On linear functionals in Hardy-Orlicz spaces, II

by

R. LEŚNIEWICZ (Poznań)

Abstract. This paper is the second part of a paper under the same title which is also published in Studia Mathematica. The paper contains two sections: III and IV. In the Section III we give the representation of linear functionals on a Hardy-Orlicz space $H^{*\varphi}(H^{\circ\varphi})$ for the general case, where φ is a log-convex φ -function (Theorem III. 3.1-3.4). Section IV contains a more precise representation of linear functionals on a Hardy-Orlicz space $H^{*\psi}(H^{\circ\varphi})$ for convex φ -function ψ (Theorems IV.1.1-3.4) and the representation of linear functionals on the dual space for $H^{*\psi}$ (Theorems IV.4.1-4.6). Throughout the whole paper the investigations concern three types of linear functionals on a Hardy-Orlicz space: norm continuous, modular continuous and very weakly continuous ones.

This paper is a continuation of paper [6]. We adopt the notation and continue the section numbering of paper I. We cite the results of both parts, I and II, writing the number of the section and the number the result in the section; within the same section the section number is omitted.

III. REPRESENTATION OF LINEAR FUNCTIONALS

1.1. Let F_1 and F_2 be two analytic functions in the circle D and let

$$F_1(z) = \sum_{n=0}^\infty \gamma_n(F_1) z^n \quad ext{ and } \quad F_2(z) = \sum_{n=0}^\infty \gamma_n(F_2) z^n \quad ext{ for } z \, \epsilon D \, .$$

The radius of convergence of both these power series is not less than 1, and so the radius of convergence of the series

$$(F_1 \! * \! F_2)(z) = \sum_{n=0}^{\infty} \gamma_n(F_1) \gamma_n(F_2) z^n$$

is also not less than 1. The function F_1*F_2 will be called a convolution of the functions F_1 and F_2 .

It is easy to verify that convolution has the following properties on the space of all analytic functions in D:

1° $F_1 * F_2 = F_2 * F_1$ (convolution is commutative).

 $2^{\circ} (F_1 * F_2) * F_3 = F_1 * (F_2 * F_3)$ (convolution is associative),

3° $(F_1+F_2)*F_3 = F_1*F_3+F_2*F_3$ (distributivity of convolution with respect to addition),

 $4^{\circ} (aF_1)*F_2 = F_1*(aF_2) = a(F_1*F_2)$ for any number a,

5° The function

$$I(z) = (1-z)^{-1} = \sum_{n=0}^{\infty} z^n \quad (z \in D)$$

is a convolution unity (i.e. I*F = F for every function F analytic in D).

1.2. For functions F_1 and F_2 analytic in D the following is true

$$(F_1 * F_2)(z) = \frac{1}{2\pi} \int_{z}^{2\pi} F_1(z_1 e^{it}) F_2(z_2 e^{-it}) dt$$
 for $z \in D$,

where z_1, z_2 are number from the circle D such that $z = z_1 z_2$ ([11]).

1.3. For $z \in D$ and k = 1, 2, ... let

$$I_k(z) = z^k I^{k+1}(z) = z^k (1-z)^{-k-1}$$

Then for any function F analytic in D

$$(I_k * F)(z) = \frac{1}{k!} F^{(k)}(z) z^k$$

for $z \in D$ and k = 1, 2, ...

Proof. Let $z \in D$. We have, by 1.2, for an r such that |z| < r < 1,

$$egin{align} (I_k*F)(z) &= rac{1}{2\pi} \int\limits_0^{2\pi} I_k igg(rac{z}{r} \, e^{-it}igg) F(re^{it}) \, dt \, = rac{1}{2\pi} \int\limits_0^{2\pi} rac{z^k r e^{it}}{(re^{it}-z)^{k+1}} \, F(re^{it}) dt \ &= z^k rac{1}{2\pi i} \int\limits_{\mathcal{O}_r} rac{F(\zeta)}{(\zeta-z)^{k+1}} \, d\zeta = z^k rac{1}{k!} \, F^{(k)}(z) \, , \end{split}$$

where $C_r = \{\zeta \colon |\zeta| = r\}$ with the positive orientation.

1.4. For any functions F_1 and F_2 analytic in D the following two relations hold:

$$(T_rF_1)*F_2 = F_1*(T_rF_2) = T_r(F_1*F_2) \quad \text{for } 0 \leqslant r \leqslant 1$$

and

$$(S_h F_1) * F_2 = F_1 * (S_h F_2) = S_h (F_1 * F_2)$$
 for real h.

The easy proof of this lemma is omitted.

1.5. Let f be an integrable function on $[0, 2\pi)$. An analytic function in D defined by

$$F(z) = \frac{1}{2\pi} \int_{z}^{2\pi} \frac{f(t)}{1 - ze^{-it}} dt \quad (z \in D)$$

is called a Cauchy integral of function f.

It is evident that the Cauchy integral of a function f can be represented in the form of the following power series

$$F(z) = \sum_{n=0}^{\infty} \gamma_n(F) z^n \quad (z \in D),$$

whose coefficients are given by

$$\gamma_n(F) = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) e^{-int} dt$$
 for $n = 0, 1, 2, ...$

1.6. If F is an analytic function in D and G is the Cauchy integral of a function g integrable on $[0, 2\pi)$, then

$$(F*G)(z) = \frac{1}{2\pi} \int_{z}^{2\pi} F(ze^{-it})g(t)dt$$
 for $z \in D$.

Proof. From 1. 5 we have for $z \in D$

$$\begin{split} \frac{1}{2\pi} \int\limits_{0}^{2\pi} F(ze^{-it}) g(t) \, dt &= \sum_{n=0}^{\infty} \gamma_n(F) z^n \frac{1}{2\pi} \int\limits_{0}^{2\pi} g(t) e^{-int} \, dt \\ &= \sum_{n=0}^{\infty} \gamma_n(F) \gamma_n(G) z^n = (F * G)(z) \, . \end{split}$$

1.7. If f is an integrable function on $[0, 2\pi)$ such that

$$\int_{0}^{2\pi} f(t) e^{int} dt = 0 \quad \text{for } n = 1, 2, ...,$$

then a function F being the Cauchy integral of f is the Poisson integral of f. Hence in this case the Cauchy integral F of f belongs to the Hardy class H^1 ([15], Chap. VII. § 9).

1.8. If for some constants d > 0 and $u_0 \ge 0$ we have the inequality

$$u \leqslant d\varphi(u)$$
 for $u \geqslant u_0$

263

262

(then $L^{*\varphi} \subset L^1$) and if a function f belonging to $L^{*\varphi}$ (resp. to L^{φ} , $L^{\circ \varphi}$) satisfies the condition

R. Leśniewicz

$$\int_{0}^{2\pi} f(t) e^{int} dt = 0 \quad \text{for } n = 1, 2, \ldots,$$

then the Cauchy integral F of f belongs to $H^{*\varphi}$ (resp. to H^{φ} , $H^{\circ \varphi}$).

Proof. Let $f \in L^{*r}$ satisfy the condition $\int\limits_{s}^{2\pi} f(t) e^{int} dt = 0$ for n = 1, 2, ...Then $f \in L^1$. In virtue of 1.7 the Cauchy integral F of f belongs to H^1 and $F(e^{it}) = f(t)$ for almost every $t \in [0, 2\pi)$. Thus $F \in \mathcal{N}'$ and $F(e^{it}) \in L^{*\varphi}(L^{\varphi}, L^{\circ \varphi})$. This implies, in view of I. 3.3, that $F \in H^{*\varphi}$ (resp. H^{φ} , $H^{\circ \varphi}$).

2.1. Let G be an analytic function in D. We shall designate

$$\nu_{\sigma}'(z;G;R) = \sup \left\{ 2\pi \left| (F*G)(z) \right| \colon F \in H^{*\varphi}, \|F\|_{\varphi} \leqslant R \right\}$$

for $z \in D$ and R > 0, and

$$\nu'_{\omega}(G;R) = \sup \{\nu'_{\omega}(z;G;R): z \in D\}$$
 for $R > 0$.

For any function G analytic in D and for arbitrary R > 0 the following relations hold:

$$1^{\circ} \nu_{\alpha}'(z;G;R) = \nu_{\alpha}'(|z|;G;R) \text{ for } z \in D,$$

 $2^{\circ} v'_{m}(r;G;R)$ is a non-decreasing function of r in [0,1). Thus

$$\nu_{\varphi}'(G;R) = \lim_{r \to 1-} \nu_{\varphi}'(r;G;R).$$

Proof. Let $z = re^{it}$. Since for every $F \in H^{*\varphi}$ we have $||S_t F||_{\varphi} = ||F||_{\varphi}$, by 1.4 it follows that

$$\begin{aligned} \nu_{\varphi}'(z;G;R) &= \sup \{ 2\pi |(F*G)(re^{it})| \colon F \in H^{*\varphi}, \|F\|_{\varphi} \leqslant R \} \\ &= \sup \{ 2\pi |(S_t F*G)(r)| \colon F \in H^{*\varphi}, \|S_t F\|_{\varphi} \leqslant R \} = \nu_{\varphi}'(r;G;R). \end{aligned}$$

Let now $0 \le r_1 < r_2 < 1$. In virtue of the Maximum Principle for every $F \in H^{*\varphi}$ such that $||F||_{\varphi} \leq R$ there is a z such that |z| = r, and

$$2\pi |(F*G)(r_1)| \leqslant 2\pi |(F*G)(z)| \leqslant \nu'_{\alpha}(z;G;R) = \nu'_{\alpha}(r_2;G;R).$$

This yields $\nu'_{\alpha}(r_1; G; R) \leqslant \nu'_{\alpha}(r_2; G; R)$.

2.2. $(H^{*\varphi})'$ will denote the class of all functions G analytic in D for which $\nu'_{\varphi}(G;R) < \infty$ for some number R > 0, and $(H^{*\varphi})'_0$ — a class of all functions G analytic in D for which $v'_{\varphi}(G;R) < \infty$ for all R > 0. Besides, for R>0 we introduce the class $(H^{*\varphi})'_R$ of all functions G analytic in D for which $\nu'_{\alpha}(G; R) < \infty$.

We observe that

$$(H^{*\varphi})' = \bigcup_{n=1}^{\infty} (H^{*\varphi})'_{1/n}$$
 and $(H^{*\varphi})'_0 = \bigcap_{n=1}^{\infty} (H^{*\varphi})'_n$.

2.3. For any function G analytic in D

$$v_{\varphi}'(z;G;R) = \sup \{2\pi | (F*G)(z)| \colon F \in H^{\circ \varphi}, \|F\|_{\varphi} \leqslant R\}$$

for arbitrary $z \in D$ and R > 0.

On this account there is no need to introduce analogous classes to those in 2.2 for $H^{\circ \varphi}$.

Proof. Clearly, for arbitrary $z \in D$ and R > 0

$$\sup \left\{ 2\pi \left| (F \ast G)(z) \right| \colon \left. F \in H^{\circ \varphi}, \, \|F\|_{\varphi} \leqslant R \right\} \leqslant \nu_{\varphi}'(z;G;R) \, .$$

Let $F \, \epsilon H^{*\varphi}$ be any function such that $\|F\|_{\varphi} \leqslant R$. Then $T_{r}F \, \epsilon H^{\circ_{\varphi}}$ and $||T_rF||_m \leqslant R$ for every $0 \leqslant r < 1$. Hence for every $0 \leqslant r < 1$ we get

$$|(F*G)(rz)| = |(T_rF*G)(z)| \le \sup\{|(F*G)(z)|: F \in H^{\circ \varphi}, ||F||_{\varphi} \le R\}.$$

Passing to the limit with $r \to 1-$ we obtain

$$|(F*G)(z)| \leqslant \sup \{|(F*G)(z)| \colon F \in H^{\circ \varphi}, \|F\|_{\varphi} \leqslant R\}.$$

From this follows the required inequality

$$v'_{\varphi}(z; G; R) \leqslant \sup \{2\pi | (F*G)(z)| \colon F \in H^{\circ_{\varphi}}, \|F\|_{\varphi} \leqslant R \}.$$

2.4. If $G \in (H^{*_{\varphi}})'_R$, where R > 0, then for any function $F \in H^{*_{\varphi}}$ such that $||F||_{\alpha} \leqslant R$ and arbitrary $z \in D$ the inequality

$$2\pi |(F*G)(z)| \leq R^{-1} \nu_{\varphi}'(G;R) ||F||_{\varphi}$$

holds.

Proof. If F = 0 then also F*G = 0 and so in this case our inequality is satisfied. Let us assume then that $0<\|F\|_{\sigma}\leqslant R.$ I.3.4 implies that also $||RF/||F||_{\varphi}||_{\varphi} \leqslant R$. Thus for arbitrary $z \in D$ we get

$$2\pi \left| \left((RF/\|F\|_{\varphi}) * G \right)(z) \right| \leqslant
u'_{\varphi}(z;G;R) \leqslant
u'_{\varphi}(G;R).$$

The desired inequality now follows.

