = {e: |2| < 1}.

Proof. Since G ¢(H*?), there is a number R > 0 such that »,(G; B) < co.
In view of 3.6 of Section I (8,7 —F|, >0 as b —0 for FeH and
IS, Fll, = |lF]l, for every real h. This implies that for every 0 <es<R

there is & 6 > 0 such that for {hy —hy| < & it is true that (18, s, I — Fli, < &

* Then also

”Sh;lIT Slazlﬂ” = “Shz(shl-lu E)”w
By 2.4 we get for |[h;—hy| <
2 |[(T* @) (re™)

= ||y, B — P, 55 &
< 6 and arbitrary 0 < r < 1
— (FxG) (ré"2)| = 2r|((8), T~ 8, B G) ()]

S R(G; BY 18y, 1~ 83, T, < R0 (G B)e.
Thus the functions f,(f) = (F+@)(ré") are equicontinuous for 0 < ¢ < 1
with respect to . From 2.7 we also deduce that these functions are uniformly

bounded for 0 < » < 1. Since F*@ is bounded in D, it follows from Fatou's
theorem that for almost every ¢ there exists a limit

lmf, () = lm(F* @) (ré") = (Fx&)(d%).
Tl =]~

icm

On linear funciionals in Hardy-Orlice spaces, IT 265

Applying Arzela’s theorem, we conclude that the sequence {f,} converges
uniformly as # —>1—. Hence the limits (Fx@)(¢*) exist for all ¢ and the
function F*G completed with these limits is continuous in D.
2.9, For any Ge(H?) and any T <H*" the function FxG has the radial
limits
Lim (F* @) (re") = (F*G) (6™

fas

everywhere on the circumference {2: |2| =1}, and its completion with these
limits is cowtinuous im the circle D.

" Proof. Let FeH'. Then, for some constant a>0, u,(aF)< co
and by 1.8.6 u,(}a(S,F —F)) — 0 as k — 0. Hence for every ¢, > 0 there
is & §>0 such that p,(}a(8y,_n,F—TF)<e for |hy—hy <4 Thus

Mq)('}a(Sth'—ShQF)) = Mw(shz<%a(sh1—h‘qﬁ1_‘ﬁ,)))
= ‘uw(%‘a(shl—th_F)) <&

Now, since Ge(HL) and in view of 2.5 we conclude that for every &> 0
there is an e, > 0 such that if F<H? is such that pu,(F) < ¢, then |(F*G)(2)]
< }ae for every zeD. Thus, for |h,—h,| < ¢ and arbitrary 0<r <1,
we get for our function

[T ) (re™) — (T @) (re™)] = 20" (3 (8, T — 8, F)*6) ()] < e

Application of a
desired result.

3.1. The functional defined as
(+) £(F) = 2n(F*E)(1)

procedure gimilar to that in the proof of 2.8 yields the

= Um2n (F*@)(r) for FecH
ro>l—

belongs for every Ge(H*?) to (H°*y*, Furthermore, for every B> 0

| v(£75 B) = v,(6; B).

Proof. That this functional is a linear one is evident in vmw of 2.8
and 1.1. By 2.1 and 2.3 for any R > 0 we get

vg(£°; R) = sup{2n|(F*@)(1)|: FeH", |7, < R}
‘ = sup {2n|(F*@)(r)|: FH", |Fl, <R, 0<
= 9,(G; R).

This implies that & e(H°?)*. "

3.2. For every fumctional & ¢(H°P)¥ there is a unique function G ana-
Wytic in D such that (+) ds setisfied. This function belongs to (H*®) and

r<‘1}
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is of the form

(+-+) (zeD),

= —%5] £(U,)"

N0

where U,(2) = " for z¢D and n = 0,1, 2,

Proof. We shall first show that the J:unctwn G defined by (+-4)
is analytic in D. To this end let us observe that for a,xbltmry a > 0 and
n=20,1,2,

le Ul = inf{e > 0: 2rp(afe) < ).

Let 5,(£°; R) < oo for R > 0. We choose such an a, > 0 that [, U, <R
for n =0,1,2,... Then

(T, < a7ty O(E R) form=0,1,2,.

This means that the coefficients of G are uniformly bounded. This allows
us to conclude that & is analytic in D.
Let F<H®". For any 0 < r <1 the polynomial sequence «goz 7 (@)U}

converges uniformly in the circle D to the function 7 Iy and. thus is norm
convergent to 7T,F. Hence

= Y = limg’ (2 WE) Ty = € (T,1).

k=0 Jox=

2m(Fx@)(r

From this, in view of IL.6.6, we deduce that hm(F*G)(r)

exigts and () holds.
Next we shall show that the function ¢ expressed in ( 4 --) is the only
analytic function in D satistying (+). Let @, be an analytic function in D

for which (+) holds. Since the functions U :
0 ~ ' n=0,1,2,.. ,
to H* it follows that ar (0=10,1,2,..), belong

(I*@) (1)

1, o :
T & (Ta) = Hin (U ) (1) = limy, (6"
for v =0,1,2,... Hence G =@.

It remains to prove that Ge(H*?). Taking i oo O
for 0<r <1 (H™) g into account 2.3 we have

= 9, (@)

Pl e

\

v;(r; G; R) =sup{|§°(1’,1«’)]: FeZl°", HF[{@ < R}
Ssup{|&°(F)|: FeH™, |F|, < B} = (&; RB).

This implies that »,(; R) < »(&°; R) and so Ge(H"Y.
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3.8. The functional & defined as
(+) E(F) = 2m(F*G)(1) = Lim2n(F+*G)(r)

Perl o

for FeH*®

belongs to (H)* for every fumetion Ge(Hy?)'. Besides, for every R > 0,
(€3 B) = 7, (G35 R).
Proof, That the functional so defined is a linear one follows imme-
diately from 2.9 and 1.1. In view of 2.1 we get for arbitrary R > 0

vy(&; R) = sup (2r|(F*&)(L1)]: FeH™, |F), < R}
= gup {27 |(F* @) (r)|: FeH*?, [P, < R, 0
Hence, in virtue of IX. 2.4, Ee(Hp7)*,

3.4. For cvery functional Ee(HP)¥ there ewists a umique funciion G
analytic in D and such that (+) holds for FeH"’. This function belongs
to (HXY amd is dofined by (++). ‘

Proof. Tet us denote by & a functional which is the restriction of &
to H°". Obviously & e(H,#)*. In view of 3.2, G defined by (4 +) is the
only analytic funetion in D for which () is satisfied for F eH"®. This
function iy an element of (H*?). Now it follows from 3.1 that for this
function the equation )

va(£°; B) = v,(G; R) for every R >0
holds. Thus, by IL.2.4, Ge(H,;). Taking into account 3.3 and IL.6.4,
we geo that @ is the only function for which () is satisfied for FeH*.

3.5. If G is an analytic function in D such that

Lm(Fx@)(r) = (F*G)(1)

Pl e
omists for every T <H*?, then Ge(H"?)'. What is more, the functional & defin-
ed by () for T eH* belongs to (H**)¥ and is such thet
v,(&; B) = Vp(G; R)  for every B> 0.
A andalogous statement holds for HP.
Proof. Let us observe that for 0 L r <1
O (T G) (1) == (T, 1%G) (1) = §(T,F) = T E(F)
£01 every JeH*®, We shall demonstrate that the functionals T#E belong
to (H*)¥ it 0 < r < 1. Namely in view of IL.12, we have

,g;r<1} :’V’W(G;R)-

= 2 (@ G) () = 2| > (E)7al@)r”

=0

oo * 2 n
<o) e 3 i@ =k

| T & ()|
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The series on the right-hand side of the above inequality is convergent
2r L E
for 0 < r < 1 since ¢ is analytic in D and 0 <m< L. This iniplies

that T £e(H**)¥* for 0 < r < 1. & is a pointwise limit on H* of the fune-
tional sequence {T £} as r — 1—, and so in virtue of IL5.1 it also belongs
to (H')*. As in the proof of 3.3, we get »,(&; B) = »,(G; R) for every
R > 0. This, in view of I1.2.2, implies that Ge(H*?). .