2.5. For any function G analytic in D the term $R^{-1}\nu'_m(G;R)$ is a nondecreasing function for R > 0. More precisely

$$R^{-1}\nu_{\varphi}'(G;R) = \sup\left\{2\pi \left| (F*G)(z) \right| \colon F \in H^{*\varphi}, \, \mu_{\varphi}(F) \leqslant R, \, z \in D\right\} \quad \text{ for } R > 0.$$

Proof. This result is obtained from the following verification:

$$\begin{split} R^{-1}\nu_{\varphi}^{'}(G;R) &= \sup\left\{2\pi \left|(R^{-1}F*G)(z)\right| \colon F \epsilon H^{*\varphi}, \ \|F\|_{\varphi} \leqslant R, z \epsilon D\right\} \\ &= \sup\left\{2\pi \left|(F*G)(z)\right| \colon F \epsilon H^{*\varphi}, \ \|RF\|_{\varphi} \leqslant R, z \epsilon D\right\} \\ &= \sup\left\{2\pi \left|(F*G)(z)\right| \colon F \epsilon H^{*\varphi}, \ \mu_{\varphi}(F) \leqslant R, z \epsilon D\right\}. \end{split}$$

2.6. $(H_m^{*\varphi})'$ will denote the class of all function G analytic in D for which $R^{-1}v_{\varphi}'(G;R) \to 0$ as $R \to 0$.

Since $R^{-1}\nu_{\varphi}'(G;R)\to 0$ as $R\to 0$ implies $\nu_{\varphi}'(G;R)<\infty$ for some R>0, we have

$$(H_m^{*\varphi})' \subset (H^{*\varphi})'.$$

Now the following notations will be introduced.

$$(H_m^{*\varphi})_0' = (H_m^{*\varphi})' \cap (H^{*\varphi})_0'$$
 and $(H_m^{*\varphi})_R' = (H_m^{*\varphi})' \cap (H^{*\varphi})_R'$ for $R > 0$.

2.7. For any $G \in (H^{*\varphi})'$ and any $F \in H^{*\varphi}$ the function F * G is bounded in D.

Proof. Since $G_{\epsilon}(H^{*\varphi})'$, it means that there is a number R>0 such that $r_{\varphi}'(G;R)<\infty$. For $F_{\epsilon}H^{*\varphi}$ we take a number $\alpha>0$ such that $\|\alpha F\|_{\varphi}\leqslant R$. Then we have

$$2\pi \left| (aF*G)(z) \right| \leqslant v_{\varphi}'(G;R)$$

and

$$|(F*G)(z)| \leq (2\pi \alpha)^{-1} \nu_{\varphi}'(G; R)$$

for every $z \in D$. This proves that F*G is bounded in D.

2.8. For any $G \in (H^{*\phi})'$ and any $F \in H^{\circ \phi}$ the function F * G has the radial limits

$$\lim_{r \to 1^-} (F * G)(re^{it}) = (F * G)(e^{it})$$

everywhere on the circumference $\{z: |z| = 1\}$; the function F*G completed with these limits is continuous in the circle $\overline{D} = \{z: |z| \leq 1\}$.

Proof. Since $G \in (H^{*\varphi})$, there is a number R>0 such that $v_\varphi'(G;R)<\infty$. In view of 3.6 of Section I $\|S_hF-F\|_{\varphi}\to 0$ as $h\to 0$ for $F\in H^{\circ_{\varphi}}$ and $\|S_hF\|_{\varphi}=\|F\|_{\varphi}$ for every real h. This implies that for every $0<\varepsilon\leqslant R$ there is a $\delta>0$ such that for $|h_1-h_2|\leqslant \delta$ it is true that $\|S_{h_1-h_2}F-F\|_{\varphi}\leqslant \varepsilon$. Then also

$$\|S_{h_1}F - S_{h_2}F\|_\varphi \, = \, \|S_{h_2}(S_{h_1 - h_2}F - F)\|_\varphi \, = \, \|S_{h_1 - h_2}F - F\|_\varphi \leqslant \, \varepsilon \, .$$

By 2.4 we get for $|h_1 - h_2| \le \delta$ and arbitrary $0 \le r < 1$

$$\begin{split} 2\pi | (F*G) (re^{ih_1}) - (F*G) (re^{ih_2}) | &= 2\pi \big| \big((S_{h_1}F - S_{h_2}F)*G \big) (r) \big| \\ &\leqslant R^{-1} \nu_x'(G\,;\,R) \, \|S_{h_1}F - S_{h_2}F\|_x \leqslant R^{-1} \nu_x'(G\,;\,R) \, \varepsilon\,. \end{split}$$

Thus the functions $f_r(t) = (F*G)(re^{tt})$ are equicontinuous for $0 \le r < 1$ with respect to t. From 2.7 we also deduce that these functions are uniformly bounded for $0 \le r < 1$. Since F*G is bounded in D, it follows from Fatou's theorem that for almost every t there exists a limit

$$\lim_{r \to 1^-} f_r(t) = \lim_{r \to 1^-} (F * G)(re^{it}) = (F * G)(e^{it}).$$

Applying Arzela's theorem, we conclude that the sequence $\{f_r\}$ converges uniformly as $r \to 1$ —. Hence the limits $(F*G)(e^{it})$ exist for all t and the function F*G completed with these limits is continuous in \overline{D} .

2.9. For any $G \in (H_m^{*\phi})'$ and any $F \in H^{*\phi}$ the function F*G has the radial limits

$$\lim_{r \to 1^{-}} (F * G)(re^{it}) = (F * G)(e^{it})$$

everywhere on the circumference $\{z: |z| = 1\}$, and its completion with these limits is continuous in the circle \overline{D} .

Proof. Let $F \in \mathcal{H}^{*\varphi}$. Then, for some constant a>0, $\mu_{\varphi}(\alpha F)<\infty$ and by 1.3.6 $\mu_{\varphi}(\frac{1}{2}\alpha(S_hF-F))\to 0$ as $h\to 0$. Hence for every $\varepsilon_1>0$ there is a $\delta>0$ such that $\mu_{\varphi}(\frac{1}{2}\alpha(S_{h_1-h_2}F-F))\leqslant \varepsilon_1$ for $|h_1-h_2|\leqslant \delta$. Thus

$$\begin{split} \mu_{\varphi} \left(\frac{1}{2} \alpha(S_{h_1} F - S_{h_2} F) \right) &= \mu_{\varphi} \left(S_{h_2} \left(\frac{1}{2} \alpha(S_{h_1 - h_2} F - F) \right) \right) \\ &= \mu_{\varphi} \left(\frac{1}{2} \alpha(S_{h_1 - h_2} F - F) \right) \leqslant \varepsilon_1. \end{split}$$

Now, since $G \in (H_{\infty}^{*p})'$ and in view of 2.5 we conclude that for every $\varepsilon > 0$ there is an $\varepsilon_1 > 0$ such that if $F \in H^{*p}$ is such that $\mu_{\varphi}(F) \leq \varepsilon_1$ then $|(F * G)(z)| \leq \frac{1}{2} a \varepsilon$ for every $z \in D$. Thus, for $|h_1 - h_2| \leq \delta$ and arbitrary $0 \leq r < 1$, we get for our function

$$|(F*G)(re^{ih_1}) - (F*G)(re^{ih_2})| = 2\alpha^{-1} \left| \left(\frac{1}{2} \alpha(S_h, F - S_{ho}F) * G \right)(r) \right| \leqslant \varepsilon.$$

Application of a procedure similar to that in the proof of 2.8 yields the desired result.

3.1. The functional defined as

(+)
$$\xi^{\circ}(F) = 2\pi (F * G)(1) = \lim_{r \to 1^{-}} 2\pi (F * G)(r)$$
 for $F \in H^{\circ \varphi}$

belongs for every $G \in (H^{*\varphi})'$ to $(H^{\circ \varphi})^{\#}$. Furthermore, for every R > 0

$$\nu_{\alpha}^{\circ}(\xi^{\circ};R)=\nu_{\alpha}'(G;R).$$

Proof. That this functional is a linear one is evident in view of 2.8 and 1.1. By 2.1 and 2.3 for any R > 0 we get

$$\begin{split} v_{\varphi}^{\circ}(\xi^{\circ};\,R) &= \sup \{2\pi | (F*G)(1)| \colon \ F \, \epsilon H^{\circ \varphi}, \ \|F\|_{\varphi} \leqslant R \} \\ &= \sup \{2\pi | (F*G)(r)| \colon \ F \, \epsilon H^{*\varphi}, \ \|F\|_{\varphi} \leqslant R, \ 0 \leqslant r < 1 \} \\ &= v_{\varphi}'(G;\,R) \,. \end{split}$$

This implies that $\xi^{\circ} \epsilon (H^{\circ \varphi})^{\#}$.

3.2. For every functional $\xi^{\circ} \in (H^{\circ \varphi})^{\#}$ there is a unique function G analytic in D such that (+) is satisfied. This function belongs to $(H^{*\varphi})'$ and

is of the form

266

$$G(z) = \frac{1}{2\pi} \sum_{n=0}^{\infty} \xi^{\circ}(U_n) z^n \quad (z \in D),$$

where $U_n(z) = z^n$ for $z \in D$ and n = 0, 1, 2, ...

Proof. We shall first show that the function G defined by (++) is analytic in D. To this end let us observe that for arbitrary $\alpha > 0$ and n = 0, 1, 2, ...

$$\|a|U_n\|_{\varphi} = \inf\{\varepsilon > 0: 2\pi \varphi(a/\varepsilon) \leqslant \varepsilon\}.$$

Let $\nu_{\varphi}^{\circ}(\xi^{\circ}; R) < \infty$ for R > 0. We choose such an $a_0 > 0$ that $\|a_0 U_n\|_{\varphi} \leqslant R$ for $n = 0, 1, 2, \ldots$ Then

$$|\xi^{\circ}(U_n)| \leqslant \alpha_0^{-1} \nu_{\varphi}^{\circ}(\xi^{\circ}; R) \quad \text{for } n = 0, 1, 2, \dots$$

This means that the coefficients of G are uniformly bounded. This allows us to conclude that G is analytic in D.

Let $F \in H^{\circ_{\overline{r}}}$. For any $0 \leqslant r < 1$ the polynomial sequence $\{\sum_{k=0}^{n} \gamma_{k}(F) r^{k} U_{k}\}$ converges uniformly in the circle \overline{D} to the function $T_{r}F$, and thus is norm convergent to $T_{r}F$. Hence

$$2\pi(F*G)(r) = \sum_{k=0}^{\infty} \gamma_k(F) \, \xi^{\circ}(U_k) r^k = \lim_{n \to \infty} \xi^{\circ} \left(\sum_{k=0}^n \gamma_k(F) r^k \, U_k \right) = \, \xi^{\circ}(T_r F) \, .$$

From this, in view of II.6.6, we deduce that $\lim_{r\to 1-} (F*G)(r) = (F*G)(1)$ exists and (+) holds.

Next we shall show that the function G expressed in (++) is the only analytic function in D satisfying (+). Let G_1 be an analytic function in D for which (+) holds. Since the functions U_n , (n=0,1,2,...), belong to $H^{\circ p}$ it follows that

$$\frac{1}{2\pi} \, \xi^{\circ}(U_n) = \lim_{r \to 1^-} (U_n * G_1)(r) = \lim_{r \to 1^-} \gamma_n(G_1) r^n = \gamma_n(G_1)$$

for n = 0, 1, 2, ... Hence $G_1 = G$.

It remains to prove that $G_{\epsilon}(H^{*r})'$. Taking into account 2.3 we have for $0 \leqslant r < 1$

$$\begin{split} v_\varphi'(r;G;R) &= \sup \left\{ |\xi^\circ(T_r F)| \colon \left. F \, \epsilon H^{\circ \varphi}, \, \|F\|_\varphi \leqslant R \right\} \right. \\ &\leqslant \sup \left\{ |\xi^\circ(F)| \colon \left. F \, \epsilon H^{\circ \varphi}, \, \|F\|_\varphi \leqslant R \right\} \right. = v_\varphi^\circ(\xi^\circ;\,R) \,. \end{split}$$

This implies that $\nu_{\varphi}'(G;R) \leqslant \nu_{\varphi}^{\circ}(\xi^{\circ};R)$ and so $G \in (H^{*\varphi})'$.

3.3. The functional ξ defined as

(+)
$$\xi(F) = 2\pi (F * G)(1) = \lim_{r \to 1^-} 2\pi (F * G)(r)$$
 for $F \in H^{*\varphi}$

belongs to $(H_m^{*\varphi})^{\#}$ for every function $G \in (H_m^{*\varphi})'$. Besides, for every R > 0, $\nu_m(\xi; R) = \nu'_m(G; R)$.

Proof. That the functional so defined is a linear one follows immediately from 2.9 and 1.1. In view of 2.1 we get for arbitrary R>0

$$\begin{split} \nu_{\varphi}(\xi;R) &= \sup \left\{ 2\pi \left| (F*G)(1) \right| \colon F \in H^{*\varphi}, \, \|F\|_{\varphi} \leqslant R \right\} \\ &= \sup \left\{ 2\pi \left| (F*G)(r) \right| \colon F \in H^{*\varphi}, \, \|F\|_{\varphi} \leqslant R, \, 0 \leqslant r < 1 \right\} = \nu_{\varphi}'(G;R). \end{split}$$

Hence, in virtue of II. 2.4, $\xi \in (H_m^{*\varphi})^{\#}$.

3.4. For every functional $\xi \in (H_m^{*\varphi})^{\pm}$ there exists a unique function G analytic in D and such that (+) holds for $F \in H^{*\varphi}$. This function belongs to $(H_m^{*\varphi})'$ and is defined by (++).

Proof. Let us denote by ξ° a functional which is the restriction of ξ to $H^{\circ \varphi}$. Obviously $\xi^{\circ} \epsilon (H_m^{\circ \varphi})^{\sharp}$. In view of 3.2, G defined by (++) is the only analytic function in D for which (+) is satisfied for $F \epsilon H^{\circ \varphi}$. This function is an element of $(H^{*\varphi})'$. Now it follows from 3.1 that for this function the equation

$$\nu_{\omega}^{\circ}(\xi^{\circ}; R) = \nu_{\omega}'(G; R)$$
 for every $R > 0$

holds. Thus, by II.2.4, $G \in (H_m^{*\phi})'$. Taking into account 3.3 and II.6.4, we see that G is the only function for which (+) is satisfied for $F \in H^{*\phi}$.

3.5. If G is an analytic function in D such that

$$\lim_{r \to 1^-} (F * G)(r) = (F * G)(1)$$

exists for every $F \in H^{*\varphi}$, then $G \in (H^{*\varphi})'$. What is more, the functional ξ defined by (+) for $F \in H^{*\varphi}$ belongs to $(H^{*\varphi})^{\#}$ and is such that

$$u_{\varphi}(\xi;R) = \nu_{\varphi}'(G;R) \quad \text{ for every } R > 0.$$

A analogous statement holds for $H^{\circ \varphi}$.

Proof. Let us observe that for $0 \le r < 1$

$$2\pi(F*G)(r) = 2\pi(T_rF*G)(1) = \xi(T_rF) = T_r^{\#}\xi(F)$$

for every $F \in H^{*\phi}$. We shall demonstrate that the functionals $T_r^{\#} \xi$ belong to $(H^{*\phi})^{\#}$ if $0 \leqslant r < 1$. Namely in view of II.1.2, we have

$$\begin{split} |T_r^{\sharp\sharp}\,\xi(F)| &= 2\pi\,|(F*G)(r)| \,= 2\pi\,\left|\,\sum_{n=0}^\infty\gamma_n(F)\gamma_n(G)r^n\,\right| \\ &\leqslant 2\pi\varphi_{-1}\!\left(\frac{2\,\|F\|_\varphi}{\pi\,(1-r)}\right)\|F\|_\varphi\,\sum_{n=0}^\infty|\gamma_n(G)|\left(\frac{2r}{1+r}\right)^n. \end{split}$$

268

The series on the right-hand side of the above inequality is convergent for $0 \leqslant r < 1$ since G is analytic in D and $0 \leqslant \frac{2r}{1+r} < 1$. This implies that $T_r^\# \xi \epsilon(H^{*\varphi})^\#$ for $0 \leqslant r < 1$. ξ is a pointwise limit on $H^{*\varphi}$ of the functional sequence $\{T_r^\# \xi\}$ as $r \to 1-$, and so in virtue of II.5.1 it also belongs to $(H^{*\varphi})^\#$. As in the proof of 3.3, we get $v_{\varphi}(\xi;R) = v_{\varphi}'(G;R)$ for every R > 0. This, in view of II.2.2, implies that $G \epsilon(H^{*\varphi})'$.

3.6. For any functional $\xi \in (H^{*\varphi})^{\#}$ there is at most one function G analytic in D such that (+) holds for $F \in H^{*\varphi}$. Whenever this function exists, it belongs to $(H^{*\varphi})'$ and is defined by (++).

Proof. Let us assume that such a function G exists. Then by 3.2 it belongs to $(H^{*\sigma})'$, is represented by (++) and is the only analytic function for which (+) holds for $F \epsilon H^{*\sigma}$.

- **3.7.** If φ satisfies the condition (Δ_2) , then Theorems 3.1 and 3.2 and also Theorems 3.3 and 3.4 give a full representation of norm continuous linear functionals on $H^{*\varphi}$ since then $H^{*\varphi} = H^{\circ\varphi}$ and $(H^{*\varphi})^{\#} = (H^{*\varphi})^{\#}$.
- **3.8.** If φ does not satisfy the condition (Δ_2) , then there are functionals $\xi \in (H^{*\varphi})^{\#}$ for which there exists no function G analytic in D and satisfying (+) for $F \in H^{*\varphi}$. All non-trivial functionals $\xi \in (\tilde{H}^{*\varphi})^{\#}$ are good examples of such a situation.

Proof. Let ξ be a non-trivial functional from $(\tilde{H}^{*r})^{\#}$. Suppose that there is a function G analytic in D satisfying (+) for $F \in H^{*r}$. In virtue of 3.6, G is represented by (++). The functions $U_n(z) = z^n$, $z \in D$, $n = 0, 1, 2, \ldots$ all belong to $H^{\circ r}$. Thus $\xi(U_n) = 0$ for $n = 0, 1, 2, \ldots$ Hence G(z) = 0 for all $z \in D$ and furthermore $\xi(F) = 2\pi(F * G)(1) = 0$ for every $F \in H^{*r}$ in contradiction to the assumption made on ξ .

4.1. From 3.1 and 3.2 and II. 2.7, II 2.8 and II. 6.1 it immediately follows that the space $(H^{*\varphi})'_R$ for R>0 is complete relative to the norm $v'_{\varphi}(\cdot;R)$ and that $(H^{*\varphi})'_R$ is its closed linear subspace.

For $G \in (H^{*\varphi})'$ let us designate

$$\kappa'_{\varphi}(G) = \inf\{\varepsilon > 0 \colon \nu'_{\varphi}(G; 1/\varepsilon) \leqslant 1\}.$$

We deduce from 3.1 and 3.2 that the properties of the functional \varkappa_{φ}' on the space $(H^{*\varphi})'$ are analogous to those of $\varkappa_{\varphi}^{\circ}$ on the space $(H^{\circ\varphi})^{\sharp\sharp}$. Thus in view of II.6.1 and II. 3.3 we see that, for an arbitrary sequence $\{G_n\}$ $\subset (H^{*\varphi})'$, $\varkappa_{\varphi}'(G_n) \to 0$ if and only if $\nu_{\varphi}'(G_n; R) \to 0$ for every R > 0. From II. 6.1, II. 3.4, II. 3.5, II. 3.6 and II. 3.7 we infer that the space $(H^{*\varphi})'$ is complete with respect to the metric $d(G_1, G_2) = \varkappa_{\varphi}'(G_1 - G_2)$ and that the spaces $(H^{*\varphi})'$, $(H^{*\varphi})'_R$, $(H^{*\varphi})'_R$ for every R > 0, $(H^{*\varphi})'_0$, $(H^{*\varphi})'_0$ are its closed linear subspaces. Furthermore, we conclude from 6.1 and II.3.8 that $G_{\varepsilon}(H^{*\varphi})'$

is an element of $(H^{*\varphi})'_0$ if and only if $\varkappa'_{\varphi}(\alpha\theta) \to 0$ as $\alpha \to 0$ and hence we infer that $[(H^{*\varphi})'_0, \varkappa'_{\varphi}]$ is a Fréchet space and $(H^{*\varphi}_m)'_0$ is a closed linear subspace.

4.2. We denote by $(H_{vv}^{*ev})'$ a class of all functions $G_{\epsilon}(H_{m}^{*ev})'$ for which the functional ξ defined by (+) for $E_{\epsilon}H^{*ev}$ belongs to $(H_{vv}^{*ev})^{\#}$.

From II.3.10 we infer that $(H_{vw}^{*v})'$ is a closed linear subspace of $[(H_{w}^{*v})'_{o}, \kappa'_{\varphi}]$.

4.3. If G is an analytic function in D, then $T_rG \in (H^{*v}_{vo})'$ for $0 \le r < 1$. Proof. For a fixed $r, 0 \le r < 1$, we define a functional

$$\xi(F) = 2\pi (F * G)(r) = 2\pi (F * T_*G)(1)$$
 for $F \in H^{*\varphi}$.

Let $\{F_m\} \subset H^{*_\phi}$ be a sequence very weakly converging to 0. Then, by II.1.5 $\sup \|F_m\|_{\varphi_m} = R < \infty$ and $\gamma_n(F_m) \to 0$ as $m \to \infty$ for $n = 0, 1, 2, \ldots$ Applying II.1.2, we get

$$\Big|\sum_{n=k}^{\infty}\gamma_n(F_m)\gamma_n(G)r^n\Big|\leqslant \varphi_{-1}\bigg(\frac{2R}{\pi(1-r)}\bigg)R\sum_{n=k}^{\infty}|\gamma_n(G)|\bigg(\frac{2r}{1+r}\bigg)^n$$

for each m and k. The series on the right-hand side of the above inequality is convergent since G is analytic in D and $0 \le \frac{2r}{1+r} < 1$. From this we conclude that for every $\varepsilon > 0$ there is a k such that

$$2\pi \left| \sum_{n=k}^{\infty} \gamma_n(F_m) \gamma_n(G) r^n \right| \leqslant \frac{\varepsilon}{2} \quad \text{ for } m = 1, 2, \dots$$

Now, the fact that $\gamma_n(F_m) \to 0$ with $m \to \infty$ for n = 0, 1, 2, ... implies that for an already fixed $\varepsilon > 0$ there exists an m_0 such that for $m \ge m_0$

$$2\pi \Big| \sum_{m=0}^{k-1} \gamma_n(F_m) \gamma_n(G) r^n \Big| \leqslant \frac{\varepsilon}{2}.$$

Thus for $m \geqslant m_0$ we get

$$|\xi(F_m)| = 2\pi |\langle F_m * G \rangle(r)| = 2\pi \Big| \sum_{n=0}^{\infty} \gamma_n(F_m) \gamma_n(G) r^n \Big| \leqslant \varepsilon.$$

This signifies that $\xi \in (H_{vv}^{*\rho})^{\#}$. Hence $T_r G \in (H_{vv}^{*\rho})'$.

4.4. A function $G \in (H^{*\varphi})'$ belongs to $(H^{*\varphi}_{vv})'$ if and only if $\varkappa'_{\varphi}(T_rG - G) \to 0$ as $r \to 1$.

Proof. Let $G_{\epsilon}(H_{vv}^{*\varphi})'$. Let us consider a functional ξ defined in (+) for $F_{\epsilon}H^{*\varphi}$. Then for every $0 \le r < 1$

$$\begin{split} (T_r^\# \, \xi - \xi)(F) &= \xi(T_r F) - \xi(F) = 2\pi \big((T_r F * G)(1) - (F * G)(1) \big) \\ &= 2\pi \big((F * T_r G)(1) - (F * G)(1) \big) = 2\pi \big(F * (T_r G - G)(1) \big) \end{split}$$

In view of 3.3 we get for every R > 0

$$\nu_{m}(T_{m}^{+}\xi-\xi;R)=\nu_{m}'(T_{m}G-G;R).$$

Further, we have

$$\varkappa_m(T_r^{\sharp}\xi-\xi)=\varkappa_m'(T_rG-G) \quad \text{for } 0\leqslant r<1.$$

Now, in view of II.4.3, $\kappa'_{m}(T_{r}G-G) \rightarrow 0$ as $r \rightarrow 1-$.

Conversely, if $\varkappa_{\varphi}'(T_rG - G) \to 0$ as $r \to 1$ — for $G \in (H^{*\varphi})'$ then the application of 4.3, 4.2, 4.1 yields $G \in (H^{*\varphi})'$

4.5. The space $[(H_{vv}^{*v})', \kappa_{\varphi}']$ is separable. Polynomials with rational coefficients form a dense set in this space.

Proof. Let $G_{\epsilon}(H^{*\phi}_{vw})'$ and ϵ be an arbitrary positive number. By 4.4 there exists an $r,\ 0\leqslant r<1$, such that $\kappa'_{\varphi}(T_rG-G)\leqslant \frac{\epsilon}{2}$. Further, II.1.2

implies that for every k and every $F \, \epsilon \, H^{*_{\varphi}}$ such that $\|F\|_{\varphi} \leqslant \frac{2}{\varepsilon}$ it is true that

$$\left|\sum_{n=k}^{\infty}\gamma_n(F)\gamma_n(G)r^n\right|\leqslant \varphi_{-1}\bigg(\frac{4}{\varepsilon\pi(1-r)}\bigg)\frac{2}{\varepsilon}\sum_{n=k}^{\infty}|\gamma_n(G)|\bigg(\frac{2r}{1+r}\bigg)^n.$$

Reasoning as in the proof of 4.3, we conclude that there is a k such that

$$2\pi \left|\sum_{n=k}^{\infty} \gamma_n(F) \gamma_n(G) r^n \right| \leqslant \tfrac{1}{2} \quad \text{ for } F \, \epsilon \, H^{*\varphi} \text{ such that } \|F\|_{\varphi} \leqslant \frac{2}{\epsilon}.$$

Let $M = \sup\{\nu_{\varphi}'(\gamma_n; 2/\varepsilon): n = 0, 1, 2, ..., k-1\}$. We take rational numbers a_n such that

$$|\gamma_n(G)r^n - a_n| \le (4kM\pi)^{-1}$$
 for $n = 0, 1, 2, ..., k-1$

and construct a polynomial $Q(z)=\sum_{n=0}^{k-1}a_nz^n$. Now, for $F\,\epsilon H^{*\varphi}$ such that $\|F\|_{\varphi}\leqslant 2/\varepsilon$ we get

$$2\pi \big| \big(F * (T_r G - Q) \big) (1) \big|$$

$$\leqslant 2\pi \sum_{n=0}^{k-1} |\gamma_n(F)| \, |\gamma_n(G)r^n - a_n| + 2\pi \, \Big| \sum_{n=k}^{\infty} |\gamma_n(F)\gamma_n(G)r^n \Big| \leqslant 1.$$

This means that $\nu_{\varphi}'(T_rG-Q;2/\varepsilon)\leqslant 1$. Hence $\varkappa_{\varphi}'(T_rG-Q)\leqslant \varepsilon/2$. It follows now that

$$\varkappa_{\varpi}'(G-Q)\leqslant \varkappa_{\varpi}'(G-T_rG)+\varkappa_{\varpi}'(T_rG-Q)\leqslant \varepsilon.$$

4.6. For any functions $G \in (H^{*\varphi})'$ and $F \in H^{*\varphi}$ such that $\varkappa_{\varphi}'(G) ||F||_{\varphi} \leqslant 1$ the inequality

$$2\pi |(F*G)(z)| \leq \varkappa'_{\alpha}(G) ||F||_{\alpha}$$
 for $z \in D$

holds.