3.6. For any functional &e(H**)¥ there is at most one function & ana-

. lytio in. D such that (+) holds for FeH*?. Whenever this funclion ewisls, |

it -belongs to (H™®)" and is defined by (+ -+).
Proof. Let us assume that such a function @ exists. Then by 3.2

it belongs to (H™), i represented by (++) and is the only analytic
function for which () holds for FeH™*?,

3.7. If ¢ satisfies the condition (A,;), then Theorems 8.1 and 3.2
and also Theorems 3.3 and 3.4 give a full representation of norm contin-
+ uous linear functionals on H*? since then H*? = H°? and (H*?)# == (H*7y*,

3.8. If ¢ does not satisfy the condition (A,), then there are fumalionals
E(H")¥ for which there ewists no function G analytic in D and savigfying ()
for FeH*. All non-irivial functionals &<(H*** are good examples of suoh
a situation.

Proof, Let & be a non-trivial functional from (Ii*”‘)'*". Suppose that

* there is a function ¢ analytic in D satistying (+) for FeH*” In virtue
of 3.6, @& is represented by (---+). The functions U,(2) =" zeD,
7 =0,1,2,... all belong to H**. Thus £(U,) =0 for n =0,1,2, ...
Hence G'(z) = 0 for all zeD and furthermore () = 2m(F*@)(1) =0
for every FeH™ in contradiction to the assumption made on £, ‘

4.1. From 3.1 and 3.2 and II. 2.7, II 2.8 and IX. 6.1 it immediately
follows that the space (H*®)y, for B > 0 is complete relative to the norm
vy(+5 R) and that (HI?), is its closed linear subspace.

Tor Ge(H™) lot us designate

(@) == inf{e> 0: V(G5 1Je) < 1},

We deduce from 3.1 and 3.2 that the properties of the functional », on
the space (H?)' are analogous to those of %, on the space (H°")¥, Thus
in view of IT.6.1 and XI. 3.3 we see that, for an arbitrary sequence {6}
< (H", #,(G,) — 0 if and only if »},(G,; E) ~ 0 for every B > 0. From
II. 6.1, IT. 3.4, T1. 3.5, II. 3.6 and IL. 8.7 we infer that the space (H'") is com-
plete with respect to the metric ¢ (Ghy Gy) = %,,(G, —@,) and that the spaces
(Hy (H*?)g, (HAP), for every R > 0, (H*?)y, (H}?)o are its closed: linear
subspaces. Furthermore, we conciude from 6.1 and IT.3.8 that Ge(H™)
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is aﬁ element of (H"?), if and only if ), (a@) -0 as a — 0 and hence we
infer that [(H*"),, %] it & Fréchet space and (H*?), is a closed linear sub-
space. _

4.2. We denote by (Hy%) a class of all functions Ge(H*?)' for which
the functional ¢ defined by () for T <H*? belongs to (HE2)*.

From II.3.10 we infer that (Hy%) is a closed linear subspace of
[CH)» #o]-

4.3. If G is an analytic function in D, then T,Ge(HZ) for 0 <r < 1.

Proof. For o fixed », 0 <7 < 1, we define a functional

E(F) == 2n(T%G)(r) = 2n (P T,@)(1) for FeH. .

Let {F,} = H"" be a sequence very weakly converging to 0. Then, by
TL.1.5 sup |[Fpl,, == B < oo and y,(Fy) 0 as m — co for n =0,1,2,...
Applying I1.1.2, we got

o o0
. 3 2R o )“
l,_/\__; Vn(-[”m)m(a)?"l < 99_1(;(*1*:;;)1\3 Z [7n (@) (1 v
Nl ne=lo .
for each m and %. The series on the right-hand side of the above inequality
' ‘ 2r .
is convergent since G is amalytic in D and 0 < —— < 1. From this

147
we conclude that for every ¢ > 0 there is a k such that

zn‘z Pa(F)7al@ <= form =1,2,...

Nl

Now, the fact that v, (f,) —0 with m - oo for » =0,1,2,... implies
that for an already fixed & > 0 there exists an m, such that for m = m,

Tl :
27‘7‘ E Vo (F) ¥ (G

T

&
&,
S 2
Thus for m 3= m, we get

|60,)| = 2] (Bt @)(1)| = 27| 3yl ) yn (@17 < o

Tw )

’

This signifios that &e(HXZ)*. Hence T,Ge(Hy)
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4.4. A function G<(H*) belongs to (Hy) if and only if »p(T,G—@)
-0 a8 r—>1—.

Proof. Let Ge(H,7). Let us consider a functional £ defined in (+)
for FeH*®. Then for every 0 <7 <1

(TFE—E)(F) = §(T,F)— £(F) = 2n((T,F*G)(1) — (F*G)(1))
=2n((F*T1,6)(1)— (F*G) (1) = 2n(F*(T,G—@)(1).
In view of 3.3 we get for every B> 0
vo(TF E— & R) = v,(T,G—G; R).
Further, we have
np(THFE— E) = (T, G ~@) for 0 <r <1,
Now, in view of IL.4.3, %, (I,G¢—G) - 0 a8 7 ~> L —.

Oonversely, if »,(T,G0—& 0 as r —~1— for Ge¢(H*) then the
application of 4.3, 4.2, 4.1 yields Ge(HLEY.

4.5. The space [(Hy5)', %] is separable. Polynomials with rational
coefficients form a dense set in this space.

Proof. Let Ge(H,Z) and ¢ be an arbitrary positive number. By 4.4

there exists an 7, 0 <7 < 1, such that »,(T,¢ —@) ‘:{% Further, IL1.2

implies that for every % and every F<H** such that 18l = —2~ it is true
‘ &
that

| S

n=l

4 2 2r \™
<‘<P—1('8“—‘—*7r(1__”):n% ['}’n(G)|('i’;7) .

Reagoning as in the proof of 4.3, we conclude that there is a % such that

25| Yy By

nele

<13

for FeH" guch that I, = 2
&

Let M = sup{v,(v,; 2/e): » =0,1,2,..., k—1}. We take rational num-
bers @, such that

n (@) 1" —a,| < (4 M=) for m =0,1,2,..., k~1
k=1
.and construet a polynomial ‘Q(z) = 3 a,2" Now, for F«H* such that
Fll, < 2/e we get n=0

2r|(F*(T,6 —Q))(1)]

k=1 oo
<27 Y |y ()] [y, (@)1 — 0] + 270 |Z I () ()77 << L.
n=0 T
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This means that v,(T,G—@;2/z) < 1. Hence »,(T,G—@Q) < ¢/2. Tt foi-
lows now that ) :
(G Q) < 5 (G — T, @) + 2, (T,G— Q) < 5.
4.6. For any functions Ge(H') and FeH* such that % (G 1], <L

.the inequality

2n|(F* @) (2)] < o (R | B,  for zeD
holds.
Proof. For an arbitrary e > (@) it is true that v, (G; 1/s) < 1. Thus
in view of 2.4 we obtain
2r |(F @) (=) < I,
for every P eH" such that g||Fl, < 1 and every zeD. Hence we get
27 |(F* @) (2)| < (6 |17,

for every F'eH** such that x,(G)|F|l, <1 and every zeD. Ii now FeH"
is such that z;,(G) ([, =1, then for 0 < a <1, #, (@) [« F],, < L and thus
also

2 (B @) (2)] < 0 o (G) [laF |l

Pasging with o -1 we get the requiréd part of the inequality.

5.1. We say that a sequence {Gy} = (H™)' converges very weally
to Ge(H')' it supw; (G —@) < oo and

sup {|G,, (2) —G(2)]: 2¢H} >0 as n — oo
for every closed set B < D. .

A soquence {G,} = (H*?)' comverges wery wealkly to Qe(H*®Y if and
only if the corresponding (according to formulae (+) and (4 +)) osaquince
of functionals {£} < (H°"Y¥ comverges pointwise to a fumctional & e(H vy
cooresponding to the function G. )

Proof, Let o sequence {G,} = (H'?) converge very weakly to ?s(cﬂ ”)o.
The condition sup s (G, — @) < o0 implies, in view of 4.1 that sup #o(En—§)

< o0, where & and ¢ are functionals corresponding to G, ar}d @, respec-
tively, Since {@,(z)} converges uniformly to G(z) on the 'elrgumference
{2: |2| == 1}, where 0 < r < 1, it now follows on the application of th.e
Cauchy formulae that y,(G,) —7(G) as n — oo for b = 0,1,2,... This
implies that
1 , 1 . '
T EnlUa) = 7l @) 7(G) = 5 (U a8 m > 00
for I =0,1,2,... In virtue of I1.6.7 we now see that {&,} converges
pointwise on H°? to - &.


GUEST


272 R. Leéniewicz

Conversely, let a sequence {£,} = (H™)* be pointwise convergent

to & <(H°*)¥* Thus by IL5.2 we have sgp%;(§;~ £) < oo. Further, 4.1

implies that supsx,(&,—G) < co. Take 0 <7 < 1. Observe that the et
n '

X ={F]}, £l <r, where F,(2) = (L—{2)"" for zeD, is compact in the
space of functions analytic in. D and continuous in D, and hence it is also
compaet in [H"?, |-|,]. Since it is compact, it is bounded in [H°?, 11,2
Thus in view of supsx,(G,—@) < oo, by 4.6 it follows that the functions
- n
(Fe# (G~ @) (1) = Gy(8) ~6(0)

are uniformly bounded on the eircle {£: |¢] < 7} Further, since the se-
quence {&} converges pointwise to £°, we got

27 (G () =G (D) = E(F) — & (Fp) — 0
Applying now the Vitali theorem we have for 0 < g < #
sup{l@,(z) —G(2)|: 2] < o} -0

a8 n ~» 00,
a8 N —> oo,

Since 7 has been an arbitrary number such that 0 < r < 1, we conclude
that for every closed set B < D

SUp{|G,(2) — @ (2)|: zeH} —0

Hence {@,} converges very weakly to G-

QJB N - 00,

5.2. Certain theorems about (H°?)* car be transferred to (H*?)
on account of 5.1. Thus from I1.6.1 and II.5.3 we get

If @ sequence {@,} = (H™) comverges very weakly to Ge(H*), then
7,(6G; B) < liminfy, (@,; B) for every B> 0
N—00
and
#p (@) < limint g (G«
N0
And from IL.6.7 we get

A sequemce {G,} = (H*7)

: is wery weally convergent if and only if
KD #, (Gp)

< oo and a sequencs {y,(G:,)} is convergent for I == 0,1,2,...
We shall  also prove that:

4 sequence {G,} < (H**) s very weally convergent if and only if
sgpxw(Gn) < oo and @ sequence {G,(2)} comverges on a sel of points zeD
having & cluster point in D. ‘

Proof. Let us take, as in the proof of 5.1, for 0 < r <1 a set of functi-
ons X = {F,}, |¢| < r, where Fp(z) = (1—{2)"" for zeD and in view of 4.6

(FC*Gn)(l) = Gn(t)

icm
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are uniformly bounded in the circle {{: |{| < r}. Let us take 7, 0 <7 <1,
such that the cluster point of the set of points 2D for. Whlc.h tl.xe sequence
{@,(»)} is convergent is in the circle {¢: 1&] <r}. Applying V1ta.h’s theorem,
we see that {G,(2)} is then uniformly convergent on the c1rcmference
{¢: 1) = 4} By the Cauchy formulas we f@nc.l that {y;(@,)} is conver-
gent for k = 0, 1,2, ... Thus the sequence {@,} is very weakly convergent.

5.8. Tor any B, M > 0 the got {Ge(FH*): v (G; R) < M} is sequen-
tially wery weakly -compact. ,

Proof., Let {G,} = (H*?) be such a sequence that v,,q(qn; Ry< M
for m =1,2,... For 0 < r <1, as in the proot of 5.1 we consider the set
X = (I}, 1] <7, where Fi(2) = (1~¢2)~* for zel). Since X is hounded
in LH*, {I,1, we find by 2.4 that the functions (F,* G,) (1) = G,({) are
yniformly bounded in the circle {£: |£] < 7}. We take a sequence of points
{¢m}, each different from another and such that |2, < 7. This sequence
{2} clearly has a cluster point in D. Now, from {G,} we substract a sub-
sequence {G, } converging in #z,, from {G,} a subseq}lence ~{an} converg-
ing in 2 zmlcl so on. The diagonal sequence {G%} is lobvmuslymlconver-
gent at every point of the set {2} Since sup no(M MGy, ) < BT {6}
is by 5.2 very weakly convergent. )

5.4. For any function Ge(H*®) the following relations hold

Vo(T,G; R) = vp(r; G5 B) S vp(@; B)  for 0<r <1 and R>0,

V(8463 B) = vp(G5 R)  for h real and E>0;
henoe o
Hp (T, @) < (@) for 0<r <1
and )
‘ K (8),@) = #,(G)  for h real,
and further

W@ B = lim s, (T,G; ) for B> 0

Fob]
and
2 (@) = lim s T G).
Poblo
These properties are immediate consequences of 2.1 and 5.2.
Trom this and 5.2 it easily follows thab

A function G analytio in D belongs to (H*") if and only if
sup (o0 (1,@): 0 < r <1} < oo,

6.1, If (H*) == (H*?),, then (H*?) ocan be equipped with & homo-
geneous norm given by ' .

16, = #,(G5 1) = sup {2r (I @) (2)|: FeH™, Il <1, z<D}
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for Ge(H*®). This norm is then equivalent with the norm w,. Moreover
Jfor evory Y < (H*) we have sup{|@l,: Ge¥} < oo if -and only ?'}
sup {»,(@): Ge¥Y} < co.

This can easily be deduced from 4.1 and IL.8.1. Hence we also infer
that ' ' '

(léﬁ';‘;)( = (H™*), if and only if (H'")¥ = (H°")}¥ or if and only if (H**y#
_ 0

6.2. (H*?)' = (H*®), if and only if (H}?) = (HP).

Pro*oi;. If (1*-1*3’)’ = (H"?), then obviously (H}#) = (H});. Assume
that (*H,l,f’) = (]f,,;f)o. Then for arbitrary R,> R;> 0 we have (H7),
= (Hyg, = (H3) - Hence, in view of 4.1, the space (H3 is complete :‘vnﬁ}
respe(;g 1;,0 t}ae two DOTIS 7, (-5 By) and vf,,(-; &,). Since we have also for every
G€(I_lm) ) ¥(@3 .Z'El) S.vw(Gﬁ R,) it follows from the Closed Graph Theorem
applied to the 1dent1§y,operator that the norms v,(-; £;) and v,(-; R,)
are equivalent on (H,?)'. Let now G e(H*"), Then for some Roq> (; v;e
hawve »,(G; Ry) < . By 4.3, we then have TG e(HL) for 0<r< 1 and
by 5‘.4 we .get vo(T, G .R") < 9,(G; Ry). Thus we see that the get {164,
0<r<1, is bounded in the space [(HND ) vy(-; By)]. Henee, in virtue
of t*l;e, fu:st part of this proof, the set {T,6}, 0 < 7«1, is bounded in
[(Hz)'s vp(-5 B)] for any R > 0. This means that for any B > 0

‘ sup {,(T,G; R): 0 <7 <1} < oo,
This leads us to the conclusion, in view of 5.4, that »
sion, . hat »,(@; y
any B> 0. Hence Ge(H"), am(i (H*?) = (H"'"“)[;. P E) < oo for
6.3. If ¢ satisfies condition (V,), then (H*"’)’ = (H");.
This follows immediately from 8.3 of Section II.