Proof. For an arbitrary $\varepsilon > \varkappa_{\varphi}'(G)$ it is true that $\nu_{\varphi}'(G; 1/\varepsilon) \leqslant 1$. Thus in view of 2.4 we obtain

$$2\pi |(F*G)(z)| \leqslant \varepsilon ||F||_{\sigma}$$

for every $F \, \epsilon H^{*\varphi}$ such that $\epsilon \|F\|_{\varphi} \leqslant 1$ and every $z \, \epsilon D$. Hence we get

$$2\pi \left| (F * G)(z) \right| \leqslant \varkappa_{\omega}'(G) ||F||_{\omega}$$

for every $F \in H^{*\varphi}$ such that $\varkappa_{\varphi}'(G) \|F\|_{\varphi} < 1$ and every $z \in D$. If now $F \in H^{*\varphi}$ is such that $\varkappa_{\varphi}'(G) \|F\|_{\varphi} = 1$, then for $0 < \alpha < 1$, $\varkappa_{\varphi}'(G) \|aF\|_{\varphi} < 1$ and thus also

$$2\pi \left| (F*G)(z) \right| \leqslant a^{-1} \varkappa_{\varphi}'(G) \|aF\|_{\varphi}.$$

Passing with $a \to 1$ we get the required part of the inequality.

5.1. We say that a sequence $\{G_n\} \subset (H^{*\varphi})'$ converges very weakly to $G \in (H^{*\varphi})'$ if $\sup \varkappa_{\varphi}'(G_n - G) < \infty$ and

$$\sup\{|G_n(z)-G(z)|: z \in E\} \to 0 \text{ as } n \to \infty$$

for every closed set $E \subset D$.

A sequence $\{G_n\} \subset (H^{*\varphi})'$ converges very weakly to $G \in (H^{*\varphi})'$ if and only if the corresponding (according to formulae (+) and (++)) sequence of functionals $\{\xi_n^o\} \subset (H^{o_{\varphi}})^{\#}$ converges pointwise to a functional $\xi^o \in (H^{o_{\varphi}})^{\#}$ corresponding to the function G.

Proof. Let a sequence $\{G_n\} \subset (H^{*_{\overline{v}}})'$ converge very weakly to $G \in (H^{*_{\overline{v}}})'$. The condition $\sup_n \varkappa_{\overline{v}}'(G_n - G) < \infty$ implies, in view of 4.1 that $\sup_n \varkappa_{\overline{v}}'(\xi_n^c - \xi^c)$

 $<\infty$, where ξ_n° and ξ° are functionals corresponding to G_n and G, respectively. Since $\{G_n(z)\}$ converges uniformly to G(z) on the circumference $\{z\colon |z|=r\}$, where 0< r<1, it now follows on the application of the Cauchy formulae that $\gamma_k(G_n)\to\gamma_k(G)$ as $n\to\infty$ for $k=0,1,2,\ldots$ This implies that

$$\frac{1}{2\pi} \, \xi_n^{\circ}(U_k) = \gamma_k(G_n) \to \gamma_k(G) = \frac{1}{2\pi} \, \xi^{\circ}(U_k) \quad \text{as } n \to \infty$$

for k=0,1,2,... In virtue of II.6.7 we now see that $\{\xi_n^{\circ}\}$ converges pointwise on $H^{\circ p}$ to ξ° .

Conversely, let a sequence $\{\xi_n^o\} \subset (H^{\circ p})^{\#}$ be pointwise convergent to $\xi^\circ \epsilon(H^{\circ p})^{\#}$. Thus by II.5.2 we have $\sup_n \varkappa_{\varphi}^\circ (\xi_n^\circ - \xi^\circ) < \infty$. Further, 4.1 implies that $\sup_n \varkappa_{\varphi}^\prime (G_n - G) < \infty$. Take 0 < r < 1. Observe that the set $X = \{F_{\xi}\}, |\xi| \le r$, where $F_{\xi}(z) = (1 - \zeta z)^{-1}$ for $z \in D$, is compact in the space of functions analytic in D and continuous in \overline{D} , and hence it is also compact in $[H^{\circ p}, \|\cdot\|_{\varphi}]$. Since it is compact, it is bounded in $[H^{\circ p}, \|\cdot\|_{\varphi}]$. Thus in view of $\sup_{z \in C} \varkappa_{\varphi}(G_n - G) < \infty$, by 4.6 it follows that the functions

$$(F_{\zeta}*(G_n-G))(1) = G_n(\zeta) - G(\zeta)$$

are uniformly bounded on the circle $\{\zeta\colon |\zeta|\leqslant r\}$. Further, since the sequence $\{\xi_n^\circ\}$ converges pointwise to ξ° , we get

$$2\pi \big(G_n(\zeta) - G(\zeta)\big) = \xi_n^{\circ}(F_{\zeta}) - \xi^{\circ}(F_{\zeta}) \to 0 \quad \text{as } n \to \infty.$$

Applying now the Vitali theorem we have for $0 < \rho < r$

$$\sup\{|G_n(z)-G(z)|\colon |z|\leqslant \varrho\}\to 0\quad \text{as }n\to\infty.$$

Since r has been an arbitrary number such that 0 < r < 1, we conclude that for every closed set $E \subset D$

$$\sup \{|G_n(z) - G(z)| \colon z \in E\} \to 0 \quad \text{as } n \to \infty.$$

Hence $\{G_n\}$ converges very weakly to G.

5.2. Certain theorems about $(H^{\circ_{\pi}})^{\#}$ can be transferred to $(H^{*_{\pi}})'$ on account of 5.1. Thus from II.6.1 and II.5.3 we get

If a sequence $\{G_n\} \subset (H^{*\varphi})'$ converges very weakly to $G \in (H^{*\varphi})'$, then

$$u_{\varphi}'(G;R) \leqslant \liminf_{n \to \infty} \nu_{\varphi}'(G_n;R) \quad \text{ for every } R > 0$$

and

$$\kappa'_{\varphi}(G) \leqslant \liminf_{n \to \infty} \kappa'_{\varphi}(G_n).$$

And from II.6.7 we get

A sequence $\{G_n\}\subset (H^{*_p})'$ is very weakly convergent if and only if $\sup_n \varkappa_p'(G_n)<\infty$ and a sequence $\{\gamma_k(G_n)\}$ is convergent for $k=0,1,2,\ldots$

We shall also prove that:

A sequence $\{G_n\} \subset (H^{*p})'$ is very weakly convergent if and only if $\sup_n \varkappa_p'(G_n) < \infty$ and a sequence $\{G_n(z)\}$ converges on a set of points $z \in D$ having a cluster point in D.

Proof. Let us take, as in the proof of 5.1, for 0 < r < 1 a set of functions $X = \{F_{\xi}\}, |\zeta| \le r$, where $F_{\xi}(z) = (1 - \zeta z)^{-1}$ for $z \in D$ and in view of 4.6

$$(F_{\zeta} * G_n)(1) = G_n(\zeta)$$

are uniformly bounded in the circle $\{\zeta\colon |\zeta|\leqslant r\}$. Let us take $r,\,0< r<1$, such that the cluster point of the set of points $z\,\epsilon D$ for which the sequence $\{G_n(z)\}$ is convergent is in the circle $\{\zeta\colon |\zeta|< r\}$. Applying Vitali's theorem, we see that $\{G_n(z)\}$ is then uniformly convergent on the circumference $\{\zeta\colon |\zeta|=\frac{1}{2}r\}$. By the Cauchy formulas we find that $\{\gamma_k(G_n)\}$ is convergent for $k=0\,,\,1\,,\,2\,,\,\ldots$ Thus the sequence $\{G_n\}$ is very weakly convergent.

5.3. For any R, M > 0 the set $\{G \in (H^{*\varphi})' : r'_{\varphi}(G; R) \leqslant M\}$ is sequentially very weakly compact.

Proof. Let $\{G_n\} = (H^{*\varphi})'$ be such a sequence that $v_{\varphi}'(G_n; R) \leq M$ for $m=1,2,\dots$ For 0 < r < 1, as in the proof of 5.1 we consider the set $X = \{F_{\xi}\}, |\zeta| \leq r$, where $F_{\xi}(z) = (1-\zeta z)^{-1}$ for $z \in D$. Since X is bounded in $[H^{2\varphi}, \|\cdot\|_{\varphi}]$, we find by 2.4 that the functions $(F_{\xi} * G_n)(1) = G_n(\zeta)$ are uniformly bounded in the circle $\{\zeta \colon |\zeta| \leq r\}$. We take a sequence of points $\{z_m\}$, each different from another and such that $|z_m| \leq \frac{1}{2}r$. This sequence $\{z_m\}$ clearly has a cluster point in D. Now, from $\{G_n\}$ we substract a subsequence $\{G_{n_1}\}$ converging in z_1 , from $\{G_{n_1}\}$ a subsequence $\{G_{n_2}\}$ converging in z_2 and so on. The diagonal sequence $\{G_{n_2}\}$ is obviously convergent at every point of the set $\{z_m\}$. Since $\sup_{n} \varkappa_{\varphi}'(M^{-1}G_{n_n}) \leq R^{-1}$, $\{G_{n_n}\}$ is by 5.2 very weakly convergent.

5.4. For any function $G \in (H^{*\varphi})'$ the following relations hold

$$\nu_{\sigma}'(T_rG;R) = \nu_{\sigma}'(r;G;R) \leqslant \nu_{\sigma}'(G;R) \quad \text{ for } 0 \leqslant r < 1 \text{ and } R > 0,$$

$$\nu'_{\sigma}(S_hG;R) = \nu'_{\sigma}(G;R)$$
 for h real and $R > 0$;

hence

$$\varkappa_{x}'(T_{r}G) \leqslant \varkappa_{x}'(G) \quad \text{for } 0 \leqslant r < 1$$

and

$$\varkappa'_{\varpi}(S_hG) = \varkappa'_{\varpi}(G)$$
 for h real,

and further

$$v_\varphi'(G;R) = \lim v_\varphi'(T_rG;R) \quad \text{ for } R > 0$$

and

$$\kappa'_{\varphi}(G) = \lim_{r \to 1_{m}} \kappa'_{\varphi}(T_{r}G).$$

These properties are immediate consequences of 2.1 and 5.2. From this and 5.2 it easily follows that

A function G analytic in D belongs to $(H^{**p})'$ if and only if

$$\sup \left\{ \varkappa_{\varphi}'(T_rG) \colon \ 0 \leqslant r < 1 \right\} < \infty.$$

6.1. If $(H^{*\varphi})' = (H^{*\varphi})'_0$, then $(H^{*\varphi})'$ can be equipped with a homogeneous norm given by

$$\|G\|_{\varphi}' = \nu_{\varphi}'(G; 1) = \sup \{2\pi |(F*G)(z)| \colon F \in H^{*\varphi}, \|F\|_{\varphi} \leqslant 1, \ z \in D\}$$

for $G \in (H^{*p})'$. This norm is then equivalent with the norm \varkappa'_{φ} . Moreover, for every $Y \subset (H^{*p})'$ we have $\sup\{\|G\|'_{\varphi}\colon G \in Y\} < \infty$ if and only if $\sup\{\varkappa'_{\varphi}(G)\colon G \in Y\} < \infty$.

This can easily be deduced from 4.1 and II.8.1. Hence we also infer that

 $(H^{*\phi})'=(H^{*\phi})'_0$ if and only if $(H^{\circ\phi})^{\#}=(H^{\circ\phi})^{\#}_0$ or if and only if $(H^{*\phi})^{\#}=(H^{*\phi})^{\#}_0$.

6.2. $(H^{*\varphi})' = (H^{*\varphi})'_0$ if and only if $(H^{*\varphi})'_m = (H^{*\varphi})'_0$.

Proof. If $(H^{*\varphi})' = (H^{*\varphi})'_0$ then obviously $(H^{*\varphi})'_m = (H^{*\varphi})'_0$. Assume that $(H^{*\varphi})'_m = (H^{*\varphi})'_m$. Then for arbitrary $R_2 > R_1 > 0$ we have $(H^{*\varphi})'_{R_1} = (H^{*\varphi})'_{R_2} = (H^{*\varphi})'_m$. Hence, in view of 4.1, the space $(H^{*\varphi})'_m$ is complete with respect to the two norms $v_\varphi'(\cdot;R_1)$ and $v_\varphi'(\cdot;R_2)$. Since we have also for every $G \in (H^{*\varphi})'_m$, $v_\varphi'(G;R_1) \le v_\varphi'(G;R_2)$ it follows from the Closed Graph Theorem applied to the identity operator that the norms $v_\varphi'(\cdot;R_1)$ and $v_\varphi'(\cdot;R_2)$ are equivalent on $(H^{*\varphi})'_m$. Let now $G \in (H^{*\varphi})'$. Then for some $R_0 > 0$ we have $v_\varphi'(G;R_0) < \infty$. By 4.3, we then have $T_rG \in (H^{*\varphi})'$ for $0 \le r < 1$ and by 5.4 we get $v_\varphi'(T_rG;R_0) \le v_\varphi'(G;R_0)$. Thus we see that the set $\{T_rG\}$, $0 \le r < 1$, is bounded in the space $[(H^{*\varphi})', v_\varphi'(\cdot;R_0)]$. Hence, in virtue of the first part of this proof, the set $\{T_rG\}$, $0 \le r < 1$, is bounded in $[(H^{*\varphi})', v_\varphi'(\cdot;R_0)]$ for any R > 0. This means that for any R > 0

$$\sup \{v_{\varphi}^{'}(T_{r}G;R)\colon\ 0\leqslant r<1\}<\infty.$$

This leads us to the conclusion, in view of 5.4, that $v_{\varphi}'(G; R) < \infty$ for any R > 0. Hence $G_{\varepsilon}(H^{*\varphi})_{0}'$ and $(H^{*\varphi})' = (H^{*\varphi})_{0}'$.

6.3. If φ satisfies condition (V_2) , then $(H^{*\varphi})' = (H^{*\varphi})'_0$. This follows immediately from 8.3 of Section II.

7.1. If, for a natural number m the integral

$$J_m(\varphi) = \int_1^\infty u^{-1 - (1/m)} \varphi(u) \, du$$

exists, then the functions

$$I_k(z) = z^k I^{k+1}(z) = \frac{z^k}{(1-z)^{k+1}} \quad (z \in D)$$

for k = 0, 1, ..., m-1 belong to $H^{\circ p}$.

Proof. For $\frac{1}{4} \le r < 1$ and $0 < t < \pi$ we have

$$\begin{aligned} |1 - re^{it}|^2 &= 1 - 2r\cos t + r^2 \\ &= (1 - r)^2 + 2r(1 - \cos t) \geqslant 2r(1 - \cos t) \\ &= 4r\sin^2 \frac{1}{2}t \geqslant \sin^2 \frac{1}{2}t \geqslant (t/\pi)^2. \end{aligned}$$

Therefore, for $\frac{1}{k} \leqslant r < 1$, $\alpha > 0$ and $0 \leqslant k \leqslant m-1$ we have

$$\begin{split} \mu_{\varphi}(r;\,aI_{\;k}) &= \int\limits_{0}^{2\pi} \varphi\left(\alpha \left| \frac{re^{ikt}}{(1-re^{it})^{k+1}} \right| \right) dt \leqslant 2 \int\limits_{0}^{\pi} \varphi\left(\frac{\alpha}{1-re^{it}|^{k+1}}\right) dt \\ &\leqslant 2 \int\limits_{0}^{\pi} \varphi\left(\alpha \left(\frac{\pi}{t}\right)^{k+1}\right) dt \leqslant 2 \int\limits_{0}^{\pi} \varphi\left(\alpha \left(\frac{\pi}{t}\right)^{m}\right) dt = \frac{2\pi}{m} \, \alpha^{1/m} \int\limits_{a}^{\infty} u^{-1-(1/m)} \varphi(u) \, du \, . \end{split}$$

Hence 7.1 follows.

7.2. If, for a natural number m, the integral $J_m(\varphi)$ exists, then every function $G \in (H^{*\varphi})'$ has derivatives of order $k=0,1,\ldots,m-1$ bounded in the circle D. Moreover, these derivatives completed by their radial limits

$$\lim_{r \to 1^{-}} G^{(k)}(re^{it}) = G^{(k)}(e^{it})$$

are continuous functions in \overline{D} .

Proof. By virtue of 7.1 the functions I_k for $k=0,1,\ldots,m-1$ belong to $H^{\circ p}$. On account of 1.3, 2.7 and 2.8 we see that the functions

$$(I_k * G)(z) = \frac{1}{k!} G^{(k)}(z) \quad (z \in D)$$

for $k=0\,,\,1\,,\,\ldots,\,m-1$ are bounded in D and, completed by their radial limits, they are continuous in \overline{D} .

7.3. Let G be a function analytic in D and continuous in \overline{D} . If its derivative $G^{(1)}$ can be completed to a continuous function in \overline{D} , then the function $G(e^{il})$ of a real variable t has a derivative for every t

$$\frac{d}{dt}G(e^{it}) = ie^{it}G^{(1)}(e^{it}), \quad \text{where } G^{(1)}(e^{it}) = \lim_{r \to 1^-} G^{(1)}(re^{it}).$$

Proof. For arbitrary real t_0 and t we have

$$G(e^{it}) - G(e^{it_0}) = \lim_{r \to 1^-} \left(G(re^{it}) - G(re^{it_0}) \right) = \lim_{r \to 1^-} \int_{t_0}^t G^{(1)}(re^{i\tau}) ire^{i\tau} d\tau.$$

Since $G^{(1)}$ can be completed to a continuous function in \overline{D} , we get

$$G(e^{it}) - G(e^{it_0}) = \int_{t_0}^t G^{(1)}(e^{i\tau}) i e^{i\tau} d\tau.$$

The integrand is continuous, and so the function $G(e^{it})$ of a real variable t has a derivative for every t equal to $G^{(1)}(e^{it})ie^{it}$.

7.4. If, for a natural number m, the integral $J_m(\varphi)$ exists, then for every function $G \in (H^{*\varphi})'$ the function of a real variable

$$G(e^{it}) = \lim_{r \to 1^-} G(re^{it})$$

 $G(e^{it})=\lim_{r\to 1-}G(re^{it})$ has continuous derivatives $\frac{d^k}{dt^k}\,G(e^{it})$ for $k=0,1,\ldots,m-1.$

This follows easily from 7.2 and 7.3.

Theorems 7.2 and 7.4 can be viewed as generalizations and improvements of certain results of Walters [14].

If
$$\varphi(u) = u^p$$
, $0 , then$

$$\int_{1}^{\infty} u^{-1-(1/m)} u^{p} du = ((1/m) - p)^{-1} < \infty.$$

Thus, Theorems 7.2 and 7.4 hold for the Hardy spaces H^p , 0

IV. THE CASE OF SPACES $H^{*\psi}$ FOR CONVEX ψ .

1.1. In this section we shall deal with the problem of representation of linear functionals on the Hardy-Orlicz spaces $H^{*\psi}$, where ψ is a convex φ -function satisfying conditions (0, 1) and $(\infty, 1)$. In this case we shall use a homogeneous norm $\|\cdot\|_{1m}$ for the space $H^{*\psi}$. A convex φ -function satisfies condition (V_2) and so $(H^{*\psi})' = (H^{*\psi})'_0$, and for the space $(H^{*\psi})'$ we shall use the usual norm

1.2. For every function $G \in (H^{*\psi})'$ there exists a function $g \in L^{*\psi'}$ such that G is the Cauchy integral of g and $||G||'_{\psi} = ||g||^*_{(\psi')}$.

Proof. Let ξ° be a functional from $(H^{\circ \psi})^{\#}$ corresponding to $G \in (H^{*\psi})'$. Since the space $[H^{\circ_{\psi}}, \|\cdot\|_{_{1\psi}}]$ is, by boundary functions, isometric isomorphic with a linear subspace of $[L^{\circ_{\psi}}, \|\cdot\|_{l_{\psi}}^{*}]$, there exists, by virtue of the Hahn-Banach theorem, a functional $l_{\epsilon}(L^{\circ_{\psi}})^{\#}$ such that $\xi^{\circ}(F) = l(F(e^{i}))$ for $F \in H^{\circ_{\psi}}$ and $\|l\|_{w}^{\#} = \|\xi^{\circ}\|_{w}^{\#}$. It is known ([3], p. 128; see I. 2.5) that for a functional l there is a function $q \in L^{*\psi}$ such that

$$l(f) = \int\limits_0^{2\pi} f(t)g(2\pi - t) dt$$
 for $f \in L^{\circ_{\psi}}$ and $\|g\|_{(\psi')}^* = \|l\|_{\psi}^*$.

Hence

$$\xi^{\circ}(F) = \int\limits_0^{2\pi} F(e^{-it}) g(t) dt \quad ext{ for } F \, \epsilon H^{\circ_{\psi}} ext{ and } \|g\|_{(\psi')}^* = \|\xi^{\circ}\|_{\psi}^{\#}.$$

Let G_1 be the Cauchy integral of g. In view of III. 1.6 we get

$$(F*G_1)(r) = rac{1}{2\pi} \int\limits_0^{2\pi} F(re^{-it}) g(t) \, dt \quad ext{ for } \ 0 \leqslant r < 1 \, .$$

Thus, for $0 \le r < 1$ and $F \in H^{\circ_{\psi}}$ we have

$$2\pi (F*G_1)(r) = \xi^{\circ}(T_rF) = 2\pi (F*G)(r)$$

This yields

$$2\pi (F*G_1)(1) = \xi^{\circ}(F) = 2\pi (F*G)(1)$$

for every $F \in H^{\circ_{\psi}}$. Now, by III. 3.2, we get $G_1 = G$. Hence G is the Cauchy integral of $g \in L^{*\psi'}$ and $||G||'_{\psi} = ||\xi^{\circ}||^{\#}_{\psi} = ||g||^{*}_{(\psi')}$.

1.3. For every $a \in L^{*\psi'}$, its Cauchy integral G belongs to $(H^{*\psi})'$. Moreover $||G||'_{w} \leq ||g||^*_{(w')}$.

Proof. Let G be the Cauchy integral of $q \in L^{*\psi}$. Then, by III. 1.6. we get for $F \in H^{*\psi}$ and $0 \le r < 1$,

$$(F*G)(r) = rac{1}{2\pi} \int\limits_{0}^{2\pi} F(re^{-it})g(t)dt.$$

This, together with the fact that $[H^{*_{\psi}}, \|\cdot\|_{_{1\psi}}]$ is isometric isomorphic to a linear subspace of $[L^{*\nu}, \|\cdot\|_{l^{\nu}}^*]$, implies that for every $F \in H^{*\nu}$ such that $||F||_{1\psi} \leqslant 1$ and $0 \leqslant r < 1$

$$\begin{split} 2\pi \left| (F*G)(r) \right| &\leqslant \sup \left\{ \left| \int\limits_0^{2\pi} f(t)g(2\pi - t)dt \right| : f \epsilon L^{*\psi}, \, \|f\|_{1\psi}^* \leqslant 1 \right\} \\ &= \sup \left\{ \left| \int\limits_0^{2\pi} f(t)g(t)dt \right| : \, \mathscr{I}_{\psi}(f) \leqslant 1 \right\} \, = \, \|g\|_{(\psi')}^*. \end{split}$$

Recalling now III. 2.1 we see that

$$||G||'_{\psi} = \nu'_{\psi}(G; 1) \leqslant ||g||^*_{(\psi')}.$$

This accomplishes the proof.

1.4. $L_{+}^{*\psi'}$ will denote the class of all functions $f \in L^{*\psi'}$ for which

$$\int_{0}^{2\pi} f(t)e^{-int}dt = 0 \quad \text{for } n = 0, 1, 2, \dots$$

Clearly, $L_+^{*v'}$ is a closed linear subspace of $[L^{*v'}, \|\cdot\|_{(v')}^*]$. We define a relation " \sim " in $L^{*v'}$ in the following fashion: $f_1 \sim f_2$ is equivalent to $f_1 - f_2 \in L_+^{*v'}$. This relation is equivalence in $L^{*\psi'}$. The quotient space $L^{*\psi'}/\sim = L^{*\psi'}/L_+^{*\psi'}$ will be denoted by $\tilde{L}^{*\psi'}$. As usual, g^{-} will denote an equivalence class determined by g. The space $\tilde{L}^{*_{\psi'}}$ is a normed linear space with addition and multiplication defined as

$$\tilde{g}_1 + \tilde{g}_2 = (g_1 + g_2)^{\tilde{}}, \quad a\tilde{g} = (ag)^{\tilde{}}$$

and with the norm

$$\|\tilde{g}\|_{(w')}^{\sim} = \inf\{\|f+g\|_{(\psi')}^* : f \in L_+^{*\psi'}\}.$$

The space $[(H^{*v})', \|\cdot\|'_v]$ is isometric isomorphic to a space $[\tilde{L}^{*v'}, \|\cdot\|^*_{(v')}]$. This isomorphism establishes a Cauchy integral.

Proof. In view of 1.2 and 1.3 it suffices to show that the Cauchy integral G of $g \in L^{*v'}$ is identically equal to 0 in D if and only if $g \in L^{*v'}$. This in turn follows directly from III. 1.5.

1.5. $H^{*\psi'} \subset (H^{*\psi})'$ and $||F||_{\psi} \leq ||F||_{(\psi')}$ for every $F \in H^{*\psi'}$.

Proof. Let $F \in H^{*\psi'}$. Then $F(e^i) \in L^{*\psi'}$ and

$$\int\limits_{0}^{2\pi}F(e^{it})e^{int}dt=0 \quad ext{ for } n=1,2,\ldots$$

From this we deduce on account of III. 1.7 that F is the Cauchy integral of $F(e^i)$. Hence, by 1.3, we find that $F \in (H^{*\nu})'$ and $||F||_{\psi}' \leq ||F(e^{i\cdot})|_{(\psi')}^* = ||F||_{(\psi')}$, (see also III. 1.8).