1.1. If, for a natural number m the integral

o
In(p) = f w0 g (1) g
1

exists, then the fumdtions
x
I o zlc L2 TP Gl 7T,
#(2) I (2) = (i et (2eD))
for k=0,1,...,m~1 belong to H".
Proof. For }<r<1and 0<t< = we have
L —re*?® = 1—2rcotr?
= (1 —#)242r (1 — cos?) 2 2r (1 — cost)
= drsin’}t = sin® 3t > (¢/m)2.

icm°®
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Therefore, for } <7 <1, a> 0 and 0 < k< m—1 we have

im ikt i
re a
U, (73 ol ) == Z;[ [ (“h '(i’:,,;uypu ) <2 f 12 ("1 — r&it]k—fl) da

<1 s[:)

To- 1, n 0
m
) db =< 2 f qo(a(—?) )d‘t =27 im f w0 o () dus .
0 o
Hence 7.1 follows.
7.2. If, for o nabural number m, the integral J,,(p) ewists, then every

function Ge(H™) has derivatives of order % = 0,1,...,m—1 bounded
‘in the cirale 1. Moveover, these derivatives completed by their radial limits

TimG® (re®) = G® (g%
Tl
are continuous functions in D.
Proof. By virtue of 7.1 the functions I, for k =0,1,...,m—1
belong to H°?. On account of 1.3, 2.7 and 2.8 we see that the functions

(1 G)(2) =-:~'~!~G“"(z) (zeD)

for & = 0,1, ..., m~1 are bounded in D and, completed by their radial
limits, they are continuous in D.

7.3, Let G be o fumection analytic in D and comtinuous in D. If ils
derivative GO can be completed to o continuous function in D, then the func-
tion G(6%) of & real variable t has o derivative for every t
—iG(e‘“’) = i@V (¢,  where GV (¢%) = LHmGV (re").

dt Froplm

Proof. For arbitrary real 4, and ¢ we have

t
(o) — G (o) = lim (G(re")~ G (re't)) = Lim f GO (76" ire™ dr.

Pl Porl = to

Since G ean be completed o a continuous function in D, we get
Il ;. y
G (o)~ G (dh) = [V (6")ie"dr.
o .

The integrand is continuous, and so the function’ G(¢") of a real variable ?
has a derivative for every t equal to G (¢")ie™


GUEST


276 R. Lefniewicz

74. If, for a natural number m, the i%tegml Inlp) oxists, then for
every function Ge(H*) the function of a real variable
G(e") = limG(re%)

P

dk
has continuous derivatives i G(6™ for k= 0,1,..., m~—1.

This follows easily from 7.2 and 7.3.

Theorems 7.2 and 7.4 can be viewed as generalizations and impro-
vements of certain results of Walters [14].

If p(u) =%, 0 <p<1/m, then

f u iy By ((L/m)—p)™* < oo.
1

Thus, Theorems 7.2 and 7.4 hold for the Hardy spaces H?, 0 < p < 1/m

IV. THE CASE OF SPACES H*’ FOR CONVEX y.

L.1. In this section we shall deal with the problem of representa-
tion of linear functionals on the Hardy-Orlicz spaces H™, where w is
a convex g-function satisfying conditions (0,) and (oco,). In this cage we
shall use a homogeneous norm || |,, for the gpace H**. A convex p-function
satisties condition (V,) and so (H™) = (H*’);; and for the space (H*¥)
we shall use the usual norm

6, = sup 2w |(F* @) (2)]: FeH*, |F), <1, zeD}
= sup 2n|(F* @) (e)|: FeH™, |F|,, <1, 2eD},  (Ge(H™)).

1.2, For every function Ge(H*™) there emists a fumction geL* such
that @ is the Cauchy integral of g and |G, = ljgll,)-

Proof. Let £ be a functional from (H°")# corresponding to G e(H*¥)',
Since the space [H"Y, |- lhy118, by boundary functions, isometrie isomorphic
with a linear subspace of [L°%, ||-||f,], there exists, by virtue of the Ilahn-
Banach theorem, a functional le(L°*)# such that £ () = {1 (e™)) for
FeH and [UIF = [|&°). It is known ([3], p. 128; see L. 2.5) that for & func-
tional I there i a function g «I™" such that

®"e

2
Uf) = [fit)g@n—ndt for feL* and iy = 003
0

Hence

2w -

£ () =f‘1”(e‘“)g(t)dt for FeH™ and |l = & [.

0

icm°
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Let @, be the Cauchy integral of ¢. In view of IIT. 1.6 we get
bid
. 1 , .
(F%G) (r) = 27}f F(regt)dt for 0 <r< 1.
0

Thus, for 0 =l 7 <L and FeH" we have
2r(FxGy) (r) = & (1, F) = 2m (T @) (r).
This yields
2 (B G (1) = & (I) = 2 (Fx@) (1)
tor every e, Now, by 1L, 8.2, we get @, = &. Hence & is the Oauchy
integral of geL™ and G, = (& = gl
1.8. Por overy geL*
over G, < gl -
Proof. Let ¢ be the Cauchy integral of geL**. Then, by IIT. 1.6,
we get for I« H™ and 0 < r < 1,

, 18 Cauchy integral G belongs to (H**). More-

. 2
(I @) (r) "’"“J:"f B (re~")g(t) dt.
2 J
This, together with the fact that [H, ||-|,,] is isometric isomorphic
to a linear subspace of [ZL*, -|f,1, implies that for every FeH™* such

that [[F], <L and 0 r < 1

2
2n | @) (r)| < sup{|f ftygen—td|: fe™, IS, <1}
0

= sup {[ﬂ(t)y(t)dt]: 2,0 <1} = lgly-
0

Recalling now ILL 2.1 we see that
Gl == v, (G5 1) < gl
Thig accomplishes the proof.
Lo L2 will denote the class of all funetions feI* for which

A
[fiyebdt =0 for m =0,1,2,...
4

Cloarly, I* is a closed lincar subspace of [I**, || ] We define a rela-

*tion “~in L™ in the following fashion: f, ~ f,is equivalent to fy—foe L3Y.

This relation is equivalence in L*"". The quotient space L**'[~ = L* [L3¥
will be denotod by L**. As usual, g~ will denote an equivalence class deter-

6 — Studla Mathematica XLVLI
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mined by ¢. The space I* iy a normed linear space with addition and
multiplication defined as

G+, = (91+g2)~7 af = (ag)”
and with the norm '
1 Iy = ing{f+9llfyy © FL}-

The space [(E**Y, |- |I,] 48 isometrio isomorphic to a space LLMY 11 g
This isomorphism establishes a Cauchy integral.
Proof. In view of 1.2 and 1.3 it suffices to show that the Cauchy
integral G of geL* is identically equal te 0 in D if and only if geLlY.
_ This in turn follows directly from IIL. 1.5.
1.5. B < (B™) and |Fl, < ¥l for every FeH
Proof. Let FeH*. Then F(¢")e L™ and

!

2
[ Peyerar =0 form=1,2,..
0

From this we deduce on account of IIT. 1.7 that F is the Cauchy integral
of F(¢"). Hence, by 1.3, we find that Fe(H™) and [P, < [F(¢")ly)
= |||, (see also IIL 1.8). .

2.1. Let us define for geL*
Fol§) = ink{ L, (f+9): feIi}
The functional S () has the following properiies on the space i

1° #(§) = 0 if and only if § = 0,

2° S(ag) = Iy (§) for any number a such that |a| =1,

3° So(afy+ B < aF g (§1) + BF y(Gu) for any numbers o, f > 0 suoh that
a+f =1,

40§l = inf.{s'i(l +f‘;/(e§)): &> 0}

Proof. If § =0, then obviously S, (§) = 0. Conversely, let
#5(§) = 0. Then for every natural number m there iy & T e such
that S, (fu--g) <m™ Since p and y' satisty Young’s inequality
wr < p(u)+y'(v) for w,v>>0, it wmeans that for m = 0,1,2,..
and m =1,2,... we get

\j gt - m U (it o0 7 57

1 ) ) 1 L

iCﬂI©
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Recalling that y satisfies the condition (0,), we see that the right-hand
side of this above inequality tends to 0 as m — co. Hence

an

[ g@e ™t =0 for n =0,1,2,...,
0 .

we have § = 0.
Let a be a number such that |a| = 1. By the linearity of LY we get

Solaf) = int (£ (6(f+g)): feLl} =
= it {F, (f+g): feL3¥} =Ip(d).
For arbitrary numbers «,f > 0 such that a4 8 =1 we now obtain

j;’(“‘gul + Bgy) = int {fv:'(a(‘fl “+ ) ‘Hg(fz'}‘!]z)): fl!fzeLY,}
< inf{a.ﬁv,/(fl-{-gl)+ﬂ.fw,(f2+g2): fufz‘L:-w,} = a‘,\:'(§1)+ﬂjw~'(.‘;z)-
Finally, we verify that

1§y = int (= (L2 o7+ 9)): > 0, FoIY)
= inf {7 (L -+ (ef): &> 0}

This means that the space ifﬁ" is a modular space with respect to the
modudar S5 ("),

2.2. For Ge(H™) let us designate

Ho( &) = 25(§),

where @ is the Oauchy integral of geL**.

Prom 2.1 and 1.4 it follows immediately that the functional u()
has the following properties on the space (H™)':

1° (@) == 0 if and only if G = 0,

2° up(a@) = p, (@) for any number a such that |af.= 1.

3% ph(aly+ PGy) < auy(Gh) -+ Py (@) for any numbers a, f> 0 such
that a--f =1,

4° |G, == int o™ (L4 iy (6@): &> 0}

Thus the space (H*') is a modulor space with respect to the fume-
tional py(*).

We easily deduce from 4° that a sequence {G,} = (H™")’ is norm
convergent t0 a Ge(H™) if and only if py,(a(G,—&)) — 0 a8 # - oo for
every o> 0. As in Section I, we say that a sequence {G,} = (H**Y is
modular convergent to a Ge(H™ if uy,(a(@,—@) >0 as n— oo for
Some e > 0 (depending, in general, on {G,—@}).
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2.3. For any functions FeH" and Ge(H") the following inequalily
18 satisfied

27 [(F*@) (2)| < ty(F) + (@) for zeD.

Proof. Let Ge(H™) be the Cauchy integral of gel*. By virtue
of III.1.6 we then have
o .
2m(T@)(r) = [ F(re™")g(t)dt

0

for 0 <r<< 1.

The application of Young’s inequality for FeH™, feltY and 0<r <1
yields

b g
2 |(Tx@) () =| [ Flre™)(f(H)+9() d4
0

<J( (re™)) -+ (4 9) < py () +F (f+9)

Hence .
2m|(Fx Q) ()] < piy () +I 5 (g7) = () + 1 ()
for FeH*, Ge(H™) and 0 <
o |(F* @) (2)| = 2m|(S; I+ &) (r) < py (8,1 )+/A,,,(G)
= by (F) 4 1, (G-

2.4. If a sequence {G,} < (H*) is modular convergent to a Ge(H"
then this sequencé converges very weakly to G-

Proof. Let {6} < (H™) and Ge(H*) and let w,(a(d,—) 0
a8 % — oo for a > 0. Then there is an 7, such that ,u,ﬁ( a(@,— @) <1 tfor
n > n,. Hence we get for n = n,

16, — 6, < o™ {1+ iy (0(G — B)) < 2077

7 < 1. For zeD, ¢ = re* we now get

Therefore

sup @, — Gl < sup{2a=, (G — Gl ..oy [Gny—Eli} < o0
n

On account of 2.3 we get for k= 0,1,2,...,> 0 and ¢ U r <1

27y (G,—D)r" = a2 (B Uk (G, — @) (7)]
< a7 B (B U + piy (G~ )
< a7 7 (2 (B) + sy (G~ B)
and, further,

2 lyi( — )] < a7 2mp(B) + o (G — B))-

iom°
On linear functionals in Hardy-Orlics spaces, IT 281

Tt follows now that

lim sup (@~ @) < o™~ 9 (B).

Rince y satisfies condition (0,) we see that the right-hand side of the above
inequality tends to 0 as f—0. Thus »,(G¢,—@) >0 as % — oo for
k=0,1,2,... By IIL. 5.2 we conclude that {&,} converges very weakly
to G.

2.5, For o function. g« and 0 < r < 1 we define
...12

(r e
) O f 1~ 27 co8 (§ — 1) +1* g(z)d

We shall demonstrate that

If #y(g) < o then S, (3(T,g—g)) ~ 0 ag r 1~ (cf. [15], TV(6.15)).

Proof. Applying Jensen’s integral inequality, we easily get £, (7,g)
< Fylg) for 0=Cr <1, On the other hand, from the Fatou theorem ([2],
p. 34) it follows that {(T',.¢)(¥)} is convergent to g(t) as # — 1— for almost
every t¢[0, 2%). This mesms that the sequence {v'(](T,g)(t)])} eonverges
to o (|g |) an r - 1— for almost every te[0, 27:) and by Fatou lemma

Tim, f

Pl

Pid

at = f v (lg(@)]) de
It is known. ([ ]) that then we also have for every measurable set B < [0, 2r)

lim f«p ((T,9)( = fw'(\g(t) dt
i

torle gy

From this it follows that

lim sup
Pk o i

¥ (; (@0 =gt

2 lim Hup( {w (L) (3) I)dt-f-% J w’(l!](t)l)dt)
I

r»ﬂ F
f v (loo)) .
I

The function 4’ (lg(+)]) is integrable on [0, 2x) and so, for every &> 0,
there iy o ¢ > 0 such that for every set B < [0, 2x) whose measure ig
mes ] < § we have

f«/}'(lg(l)l)dt <&
b
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By virtue of the Egoroff theorem there exists & set I < [0, 2m) whose
measure is mesH < & and is such that {T,g} converges uniformly to ¢
as r —1— on a set [0, 2n)\J. Hence we get

limsup [ v'(31(Z,0) () —g(2)])ds
¢

Perl—

<limsup [ wHTeO)—g@l)di+ [ ¥ (gD e,
I

1= [0, 2\

From this we conclude that

am
lim Sy (3(T,9—9) = lim [ o/(4(Tog) ()~ g(8)]) & = 0.
r—>1— Terl— g '

2.6. If p,(G) < oo for Ge(H*) then M;(Q(T,G_G)) 0 ag r =1~

Proof. Let u, (@) < oo for Ge(H™). Then, in view of 2.2 and 2.1
we observe that there is a function geL*¥ such that £, (9) < oo and @
is the Cauchy integral of g. Hence }(T,6—@) is the Cauchy integral of
$(T.g~—g). By 2.2 and 2.1 we get

B (L6 — ) < S [H (T~ )-
By virtue of 2.5 the right-hand side of this ineguality tends to 0 as r - 1—.
Hence uy(3(T,¢—@)) >0 as r +1—.
2.7. (H*Y = (HYY. ‘
Proof. It suffices to show that (H*") < (HL)'. Let Ge(H*"). Trom

2.2, 4° it follows that p,(a@) < oo for some o> (. By 2.6 for every &> 0 ‘

there is an 0<7<1 such that up(}a(L6—@) < fae. Let £ (H™)*
be a functional corresponding to a function & and let {IF,} < H Y ho an
arbitrary sequence such that u,(F,) - 0 as n - co. By 2.3 we get
[ (B < |€ (o) — T & (F)| -+ [T & ()]
= 2| (T (@ = 1,6)) (1) + T3 £ (2,)]
<207, () + G T, 0)) - |2 £ (20,
< Za—lﬂw(Fn) + e [Tf; Ea (Tl

Since T# & e(H 2" < (H,¥)¥, implies that

Lmsup |& (F,)

Nep0O

<5 8

and hence £°(F,) -0 ag n — co. This proves that & <(H,")*. By IL 6.4
there is a unique functional &e(H}¥)* such that &(F) = § () for FeH™.

icm°®
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1t follows in view of IXIL 3.4 that the function

0 o ' o
2};2 (V) = }7;%’ £ (U, = n:yn(G)z" =G() (eeD),
belongs to (H3)'
2.8. Iwery fumotional &e(H")* oan be uniquely represented in the form
o bbby, where Ee(HNY* and Ee(H')*,

Proof. Let £ be restriction of a functional £e(H™) to the domain
H®. In view of IIL 3.2 we see that there exists a unique function &
analytic in D such that & (F) = 2n(F*@)(1) for F «H°¥; this function
belongs to (H*)'. By 2.7 it is Ge(H,). From IIL.3.3 it follows that & ()
= 2n (%) (1) for T e H*" belongs to (HyY)*. Obviously, & = £— &, belongs
to ()", Lot us also observe that this decomposition is unique.