2.1. Let us define for $g \in L^{*\psi}$

$$\mathscr{I}_{\psi'}(\tilde{g}) = \inf \{ \mathscr{I}_{\psi'}(f+g) \colon f \in L_+^{*\psi'} \}.$$

The functional $\mathscr{I}_{\psi}^{\cdot}(\cdot)$ has the following properties on the space $\tilde{L}^{*\psi}$:

 $1^{\circ} \, \tilde{\mathscr{I}_{v'}}(\tilde{g}) = 0 \, \text{if and only if } \tilde{g} = 0,$

2° $\mathscr{I}_{w'}(a\tilde{g}) = \mathscr{I}_{w'}(\tilde{g})$ for any number a such that |a| = 1,

3° $\mathscr{I}_{\psi'}(a\tilde{g}_1 + \beta \tilde{g}_2) \leqslant a\mathscr{I}_{\psi'}(\tilde{g}_1) + \beta\mathscr{I}_{\psi'}(\tilde{g}_2)$ for any numbers $\alpha, \beta > 0$ such that $\alpha + \beta = 1$,

 $4^{\circ} \|\widetilde{g}\|_{(w')}^{\widetilde{\epsilon}} = \inf\{\varepsilon^{-1}(1 + \mathscr{I}_{w'}(\varepsilon\widetilde{g})) \colon \varepsilon > 0\}.$

Proof. If $\tilde{g} = \tilde{0}$, then obviously $\mathscr{I}_{\psi'}(\tilde{g}) = 0$. Conversely, let $\mathscr{I}_{\psi'}(\tilde{g}) = 0$. Then for every natural number m there is a $f_m \in L_+^{*\psi'}$ such that $\mathscr{I}_{\psi'}(f_m + g) \leqslant m^{-2}$. Since ψ and ψ' satisfy Young's inequality $uv \leqslant \psi(u) + \psi'(v)$ for $u, v \geqslant 0$, it means that for $n = 0, 1, 2, \ldots$ and $m = 1, 2, \ldots$ we get

$$\begin{split} \left| \int\limits_{0}^{2\pi} g(t) \, e^{-int} \, dt \right| &= m \left| \int\limits_{0}^{2\pi} \left(f_m(t) + g(t) \right) \frac{1}{m} \, e^{-int} \, dt \right| \\ &\leqslant m \left(\mathscr{I}_{\psi} \left(\frac{1}{m} \, e^{-in\cdot} \right) + \mathscr{I}_{\psi'}(f_m + g) \right) \leqslant m \left(2\pi \psi \left(\frac{1}{m} \right) + \frac{1}{m^2} \right). \end{split}$$

Recalling that ψ satisfies the condition (0_1) , we see that the right-hand side of this above inequality tends to 0 as $m \to \infty$. Hence

$$\int_{0}^{2\pi} g(t)e^{-int}dt = 0 \quad \text{for } n = 0, 1, 2, ...,$$

we have $\tilde{g} = 0$.

Let a be a number such that |a| = 1. By the linearity of $L_{+}^{*\psi'}$ we get

$$\begin{split} \mathscr{I}_{v'}^{\widetilde{}}(a\widetilde{g}) &= \inf \left\{ \mathscr{I}_{v'} \big(a(f+g) \big) \colon f \epsilon L_{+}^{*v'} \right\} = \\ &= \inf \left\{ \mathscr{I}_{v'} \big(f+g \big) \colon f \epsilon L_{+}^{*v'} \right\} = \mathscr{I}_{v'}^{\widetilde{}}(\widetilde{g}). \end{split}$$

For arbitrary numbers $\alpha, \beta > 0$ such that $\alpha + \beta = 1$ we now obtain

$$\begin{split} & \mathscr{I}_{\psi'}^{\sim}(\alpha\tilde{g}_1+\beta\tilde{g}_2) \ = \inf \left\{ \mathscr{I}_{\psi'} \left(\alpha(f_1+g_1)+\beta(f_2+g_2)\right) \colon f_1, f_2 \epsilon L_+^{\star \psi'} \right\} \\ & \leqslant \inf \left\{ \alpha\mathscr{I}_{\psi'}(f_1+g_1)+\beta\mathscr{I}_{\psi'}(f_2+g_2) \colon f_1, f_2 \epsilon L_+^{\star \psi'} \right\} \ = \alpha\mathscr{I}_{\psi'}^{\sim}(\tilde{g}_1)+\beta\mathscr{I}_{\psi'}^{\sim}(\tilde{g}_2). \end{split}$$

Finally, we verify that

$$\begin{split} \|\tilde{g}\|_{(\tilde{\mathbf{y}}')}^{\tilde{-}} &= \inf \left\{ \varepsilon^{-1} \left(1 + \mathcal{I}_{\mathbf{y}'} (\varepsilon(f+g)) \right) \colon \, \varepsilon > 0 \,, \, f \, \epsilon L_{+}^{*_{\mathbf{y}'}} \right\} \\ &= \inf \left\{ \varepsilon^{-1} \left(1 + \mathcal{I}_{\tilde{\mathbf{y}}'} (\varepsilon \tilde{g}) \right) \colon \, \varepsilon > 0 \right\}. \end{split}$$

This means that the space $\tilde{L}_{+}^{*v'}$ is a modular space with respect to the modular $\mathscr{I}_{v'}^{*}(\cdot)$.

2.2. For $G \in (H^{*v})'$ let us designate

$$\mu'_{\psi}(G) = \mathscr{I}_{\psi'}(\tilde{g}),$$

where G is the Cauchy integral of $g \in L^{*v'}$.

From 2.1 and 1.4 it follows immediately that the functional $\mu'_{\psi}(\cdot)$ has the following properties on the space $(H^{*\psi})'$:

1° $\mu'_w(G) = 0$ if and only if G = 0,

 $2^{\circ} \mu'_{v}(aG) = \mu'_{v}(G)$ for any number a such that |a| = 1.

3° $\mu_{\psi}'(\alpha G_1 + \beta G_2) \leqslant \alpha \mu_{\psi}'(G_1) + \beta \mu_{\psi}'(G_2)$ for any numbers $\alpha, \beta > 0$ such that $\alpha + \beta = 1$,

 $4^{\circ} \|G\|_{\psi}' = \inf \left\{ \varepsilon^{-1} \left(1 + \mu_{\psi}'(\varepsilon G) \right) \colon \varepsilon > 0 \right\}.$

Thus the space $(H^{*v})'$ is a modular space with respect to the functional $\mu'_v(\cdot)$.

We easily deduce from 4° that a sequence $\{G_n\} \subset (H^{*\psi})'$ is norm convergent to a $G \in (H^{*\psi})'$ if and only if $\mu'_{\psi}(\alpha(G_n-G)) \to 0$ as $n \to \infty$ for every $\alpha > 0$. As in Section I, we say that a sequence $\{G_n\} \subset (H^{*\psi})'$ is modular convergent to a $G \in (H^{*\psi})'$ if $\mu'_{\psi}(\alpha(G_n-G)) \to 0$ as $n \to \infty$ for some $\alpha > 0$ (depending, in general, on $\{G_n-G\}$).

2.3. For any functions $F \in H^{*v}$ and $G \in (H^{*v})'$ the following inequality is satisfied

$$2\pi |(F*G)(z)| \leqslant \mu_{\psi}(F) + \mu'_{\psi}(G)$$
 for $z \in D$.

Proof. Let $G_\epsilon(H^{*_\psi})'$ be the Cauchy integral of $g_\epsilon L^{*_\psi'}$. By virtue of III. 1.6 we then have

$$2\pi(Fst G)(r)=\int\limits_0^{2\pi}F(re^{-it})g(t)dt \quad ext{ for } 0\leqslant r<1.$$

The application of Young's inequality for $F \in H^{*v}$, $f \in L^{*v'}_+$ and $0 \le r < 1$ yields

$$egin{aligned} 2\pi \left| (F*G)(r)
ight| &= \left| \int\limits_0^{2\pi} \left. F(re^{-it}) ig(f(t) + g(t) ig) dt
ight| \ &\leqslant \mathscr{I}_w ig(F(re^{-it}) ig) + \mathscr{I}_{w'}(f+g) \leqslant \mu_{\psi}(F) + \mathscr{I}_{w'}(f+g) \,. \end{aligned}$$

Hence

$$2\pi |(F*G)(r)| \leqslant \mu_{\psi}(F) + \tilde{\mathscr{I}_{\psi'}}(g^{\sim}) = \mu_{\psi}(F) + \mu'_{\psi}(G)$$

for $F \in H^{*_{\psi}}$, $G \in (H^{*_{\psi}})'$ and $0 \leqslant r < 1$. For $z \in D$, $z = re^{it}$ we now get

$$\begin{aligned} 2\pi |(F*G)(z)| &= 2\pi |(S_t F*G)(r)| \leqslant \mu_{\psi}(S_t F) + \mu'_{\psi}(G) \\ &= \mu_{\psi}(F) + \mu'_{\psi}(G). \end{aligned}$$

2.4. If a sequence $\{G_n\} \subset (H^{*\psi})'$ is modular convergent to a $G \in (H^{*\psi})'$ then this sequence converges very weakly to G.

Proof. Let $\{G_n\} \subset (H^{*\psi})'$ and $G \in (H^{*\psi})'$ and let $\mu'_{\psi}(\alpha(G_n - G)) \to 0$ as $n \to \infty$ for $\alpha > 0$. Then there is an n_0 such that $\mu'_{\psi}(\alpha(G_n - G)) \leqslant 1$ for $n \geqslant n_0$. Hence we get for $n \geqslant n_0$

$$||G_n - G||'_v \leqslant \alpha^{-1} (1 + \mu'_v (\alpha(G_n - G))) \leqslant 2\alpha^{-1}.$$

Therefore

$$\sup \|G_n - G\|_{\psi}' \leqslant \sup \{ 2 \, \alpha^{-1}, \, \|G_1 - G\|_{\psi}', \, \ldots, \, \|G_{n_0} - G\|_{\psi}' \} < \, \infty.$$

On account of 2.3 we get for $k = 0, 1, 2, ..., \beta > 0$ and 0 < r < 1

$$\begin{split} 2\pi \left| \gamma_k(G_n-G) \right| r^n &= \alpha^{-1}\beta^{-1} 2\pi \left| \left(\beta \, U_k \ast \alpha(G_n-G) \right) (r) \right| \\ &\leqslant \alpha^{-1}\beta^{-1} \left(\mu_{\psi}(\beta \, U_k) + \mu'_{\psi} \left(\alpha(G_n-G) \right) \right) \\ &\leqslant \alpha^{-1}\beta^{-1} \left(2\pi \psi(\beta) + \mu'_{\psi} \left(\alpha(G_n-G) \right) \right), \end{split}$$

and, further,

$$2\pi |\gamma_k(G_n - G)| \le \alpha^{-1}\beta^{-1}(2\pi\psi(\beta) + \mu'_w(\alpha(G_n - G))).$$

It follows now that

$$\limsup_{n\to\infty} |\gamma_k(G_n-G)| \leqslant \alpha^{-1}\beta^{-1}\psi(\beta).$$

Since ψ satisfies condition (0_1) we see that the right-hand side of the above inequality tends to 0 as $\beta \to 0$. Thus $\gamma_k(G_n-G) \to 0$ as $n \to \infty$ for $k=0\,,\,1\,,\,2\,,\,\ldots$ By III. 5.2 we conclude that $\{G_n\}$ converges very weakly to G.

2.5. For a function $g \in L^1$ and $0 \le r < 1$ we define

$$(T_r g)(t) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1-r^2}{1-2r\cos(t-\tau)+r^2} g(\tau) d\tau.$$

We shall demonstrate that

If
$$\mathscr{I}_{\psi'}(g) < \infty$$
 then $\mathscr{I}_{\psi'}(\frac{1}{2}(T_r g - g)) \to 0$ as $r \to 1 - (\text{cf. [15], IV}(6.15))$.