8.1, For every function ge L’ its Cauchy integral G belongs to (HXZ).

Proof. Let @ be the Cauchy integral of geL’¥. Since ., (ag) < oo
for every a> 0, by 2.5 we have #,(}a(T,g-g)) -0 as r —1—. This
implies that |T.g—glfy -0 a8 r—>1—. The function 7,6—G is the
Cauchy integral of Ty~ g and thus, by 1.3,

“TerG”:ﬂ % I[T,g»—-g”?,,,,).

Hence |T,.G -ﬂ0‘||f,, ->0 as r -1 — and thiz leads us to the conclusion
Ge(Hy)

3.2. Let us designate

LY =LY n LY.
As in 1.4 we equip L’ with an equivalence relation =, writing f; ~f,
for fy, foel®¥, it fy~foeLi¥; the quotient space L°¥/oe = L¥[LY we
shall designate by L' and by ¢™ the equivalence class determined by g.
Sinee [, [||[fyy] s complete and L3 is, as we easily notice, its closed
linear subspace, the space L' is, ag is well known, a complete normed
linear wpace where nddition and sealar multiplication are defined as
o0 = ()™ ™ = (ag)

and. the norn ig given by

oI5 = int{If+gliy: FeI3}-
We shall demonstrate that
The space [(L°)*, ||- [k, és isometrie isomorphic to the space [H™" [ [,].

-

More spevifioally, for every functional n=e(L*)* there is a unique fumotion
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FeH* such that
for geL’

and, conversely, every functional o~ represented by this formula with a fune-
tion FeH™ is a number of (L°VY* and then ™, = 17|y,
Prootf. Let y~e(L°¥)*. The functional

n(g) = (g™ for geL™

is clearly a member of (L°*')* and its norm is [nlify == I~y Tt is known

(37, p- 128; see I.2.5) that for » there is & unique (precisely to a set of
measure zero) function feL** such thab
. g

ng) = [ figwyds  for geL™,

and, moreover ||, = llfH’f.,,v.We have,fork =1,2,...andn =0,1,2,...,
}ﬂ 6wi75t6--‘im at = 0.
0

This indicates that the functions ¢™™, % =1,2,..., belong to I3

Hence
an

0 =qle™™) = [ fit)e~ ™t
0
By III. 1.7 we now infer that the Cauchy integral I of f(2rn—1) is also
the Poisson integral of f(2m—t). This implies, on account of IIL. 1.8,
that F(e") = f(2r —1) for almost every te[0, 2n) and FeH*". Obviously,
[#ly, = 1fIf,. Thus for 7e(L°")* there is a unique function F eH
guch that

for kb =1,2,...

2 an
7=(g%) = [ FeDgyds = [ Bl g(0)di
0 0
for geI®¥, and [~y = ¥,
Now let FeH*. Let us consider the functional

2n

n(9) = [ Fle)g(t)at

9

for gel°V.

This functional belongs to (L°*)* since F'(¢~")eL*. Lot geL5*. The fune-

am
tional represented by the integral [ f(t)g(t)dt for feL*" is modular contin-
. [

e ©

iom
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uous on L**. Hence

n(g) == lim f F(re~*)g(t)dt

Porle g
"2‘ am
=lim 'y, ()" [ e~ Mg)as = 0.
Porlme ol B

Thisgnozms that #™(g™) = 5(g) iy well defined for g“e,i"'”’ and belongs
to (L°V)®,

3.’3. T]w space I‘_ff’"", H-]lj’.;,,‘] is isometric isomorphic to the space
[(E s oIl This isomorphism ostablishes the operation of the Cauchy
integral.

Proof. Let @ be a polynomial. We have Q(¢*)e L and clearly @
is the Cauchy integral of Q(e"). By virtue of 1.3 and 3.2 we gee that
1@, < llQ(ai')"’H‘fv‘,,). On. the other hand, by the very well known theorem
stating the conditions of attaining the norm by functionals there is a funec-
tional 5™ e(L")* yuch that [ly™|{, = 1 and 196" )15y = #™(@(6")). Hence,
by 8.2 there is a function FeH™ such that |F|, = 1 and

e

Q"I = [ Fe"")Q(e")dt = 2 (F*@)(1).
0
This implies that (1@ (¢*)™|F, < [Q),. Thus we have demonstrated that
19l == 11§ (e")™IF for every polynomial .

By III. 4.5 polynomials form a dense set in [{Hys)', |I-],]. The space
(Lev, |- 5] s complete. Hence [(Hys), |I-ll,] is isometrie isomorphic
via the Cauchy intogral operator to & closed linear subspace of [ff‘", I 1y 1+
Applying 3.1 and taking into account that the Cauchy integral G of ge LY
is identically equal to 0 in D it and only if ge LY, we get 3.3.

3.4. Certain corollaries may be deduced from 3.3. Thus we infer that:

Bvery tunction Ge(HA is the Cauchy integral of some geL®".

Tuarbher, L% ix isomorphic to the space {§ eL*': geI°¥}; this iso-
morphism v clowrly o mapping of classes g™l onto classes §eL*.
Besides, on account of 1.4 and 3.3 we have |§lg = lg™Ify, for geL®.

3.5, L o (11%) 5 moveover | B, < [Flly, for every FeH™.
Proof. Tn view of 1.5 wo have H® < H* < (H*) and |Fl, < | ¥y,
for every B ell™'. Ilance, for F'elI™ and 0 < r <1, we get

N2, 20 T, < T B = By
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Tor FeH® we have |T,F—Fl,) -0 as 71— Thus, for FeH"",

we have |T,F—TF|,—0 as r —1—. This indicates that HY < (fj*‘")

4.1. Tor every Fe<H™ the functional defined as
2 (@) = lim2r (Fx@) (r) = 2n(F*@) (1)

Pyl

(+) for Ge(HYY
belongs to ((Hyb)'J*; moveover [In°[§ = |Fly,- On the other hamd, for ecvery
Functional n°e((HyL)'|* there ewists a uniqus function I analytio in D such
that (+) holds; this function belongs to H** and is represonted by
1 @ . .

(++) P(e) = 5= D (Ua"  (weD).

Proof. Let FeH* and let #° be the functional defined in (--). We
have

(@) = 27 |(F*6) (1)| < [P, (64,
and 50 4° ¢((Hy0) J¥* and [n°IIF < [l
Conversely, let n°e((Hy5)')*. Taking into account 3.3, we set 7™(¢™)

= 7°(@), where G is the Cauchy integral of ge L, It follows that 5™ e(L°¥)#
and 7™, = In°lF. By 3.2 there is a function JFeH™*" such that

for every Ge(HLY

21 .
) = [ Fle™Hg(t)dr  for geI° and [~y = | F],,.
y .

. . oy’ s %
Since for a fixed ge L™ the functional represented by the integral fnf(t) g(t)dt
. 0

for feL* is modular continuous on L*", we get

=g = hmf F(re~% g (t)

r—l—

for gL,

In view of IIL. 1.6 we then have

7°(6) = Lim 2m(Fx@) (1) = 2 (L'*G)(1)

Pl

for Ge(HALY

", J °
a,.nd n}meovel ln || = [[F'll,,» This function F iy uniquely determined,
since its coefficients are uniquely determined:

. , 1 '
7n(F) = M (F*Uy) (r) = (F* T,) (1) =50 (Uy)  for m=0,1,2,..

This accomplishes the proof of (4 ).
4.2, If ne((H"))* then T ne((H*), ) for 0 Sr < 1.

Proof. Let ne((H™) )“f* and let 7 be o number such that 0 =r <L
Further, let {G,} <= (H")' be a sequence very weakly converging to 0.

e ©
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Then {T1,G, ¢} i umlormly convergent to 0 sequence of continuous
functions. IIcnce TG (6") iy =+ 0 a8 m — oo, This, on aceount of 1.3
yields [T, Gn“w ~»0 a8 % -» oo, and o we get

T¥9(@,) = n(T,6,) -0 as n — oo,
This proves thut Tne((H")y,)*
4.3, If qea((H"))¥ then

(@) = lim TEg(F)  for every Ge(H™) .
[

Proof. Tt Ge(H™). We deduce from 2.2 that u,(a@) < oo for
gomo o> 0, and from 2.6 that u,(4a(T,.G—&) 0 as r ~1—. Hence
{T,.G} is modular convergent to & as r — 1 —. This yields 4.3.

4.4. For every function I'eH*" the functional defined by
(@) = lim M:(I’*G)( 7y =

P

(+) om(FxG)(1)  for Ge(H*Y
belongs to ((H*"),,)*; moreover |yl = | T\, On the other hand, for every
fumotional n < ((H*") m)‘ﬂ there 48 a wnigue function I' analytic in D and such
that () holds; this funotion belongs lo H™ and s defined by (+ +).
Proof. Let FeH" and let 5 be the functional defined in (+) The
existence of. the limit in ( +-) [o‘llows from 2.7 and ITL. 2.9. 8ince u,(aF') < oo
for some a > 0, it follows from L 3.6 that for every &> 0 there is an
0<r<1 such that w,(ba(TF—F) < pae. Now let {G,} < (H™)' be
an, arbitrary sequence such tlmt ;u,,,(G )~ 0 asg # — co. By virtue of 2.3
we get

I (G| = 1 (Gha) == T (@) |+ 1T 0 (G)]
s :)m[ (0 = T B Gy (1)] - | T3 ()
@ ay (ha (=L, 20) + iy G5) )+ 1L (G
2 e 2o () -+ 1T (Gl

Hince

(@] == s |( L% @) (1)] < |, |G, for Ge(H™)
we lwwve g e (1)) and [l < 18y Applying 4.2 and 2.4 we get Tifn

(T ) & (21, )%, Tience

Timaup |7 (@) =< ¢

Toerd
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This indicates that n(G,) -0 as n ~ oo. This yields ne((H*"),J*.

Conversely, let ne((H*),)*. Then the functional n°, being a restric-
tion of 7 to (H}%)’, belongs to ((Hys)'J*. By 4.1 there is a unique function B
analytic in D and such that (-}) holds for G (I3 ; this function belongs
to H* and is determined by (4 ). From 4.3 we conclude that () holds
tor n and F' for every Ge(H*)'. Further we notice that in (+--) #° can
be replaced by n and that

I1Fly = "l = sup{n’(@)|: Ge(H), |G, = 1}
< sup{ln(@)|: Ge(H™), 1G], < 1} = It
This accomplishes the proof of 4.4.

4.5. Every functional ne((H*)'J* is represented wniquely in the form
no= 1+, where me((f[’k"’);n)# and ’1726(([1*.”)’“)%.
((H™)'"* designates the space of such functionals ne((H*")'* that n(¢) = 0

Jor every Ge(HLL).

The proof of this theorem, being quite similar to that of 2.8, is omitted.

4.6. For every function FeH' the fumctional w defined by () on
(H**)" belongs to ((H™),,)*. Conversely, for overy fumotional 5 e((HI*),,)*
the function F defined by (--+) belongs to H®".

Proof. Let F<H” and let 4 be a functional defined by () on (H**).
Further, let {G,} = (H™) be a sequence very weakly converging to 0,
and such that sup |G, < M < co. Sinee Fe<H'Y, by the application

n
of 1.3.6 we see that for every &> 0 there is an 0<'r <1 such that
V2,2 — T, < M~ Hence we get

I(6)] < (@) — TF (@) |+ | T (G,
= 2x(F — I,1)*G,) (1)| -+ | 7§ 1(G,)]
< =T By, Gl + 1T 0 ()] < e [T ().
By 4.2 we have T#ye((H"),,)* and so

lim sup | (@,)] < e.

N 00

This means that #(¢,) — 0 as n — oo, and thus 7e((H*),,)*. Conversely,

leb 7¢((H™)y,)* and F let be a function defined by (---+). By 2.4 and
4.4 we get e H™ and

11,2 =Pl = |1TFn—nlf  for 0<r <1,

.In Vitzw of the fact that 7,F<H" for 0 <7 < 1 and that H° ig closed
in [H™, [|]l,] it suffices to show only that 13— ¥ 0 a8 # - L.
Let us suppose this is not so. Then there exist a nwwmber &> 0, a soquence

e ©

icm

{r,} and {G,) = (IL*Y such that 0 <7, < 1, 7, =1 (1 = o0), Gl <1
and | n(6) —1(Gn)| 2 e for n = 1,2, ... By IIL 5.3 the ball {G<(H*)':
161, < 1} is sequentially very weakly compact. Thus we can find a very
weakly convergent subsequence {Gﬂh} of {&,}. Applying a procedure similar
to that used in the proof of II.4.3, we conclude that {Tr0, G, — G} coD-
verges very woakly to 0. ence we get
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[N |-,l"'1t1k"/ ((}”Ia) mn((}nk)[ w JW(TT”kG"IoMG"h)I -»0 a8 k — oo,

This is a conbradiction. Thus we have proved that \T# 7 —yllF -0 as
g 1. This means that FeH",

4.7, By (H*")" wo shall designate the class of all functions F analytic
in .D for which

[Fly = sup {2n|(F«@)(2)]: Ge(H*Y, 1@, <1, 2eD} < oo.
The following equality is true:
L™, 1 3] = T, -
Proof. Lot F'eH™. Then for arbitrary Ge(H™) and z¢D we have
2m |(L % G) (&) < [, (G,
This implies that |11, < |17, and torther F'e(H*)". Let now 4° be a fune-
tional on (Ie) defined by () for J. In view of 4.1 we get
1y = In° I = sup {27 |(F*@) (L] Ge(H), |G, < 1}
< yup (9 |(F* @) (2)]: Ge(H™), |G, <L, zeD} = ]117’||;,'.
Thus we have I* < (H™)” and |7, = |[F|, for every FeH. Let

now I'e(H*)". Then for every 0 <» <1 we have T,F<H". Hence we
get for O«<lr <l

W Bl = | Ly = sup {2 |[(F*G) ()] Ge(H™), |G, <1, #eD}
< Hp {2m [(H R @) (8)[ 2 Ge(H™Y , |G, < 1, e D} = ||IF], -
From this woe concludo that '
sup {1, Pyt 0 r <2 1) << |
This implies that (seo [B]) J ™, Thus (H*)" < H*.

4.8. As in Soction 1II, we can consider subspaces ((H™),) and
(1*y,,) of tho space (K" corresponding to the spaces of functionals
(H**),) ' amd ((H*)yf*, rospoctively. On account of Theorems 4.4 and
4.6 we ensily obtain tho following identities

[y oWl | e LY N T == TEEY, )
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and
U Yo) s Ully | = CE?y 11 ]

5.1. The equality (H™) = (H3%) ocours if and only if v salisfies the
condition (V). '

Proof. Let y satisfy (V,). Then (see [3]) its complementary function 4’
satisties condition (d,). Then we have L*" = L', By. 1.4 and 3.3 we
get (H™) = (Hy)'.

Conversely, suppose ¢ does not satisfy (V,). Then there exists a se-
quence of positive numbers {u,} such that

2" (27" u,) > 9 (u,) > 2"

In the interval (0, 2n) we find a sequence {¥,} of pairwise digjoint sets
such that their measures are mesl, = i(w(u”))“1 and we define a se-
quence of real functions .

M/ﬂ
1) = 1 ;
Fu(®) ‘w_l(“zml_) for other ¢ from [0, 2x).
il

for m = 1,2, ...

when 2n—1tel,,

Next we define a sequence of analytic functions

an
‘ 1 Ll ;

lf’n(z) = eX] (E-T-r-of. m logf,,(t)dt) (ZG.D).
It is known ([15], Chap. VII (7.33)) that F,eN' and that these functions

are such that |F,(¢*)] = f,(#) for almost every ¢ from [0, 2n). XIn view of
this fact and also of

£ (F) < () H{p (1)~ + 5‘1“;: w1

following from I. 3.3 we infer that F,, e H*¥ and |F,/,, < Lforn =1,2, ...
Leti us notice that |7, (6")| = f,(¢) — 0 a5 n — oo for almost every ¢e[0, 2r).