Proof. Applying Jensen's integral inequality, we easily get $\mathscr{I}_{\psi'}(T_rg) \leq \mathscr{I}_{\psi'}(g)$ for $0 \leq r < 1$. On the other hand, from the Fatou theorem ([2], p. 34) it follows that $\{(T_rg)(t)\}$ is convergent to g(t) as $r \to 1$ — for almost every $t \in [0, 2\pi)$. This means that the sequence $\{\psi'\big(|(T_rg)(t)|\big)\}$ converges to $\psi'\big(|g(t)|\big)$ as $r \to 1$ — for almost every $t \in [0, 2\pi)$ and by Fatou lemma

$$\lim_{r\to 1-\int\limits_0^{2\pi}\psi'\big(|(T_rg)(t)|\big)dt=\int\limits_0^{2\pi}\psi'\big(|g(t)|\big)dt.$$

It is known ([5]) that then we also have for every measurable set $E \subset [0, 2\pi)$

$$\lim_{r\to 1-}\int\limits_{E}\psi'\big(|(T_rg)(t)|\big)dt=\int\limits_{E}\psi'\big(|g(t)|\big)dt\,.$$

From this it follows that

$$\begin{split} \lim_{r \to 1-} \sup_{E} \, \psi' \left(\frac{1}{2} \, |(T_r g)(t) - g(t)| \right) dt \\ \leqslant \lim_{r \to 1-} \sup \left(\frac{1}{2} \, \int_{E} \, \psi' \left(|(T_r g)(t)| \right) dt + \frac{1}{2} \, \int_{E} \, \psi' \left(|g(t)| \right) dt \right) \\ = \int_{E} \, \psi' \left(|g(t)| \right) dt. \end{split}$$

The function $\psi'(|g(\cdot)|)$ is integrable on $[0,2\pi)$ and so, for every $\varepsilon > 0$, there is a $\delta > 0$ such that for every set $E \subset [0,2\pi)$ whose measure is $\text{mes } E \leq \delta$ we have

$$\int\limits_{\mathcal{U}} \psi' \big(|g(t)| \big) dt \leqslant \varepsilon.$$

By virtue of the Egoroff theorem there exists a set $E \subset [0, 2\pi)$ whose measure is $\operatorname{mes} E \leqslant \delta$ and is such that $\{T_r g\}$ converges uniformly to g as $r \to 1-$ on a set $[0, 2\pi) \setminus E$. Hence we get

$$\begin{split} \limsup_{r\to 1-} \int\limits_{0}^{2\pi} \psi' \left(\tfrac{1}{2} |\left(T_r g\right)(t) - g(t)|\right) dt \\ &\leqslant \lim_{r\to 1-} \sup \int\limits_{[0,2\pi) \backslash E} \psi \left(\tfrac{1}{2} |\left(T_r g\right)(t) - g(t)|\right) dt + \int\limits_{E} \psi' \left(|g(t)|\right) dt \leqslant \varepsilon \,. \end{split}$$

From this we conclude that

$$\lim_{r\to 1-}\mathscr{I}_{\psi'}\!\big(\tfrac{1}{2}(T_rg-g)\big) = \lim_{r\to 1-}\int\limits_0^{2\pi}\psi'\big(\tfrac{1}{2}|\left(T_rg\right)(t)-g\left(t\right)|\big)dt \,=\, 0\,.$$

2.6. If $\mu_{\psi}'(G) < \infty$ for $G \in (H^{*\psi})'$ then $\mu_{\psi}'(\frac{1}{2}(T_rG - G)) \to 0$ as $r \to 1$. Proof. Let $\mu_{\psi}'(G) < \infty$ for $G \in (H^{*\psi})'$. Then, in view of 2.2 and 2.1 we observe that there is a function $g \in L^{*\psi}$ such that $\mathscr{I}_{\psi'}(g) < \infty$ and G is the Cauchy integral of g. Hence $\frac{1}{2}(T_rG - G)$ is the Cauchy integral of $\frac{1}{2}(T_rG - G)$. By 2.2 and 2.1 we get

$$\mu_{\nu}'\left(\frac{1}{2}\left(T_{r}G-G\right)\right)\leqslant\mathscr{I}_{\nu'}\left(\frac{1}{2}\left(T_{r}g-g\right)\right).$$

By virtue of 2.5 the right-hand side of this inequality tends to 0 as $r \to 1-$. Hence $\mu_v'(\frac{1}{2}(T_rG-G)) \to 0$ as $r \to 1-$.

2.7.
$$(H^{*\psi})' = (H_m^{*\psi})'$$
.

Proof. It suffices to show that $(H^{*\psi})' \subset (H^{*\psi}_m)'$. Let $G \in (H^{*\psi})'$. From 2.2, 4^o it follows that $\mu'_{\psi}(\alpha G) < \infty$ for some $\alpha > 0$. By 2.6 for every $\varepsilon > 0$ there is an $0 \le r < 1$ such that $\mu'_{\psi}(\frac{1}{2}\alpha(T_rG - G)) \le \frac{1}{2}\alpha\varepsilon$. Let $\xi^o \in (H^{o\psi})^{\oplus}$ be a functional corresponding to a function G and let $\{F_n\} \subset H^{o\psi}$ be an arbitrary sequence such that $\mu_{\psi}(F_n) \to 0$ as $n \to \infty$. By 2.3 we get

$$\begin{split} |\xi^{\circ}(F_n)| &\leqslant |\xi^{\circ}(F_n) - T_r^{\sharp \sharp} \, \xi^{\circ}(F_n)| + |T_r^{\sharp \sharp} \, \xi^{\circ}(F_n)| \\ &= 2\pi \left| \left(F_n * (G - T_r G) \right) (1) \right| + |T_r^{\sharp \sharp} \, \xi^{\circ}(F_n)| \\ &\leqslant 2\alpha^{-1} \left(\mu_{\psi}(F_n) + \mu_{\psi}' \left(\frac{1}{2} \, \alpha (G - T_r G) \right) \right) + |T_r^{\sharp \sharp} \, \xi^{\circ}(F_n)| \\ &\leqslant 2\alpha^{-1} \, \mu_{\psi}(F_n) + \varepsilon + |T_r^{\sharp \sharp} \, \xi^{\circ}(F_n)| \, . \end{split}$$

Since $T_r^{\sharp} \xi^{\circ} \epsilon (H_{vw}^{\circ \psi})^{\sharp} \subset (H_m^{\circ \psi})^{\sharp}$, implies that

$$\limsup_{n\to\infty} |\xi^{\circ}(F_n)| \leqslant \varepsilon,$$

and hence $\xi^{\circ}(F_n) \to 0$ as $n \to \infty$. This proves that $\xi^{\circ} \epsilon (H_m^{\circ \psi})^{\pm}$. By II. 6.4 there is a unique functional $\xi \epsilon (H_m^{*\psi})^{\pm}$ such that $\xi(F) = \xi^{\circ}(F)$ for $F \epsilon H^{\circ \psi}$.

$$\frac{1}{2\pi} \sum_{n=0}^{\infty} \xi(U_n) z^n = \frac{1}{2\pi} \sum_{n=0}^{\infty} \xi^{\circ}(U_n) z^n = \sum_{n=0}^{\infty} \gamma_n(G) z^n = G(z) \quad (z \in D),$$

belongs to $(H_m^{*\psi})'$.

2.8. Every functional $\xi \in (H^{*\psi})^{\#}$ can be uniquely represented in the form

$$\xi = \xi_1 + \xi_2$$
, where $\xi_1 \in (H_m^{*\psi})^{\sharp\sharp}$ and $\xi_2 \in (\tilde{H}^{*\psi})^{\sharp\sharp}$.

Proof. Let ξ° be restriction of a functional $\xi \in (H^{*v})'$ to the domain $H^{\circ v}$. In view of III. 3.2 we see that there exists a unique function G analytic in D such that $\xi^{\circ}(F) = 2\pi(F*G)(1)$ for $F \in H^{\circ v}$; this function belongs to $(H^{*v})'$. By 2.7 it is $G \in (H^{*v}_m)'$. From III.3.3 it follows that $\xi_1(F) = 2\pi(F*G)(1)$ for $F \in H^{*v}$ belongs to $(H^{*v}_m)^{\ddagger}$. Obviously, $\xi_2 = \xi - \xi_1$ belongs to $(\tilde{H}^{*v})^{\ddagger}$. Let us also observe that this decomposition is unique.

3.1. For every function $g \in L^{\circ_{\psi'}}$ its Cauchy integral G belongs to $(H^{*\psi_0}_{vvo})'$. Proof. Let G be the Cauchy integral of $g \in L^{\circ_{\psi'}}$. Since $\mathscr{I}_{\psi'}(ag) < \infty$ for every a > 0, by 2.5 we have $\mathscr{I}_{\psi'}(\frac{1}{2}\alpha(T_rg - g)) \to 0$ as $r \to 1$. This implies that $\|T_rg - g\|^*_{(\psi')} \to 0$ as $r \to 1$. The function $T_rG - G$ is the Cauchy integral of $T_rg - g$ and thus, by 1.3,

$$||T_rG-G||_{\varphi} \leq ||T_rg-g||_{(\varphi')}^*.$$

Hence $||T_rG-G||_{\psi}'\to 0$ as $r\to 1-$ and this leads us to the conclusion $G\in (H_{vv}^{*\psi})'$.

3.2. Let us designate

$$L^{\circ_{\psi'}}_{\perp} = L^{\circ_{\psi'}} \cap L^{*_{\psi'}}_{\perp}.$$

As in 1.4 we equip $L^{\circ \psi'}$ with an equivalence relation \simeq , writing $f_1 \simeq f_2$ for $f_1, f_2 \in L^{\circ \psi'}$, if $f_1 - f_2 \in L^{\circ \psi'}$; the quotient space $L^{\circ \psi'}/\simeq = L^{\circ \psi'}/L^{\circ \psi'}_+$ we shall designate by $\tilde{L}^{\circ \psi'}$ and by g^{\simeq} the equivalence class determined by g. Since $[L^{\circ \psi'}, \|\cdot\|^*_{(\psi')}]$ is complete and $L^{\circ \psi'}_+$ is, as we easily notice, its closed linear subspace, the space $\tilde{L}^{\circ \psi'}$ is, as is well known, a complete normed linear space where addition and scalar multiplication are defined as

$$g_1^{\sim} + g_2^{\sim} = (g_1 + g_2)^{\sim}, \quad ag^{\sim} = (ag)^{\sim},$$

and the norm is given by

$$||g^{\sim}||_{(\psi')}^{\sim} = \inf\{||f+g||_{(\psi')}^* : f \in \mathcal{L}_{+}^{\circ \psi'}\}.$$

We shall demonstrate that

The space $[(\tilde{L}^{\circ_{\psi'}})^{\sharp \sharp}, \|\cdot\|_{[\psi']}^{\sharp}]$ is isometric isomorphic to the space $[H^{*_{\psi}}, \|\cdot\|_{1_{\psi}}]$. More specifically, for every functional $\eta^{\simeq} \epsilon (\tilde{L}^{\circ_{\psi'}})^{\sharp}$ there is a unique function

 $F \epsilon H^{*_{\psi}}$ such that

$$\eta^{\simeq}(g^{\simeq}) = \int\limits_0^{2\pi} F(e^{-it}) g(t) dt \quad ext{ for } g \in L^{\circ_{\psi'}}$$

and, conversely, every functional η^{\approx} represented by this formula with a function $F \in H^{*_{\psi}}$ is a number of $(\tilde{L}^{\circ_{\psi'}})^{\#}$ and then $\|\eta^{\simeq}\|_{(\psi')}^{\#} = \|F\|_{1_{\psi}}$.

Proof. Let $\eta^{\simeq} \epsilon (\tilde{L}^{\circ \psi'})^{\#}$. The functional

$$\eta(g) = \eta^{\simeq}(g^{\simeq}) \quad \text{for } g \in L^{\circ \psi'}$$

is clearly a member of $(L^{\circ_{\psi'}})^{\#}$ and its norm is $\|\eta\|_{(\psi')}^{\#} = \|\eta^{\sim}\|_{(\psi')}^{\#}$. It is known ([3], p. 128; see I. 2.5) that for η there is a unique (precisely to a set of measure zero) function $f \in L^{*_{\psi}}$ such that

$$\eta(g) = \int_{0}^{2\pi} f(t)g(t)dt$$
 for $g \in L^{\bullet_{\psi'}}$,

and, moreover $\|\eta\|_{(p')}^{\#} = \|f\|_{1p}^{*}$. We have, for k = 1, 2, ... and n = 0, 1, 2, ...,

$$\int\limits_{0}^{2\pi}e^{-ikt}e^{-int}dt=0.$$

This indicates that the functions e^{-ik} , $k=1,2,\ldots$, belong to $L_+^{\circ \psi}$. Hence

$$0 = \eta(e^{-ik \cdot}) = \int_{0}^{2\pi} f(t)e^{-ikt}dt$$
 for $k = 1, 2, ...$

By III. 1.7 we now infer that the Cauchy integral F of $f(2\pi - t)$ is also the Poisson integral of $f(2\pi - t)$. This implies, on account of III. 1.8, that $F(e^{it}) = f(2\pi - t)$ for almost every $t \in [0, 2\pi)$ and $F \in H^{*\psi}$. Obviously, $\|F\|_{1\psi} = \|f\|_{1\psi}^*$. Thus for $\eta^{\simeq} \epsilon (\tilde{L}^{\circ \psi'})^{\#}$ there is a unique function $F \epsilon H^{*\psi}$ such that

$$\eta^{\approx}(g^{\approx}) = \int_{0}^{2\pi} F(e^{i(2\pi - t)}) g(t) dt = \int_{0}^{2\pi} F(e^{-it}) g(t) dt$$

for $g \in L^{\circ \psi'}$, and $\|\eta^{\sim}\|_{\psi'}^{\sharp} = \|F\|_{1\psi}$. Now let $F \in H^{*\psi}$. Let us consider the functional

$$\eta(g) = \int\limits_0^{2\pi} F(e^{-it}) g(t) dt \quad ext{ for } g \in L^{\circ \psi'}.$$

This functional belongs to $(L^{\circ \psi'})^{\#}$ since $F(e^{-i\cdot}) \in L^{*\psi}$. Let $g \in L^{\circ \psi'}$. The functional represented by the integral $\int f(t)g(t)dt$ for $f \in L^{*\psi}$ is modular continnons on $L^{*\psi}$. Hence

$$\begin{split} \eta(g) &= \lim_{r \to 1-} \int\limits_0^{2\pi} F(re^{-tt}) g(t) \, dt \\ &= \lim_{r \to 1-} \sum\limits_{n=0}^{\infty} \gamma_n(F) r^n \int\limits_0^{2\pi} e^{-int} g(t) \, dt = 0 \, . \end{split}$$

This means that $\eta^{\sim}(g^{\sim}) = \eta(g)$ is well defined for $g^{\sim} \epsilon \tilde{L}^{\circ_{\psi'}}$ and belongs to $(\tilde{L}^{\circ \psi'})^{\#}$.