Thus, by Ostrowski’s theorem ([8]) it follows that {F,} very weakly con-
verges to 0. Now we define a function

27", dor tell,, n =1,2,..,
J@t) = \
0 for other ¢ from [0, 2r).

For this function we have

A0 = e ) () < S = g,
=

dum]

Hence |fl,, < § and [l < 1. Tt is known ([3] p. 73) that then-gl’i (£0)
U

e ©
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) dy : I N .
I*", where m denotes a right-hand side derivative of w. We finally

define
dyp -
o) == fduv(f(t))agnlﬂn(o U for teB,,n =1,2,...
0 for other ¢ from [0, 2n).
COlearly, ¢ also belongs to L™, Thus, applying 1.3, we see that the Cauchy
integral @ of g belongs to (™). Moreover, by III. 1.6 and on account
amn
of the fact that the functional represented by the integral f Fyg®)dt
0

Ky

is modular continunows on L™, we get

an 27

2r(F @) (1) = lim [ F,0e~")g()dt = [ F(e~*)g(t)ds
P = 0 P

for m =1,2,... We verily that '

[t - [ (o158 (1 (0)

.ty

| ) o L L1
= Ezz (27" ) (9 ()] 7 > 20927 ) 7 (p () 7 > g

and.

2
1
gw_,(ﬂm) [ gwia.
o

J' Bo(o~ ") g () dt
{0, anf\Ey,

’ The integral appearing in the above inequality is finite, since L** = L

Thus we got
Tian ind 2o |(F e @) (1)) 2= §.

00
This proves that G ¢
. P Sl

5.2, If v doos mob satisfy the condition (Vq) then ((H*“’z I)‘:: i a non-
Wrivial apace, i.o. there owist non-rivial functionals e ((H*'Y)¥ suoh that
N(@) == O for every G (I For these funclionals there are no functions F
analytio in D and such that (<) is satisfied. e

Proof, Since (M) is a closed linear subspace of [(H™), Il ], the
functional

PG == ind {6 — e Fe(H)'}s (Ge(E™))
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is a pseudonorm on (H**)’ such that p(@) =0 if and only if Ge(H.
This pseudonorm is non-trivial, since by 6.1 we have (= % (HY.
We take an element Gye(H*) N\ (Hy) and put

n(aG,) = ap(@,) for any number a.

Further, by the Hahn-Banach. theorem, we extend # to the whole space
(H**) 50 that (@) < p(@) for every Ge(H*). Clearly, 7 is & non-trivial
functional and belongs to ((H**) ")¥, Let us suppose that for »e((H™)" |,
n 7 0, there is a function F' analytic in D and satistying (+-), Then its
coefficients are

1 \
Pn(E) = (BxU) (1) = 5=n(Tp)  dor n=10,1,2, ...
Since U,e(Hyt) for n» =0,1,2,..., it follows that p,(IF) =0 for
% =0,1,2,... Thiy implies that F' == 0 and, further, 4(@) == 2rx(F*G)(1)
=0 for every Ge(H*). This contradicts our assumption that # 0.

5.3. In the space (H™) modular convergemce is equivalent to morm
convergence if and only if v satisfies condition (V).

Proof. We need only to show that modular convergence in (H™)
implies norm convergence if and only if ¢ satisfies (V,). Let then vy satisty
(V). Then its complementary function ' satisfies (A,). Tt ix known (see
1.2.4) that then modular convergence in L** implies norm convergence.
Let {@,} = (H™) be a sequence such that ,u;,(Gn) >0 a8 # — oo, By 2.2

and 2.1 we know that there exists a sequence {g,} = L** such that

@, are Cauchy integrals of corresponding g, and I o () S iy (G F L
"

for # =1, 2, ... From this we get #,(g,) ~> 0 a3 # - oo and |jg,lfy — 0
ag # — oco. This in turn implies by 1.3 that |@,[l, = 0 as % ~ co.

Let us assume that v does not satisfy (V,). Then in view of 5.2 there
exist non-trivial norm continuous functionaly on (H™) which are not
representable by (), and, by 4.4, they ave not modular continuous.
This implies in consequence that norm convergence and modular con-
vergence are not equivalent on (I*")".

54 The equation (H*) = H™ ocours if amd only if v satisfios siml-
taneously conditions (A,) and (Vy).

Proof. In view of 1.5 it suffices to show that (H*") e I it and
only if y satisties simultaneously the conditions (A,) and (V,). Let ¢ satis-
Ty both (A,) and (V,). Let Ge(H*"Y. Applying 1.2, wo sco that ¢+ is the
Qauchy integral of some function geI*. Sinee the complementary func-
tion o' also satisfies (A,) and (V,), it follows from Riyan’s theorem (sce
1.2.6) that the conjugate function § also belongs to L*. Thus we find

icm®
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that o function
1 1 bl
Bty =y (g(tH— if (1) - f !I(m)dm), 0<1<2m,
2 2 g

belongs to I*Y. We verify that its Poisson integral equals

an

L7

1 ) e
on J 1 - 2reos

an on
1 ( A el
e | | gy g (7) do f g (@)dm
A . 1 e ;
1 o
o - o 1
Sialwalll Moy 1=y g(7) dv = @ (ré )y, or<1l.
e i 1 -rd

Hence G(¢") = h(t) for almost every f<[0, 2x) and GeH*. This means
that (H*) « HYY, . .

Conversely, let (H*)' < H*', We take an arbitrary function geL™.
By 1.8 its Cauchy integral @ is an element of (H*), From our assumption
GeH™, Tt follows that 6 (6*) L™ and that ‘

an
F(t) = i(%ﬂaf g(m)dm»l—g(t)-—.‘ZG(e")), 0t < 2m,

pelongs to L*'. This leads us to the conclusion that the mapping g —4
sends I* into ibself. On account of I. 2.6, y' satisties (A,) and (V,). Hence ¢
also satistios () and (Vy). ‘

5.5. The following conditions aro equivalent:

1° o satisfios simultaneously (Ag) and (Vy),

920 W' 4g a roflewive space (in the morm $6n86),

3° 1 is a roflowive space (in the norm sense),

49 HY oo HY amd (') = (H3)

B0 (HMYF = (¥,

6 (H*w)/ e -imvz'. . .

The aquivalence of 1° and. 6° follows from. b.4. The equivalence of 1

; : and : ivale: i any 2°, 8%, 6°
and 4° wo get from I, 3.8 ([5]) and B.L. The equivalence o ,
with 1° we obtain by assembling the vegults of I.3.8, ITL 3.1, IIL 3.2,

IIL 3.3, TIT, 8.4, ILL, 8.8, 2.7, 4.1, 4.4, 4.6, 8.1, 5.2 and 5.3, For instance .

we doduce 1° from 5° by IIL 3.4, IIL 3.8, 2.7 and 5.1.

and 8.3 can be presented in another

sults given in L '
5.6. The regults given in o et for g fined

form if wo consider the operator: g(f) = h
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on (0, 2x). Thig opemtor maps isometrically the space L™ onto itsey
a.ncl respectively for LY. For geL' and n=0,1,2,... the equalitlf

fg(t e~ = 0 holds if and only if f g@n—t)e “”“”dt = 0, From

thm and IIL.1.8 we deduce that this opu‘ator naps the space L4 onto
H* and, respectively L ¥ onto H°*. Thus, we have

The space (H'™)' is zsomoma isomorphio lo the quotient 8pace LM [
(with the morm similar to that of 1.4) cm(? the space (I is isomelrio
isomorphic to the quotient space L™ [H" (with the norm similar to that
of 8.2). This isomorphism esiablishes the operator

an o
1 h(ew)a-—u -~ ;‘]:—M l}L)
Gle) = Eﬁ 1o ¥ o = omd J 12t @ (zeD,

where C is.the boundary of D with the positive orientation. Moreover; then
for FeH™ and h(e") L™ we have

an

lim (F* @) () = lim »—21—— . Fre~ " k(e e~"d

Forl— Fopl— ATC s

pad

1 - il 1
- f P h(e— e at =5 d[ PO

The results of this section generalize the well known results for lineaxr
functionals in Hardy spaces H? 1< p < co (see [12]).
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