3.3. The space $[\tilde{L}^{\circ_{\psi'}}, \|\cdot\|_{[\psi']}^{\sim}]$ is isometric isomorphic to the space $[(H_{mn}^{*\psi})', \|\cdot\|_{w}]$. This isomorphism establishes the operation of the Cauchy integral.

Proof. Let Q be a polynomial. We have $Q(e^i) \in L^{\circ \psi'}$ and clearly Q is the Cauchy integral of $Q(e^i)$. By virtue of 1.3 and 3.2 we see that $\|Q\|_{w} \leq \|Q(e^{i})^{\sim}\|_{(w)}^{\sim}$. On the other hand, by the very well known theorem stating the conditions of attaining the norm by functionals there is a functional $\eta^{\simeq} \epsilon(\tilde{L}^{\circ_{\psi'}})^{\sharp}$ such that $\|\eta^{\simeq}\|_{(\psi')}^{\sharp} = 1$ and $\|Q(e^i)^{\simeq}\|_{(\psi')}^{\simeq} = \eta^{\simeq}(Q(e^i))$. Hence, by 3.2 there is a function $F \epsilon H^{*\psi}$ such that $\|F\|_{1\psi} = 1$ and

$$\|Q(e^{i\cdot})^{\simeq}\|_{(\psi')}^{\sim} = \int_{0}^{2\pi} F(e^{-it})Q(e^{it})dt = 2\pi (F*Q)(1).$$

This implies that $\|Q(e^i)^{\sim}\|_{(\psi')}^{\sim} \leqslant \|Q\|_{\psi}'$. Thus we have demonstrated that $\|Q\|_{w}' = \|Q(e^{i\cdot})^{\sim}\|_{(w')}^{\sim}$ for every polynomial Q.

By III. 4.5 polynomials form a dense set in $[(H_{vv}^{*vv})', \|\cdot\|_{v}']$. The space $[\tilde{L}^{\circ \psi'}, \|\cdot\|_{(\psi')}^{\simeq}]$ is complete. Hence $[(H_{vv}^{*vv})', \|\cdot\|_{\psi}']$ is isometric isomorphic via the Cauchy integral operator to a closed linear subspace of $[\tilde{L}^{\circ_{\psi'}}, \|\cdot\|_{L^{\omega_1}}]$. Applying 3.1 and taking into account that the Cauchy integral G of $g \in L^{\circ_{\psi}}$ is identically equal to 0 in D if and only if $g \in L^{\circ \psi'}$, we get 3.3.

3.4. Certain corollaries may be deduced from 3.3. Thus we infer that: Every function $G_{\epsilon}(H_{nn}^{*y})'$ is the Cauchy integral of some $g_{\epsilon}L^{\circ y'}$.

Further, $\tilde{L}^{\circ_{\psi'}}$ is isomorphic to the space $\{\tilde{g} \in \tilde{L}^{*_{\psi'}}: g \in L^{\circ_{\psi'}}\}$; this isomorphism is clearly a mapping of classes $g^{\simeq} \epsilon \tilde{L}^{\circ_{\psi'}}$ onto classes $\tilde{g} \epsilon \tilde{L}^{*_{\psi'}}$. Besides, on account of 1.4 and 3.3 we have $\|\tilde{g}\|_{(\psi')}^{\sim} = \|g^{\sim}\|_{(\psi')}^{\sim}$ for $g \in L^{\circ \psi'}$.

3.5. $H^{\circ \psi'} \subset (H^{*\psi}_{vv})'$; moreover $||F||_{v}' \leqslant ||F||_{(v')}$ for every $F \in H^{\circ \psi'}$,

Proof. In view of 1.5 we have $H^{\circ_{y'}} \subset H^{*_{y'}} \subset (H^{*_y})'$ and $\|F\|_\omega' \leqslant \|F\|_{\omega'}$ for every $F \in H^{\circ_{\psi'}}$. Hence, for $F \in H^{\circ_{\psi'}}$ and $0 \le r < 1$, we get

$$||T_r F - F||_w \le ||T_r F - F||_{(w)}$$

For $F \in H^{\circ_{\psi'}}$ we have $||T_r F - F||_{(\psi')} \to 0$ as $r \to 1-$. Thus, for $F \in H^{\circ_{\psi'}}$ we have $||T_r F - F||_{\psi}' \to 0$ as $r \to 1-$. This indicates that $H^{\circ_{\psi'}} \subset (H^{*\psi_{\psi}}_{vw})'$.

4.1. For every $F \in H^{*v}$ the functional defined as

$$(+) \eta^{\circ}(G) = \lim_{r \to 1^{-}} 2\pi (F * G)(r) = 2\pi (F * G)(1) for G \in (H_{vw}^{*v})'$$

belongs to $((H_{vv}^{*v})')^{\sharp}$; moreover $||\eta^{\circ}||_{v}^{\sharp} = ||F||_{1v}$. On the other hand, for every functional $\eta^{\circ} \epsilon ((H_{vv}^{*v})')^{\sharp}$ there exists a unique function F analytic in D such that (+) holds; this function belongs to H^{*v} and is represented by

$$F(z) = rac{1}{2\pi} \sum_{n=0}^{\infty} \eta^{\circ}(U_n) z^n \quad (z \in D).$$

Proof. Let $F \in H^{*_{\psi}}$ and let η° be the functional defined in (+). We have

$$|\eta^{\circ}(G)| = 2\pi |(F * G)(1)| \leqslant ||F||_{1_{w}} ||G||_{w}' \quad \text{ for every } G \epsilon (H^{*\psi}_{vw})'$$

and so $\eta^{\circ} \in ((H_{nn}^{*\nu})')^{\#}$ and $\|\eta^{\circ}\|_{n}^{\#} \leqslant \|F\|_{1n}$.

Conversely, let $\eta^{\circ} \epsilon ((H_{vw}^{*\psi}))^{\#}$. Taking into account 3.3, we set $\eta^{\simeq}(g^{\sim}) = \eta^{\circ}(g)$, where G is the Cauchy integral of $g \epsilon L^{\circ \psi}$. It follows that $\eta^{\simeq} \epsilon (\tilde{L}^{\circ \psi})^{\#}$ and $\|\eta^{\simeq}\|_{W}^{\#} = \|\eta^{\circ}\|_{w}^{\#}$. By 3.2 there is a function $F \epsilon H^{*\psi}$ such that

$$\eta^{\simeq}(g^{\simeq}) = \int\limits_0^{2\pi} F(e^{-it}) g(t) dt \quad ext{ for } g \in L^{\circ_{\psi'}} ext{ and } \|\eta^{\simeq}\|_{\langle \psi' \rangle}^{\#} = \|F\|_{1\psi}.$$

Since for a fixed $g \in L^{\circ \psi'}$ the functional represented by the integral $\int_{0}^{2\pi} f(t)g(t)dt$ for $f \in L^{*\psi}$ is modular continuous on $L^{*\psi}$, we get

$$\eta^{\simeq}(g^{\simeq}) = \lim_{r \to 1^-} \int\limits_0^{2\pi} F(re^{-it}) g(t) dt$$
 for $g \in \mathcal{L}^{\circ_{\psi'}}$.

In view of III. 1.6 we then have

$$\eta^{\circ}(G) = \lim_{r \to 1^{-}} 2\pi (F * G)(r) = 2\pi (F * G)(1) \quad \text{for } G \in (H_{vw}^{*\psi})'$$

and moreover $\|\eta^{\circ}\|_{\psi}^{\sharp} = \|F\|_{1y}$. This function F is uniquely determined, since its coefficients are uniquely determined:

$$\gamma_n(F) = \lim_{r \to 1^-} (F * U_n)(r) = (F * U_n)(1) = \frac{1}{2\pi} \, \eta^{\circ}(U_n) \quad \text{for } n = 0, 1, 2, \dots$$

This accomplishes the proof of (++).

4.2. If
$$\eta \in ((H^{*\psi})')^{\#}$$
 then $T_r^{\#} \eta \in ((H^{*\psi})'_{vw})^{\#}$ for $0 \leq r < 1$.

Proof. Let $\eta \in ((H^{*v})')^{\#}$ and let r be a number such that $0 \le r < 1$. Further, let $\{G_n\} \subset (H^{*v})'$ be a sequence very weakly converging to 0.

Then $\{T_rG_n(e^{i\cdot})\}$ is uniformly convergent to 0 sequence of continuous functions. Hence $\|T_rG_n(e^{i\cdot})\|_{(r')}^* \to 0$ as $n \to \infty$. This, on account of 1.3 yields $\|T_nG_n\|_{(r')}^* \to 0$ as $n \to \infty$, and so we get

$$T_r^{\#}\eta(G_n) = \eta(T_rG_n) \to 0$$
 as $n \to \infty$.

This proves that $T_r^{\#} \eta \epsilon ((H^{*\psi})'_{vw})^{\#}$.

4.3. If
$$\eta \in ((H^{*\psi})'_m)^{\#}$$
 then

$$\eta(G) = \lim_{r \to 1} T_r^{\#} \eta(G)$$
 for every $G \in (H^{*\psi})'$.

Proof. Let $G \in (H^{*\psi})'$. We deduce from 2.2 that $\mu'_{\psi}(\alpha G) < \infty$ for some $\alpha > 0$, and from 2.6 that $\mu'_{\psi}(\frac{1}{2}\alpha(T_rG - G)) \to 0$ as $r \to 1$. Hence $\{T_rG\}$ is modular convergent to G as $r \to 1$. This yields 4.3.

4.4. For every function $F \in H^{*\psi}$ the functional defined by

(+)
$$\eta(G) = \lim_{r \to 1^-} 2\pi (F * G)(r) = 2\pi (F * G)(1)$$
 for $\acute{G} \epsilon (H^{*\psi})'$

belongs to $((H^{**y})'_m)^{\ddagger}$; moreover $\|\eta\|_y^{\ddagger} = \|F\|_{1y}$. On the other hand, for every functional $\eta \in ((H^{**y})'_m)^{\ddagger}$ there is a unique function F analytic in D and such that (+) holds; this function belongs to H^{**y} and is defined by (++).

Proof. Let $F \in H^{*_{\varphi}}$ and let η be the functional defined in (+). The existence of the limit in (+) follows from 2.7 and III. 2.9. Since $\mu_{\varphi}(\alpha F) < \infty$ for some $\alpha > 0$, it follows from I. 3.6 that for every $\varepsilon > 0$ there is an $0 \le r < 1$ such that $\mu_{\varphi}(\frac{1}{2}\alpha(T_rF - F)) \le \frac{1}{2}\alpha\varepsilon$. Now let $\{G_n\} \subset (H^{*_{\varphi}})'$ be an arbitrary sequence such that $\mu'_{\varphi}(G_n) \to 0$ as $n \to \infty$. By virtue of 2.3 we get

$$\begin{split} |\eta(G_n)| &\leqslant |\eta(G_n) - T_r^{\sharp \dagger} \eta(G_n)| + |T_r^{\sharp \dagger} \eta(G_n)| \\ &= 2\pi \big| \big((F - T_r F) * G_n \big) (1) \big| + |T_r^{\sharp \dagger} \eta(G_n)| \\ &\leqslant 2a^{-1} \Big(\mu_{\psi} \big(\frac{1}{2} \alpha (F - T_r F) \big) + \mu_{\psi}' (G_n) \big) + |T_r^{\sharp \dagger} \eta(G_n)| \\ &\leqslant \varepsilon + 2\alpha^{-1} \mu_{\psi}' (G_n) + |T_r^{\sharp \dagger} \eta(G_n)| \,. \end{split}$$

Since

$$|\eta(G)| = 2\pi |(F*G)(1)| \le ||F||_{1\psi} ||G||_{\psi}' \quad \text{for } G \in (H^{*\psi})'$$

we have $\eta \in ((H^{*\psi})')^{\#}$ and $\|\eta\|_{\psi}^{\#} \leq \|F\|_{1\psi}$. Applying 4.2 and 2.4 we get $T_r^{\#}\eta \in ((H^{*\psi})'_{sp})^{\#} \subset ((H^{*\psi})'_{sp})^{\#}$. Hence

$$\limsup_{n\to\infty} |\eta(G_n)| \leqslant \varepsilon.$$

This indicates that $\eta(G_n) \to 0$ as $n \to \infty$. This yields $\eta \in ((H^{*\nu})'_m)^{\#}$.

Conversely, let $\eta \in ((H^{*v})'_m)^{\sharp}$. Then the functional η° , being a restriction of η to $(H^{*v}_{vw})'$, belongs to $((H^{*v}_{vw})')^{\sharp}$. By 4.1 there is a unique function F analytic in D and such that (+) holds for $G \in (H^{*v}_{vw})'$; this function belongs to H^{*v} and is determined by (++). From 4.3 we conclude that (+) holds for η and F for every $G \in (H^{*v})'$. Further we notice that in (++) η° can be replaced by η and that

$$||F||_{1\psi} = ||\eta^{\circ}||_{\psi}^{\#} = \sup\{|\eta^{\circ}(G)| \colon G \cdot \epsilon(H_{vw}^{*\psi})', \ ||G||_{\psi}' \leqslant 1\}$$

$$\leq \sup\{|\eta(G)| \colon G \cdot (H_{vw}^{*\psi})', \ ||G||_{w}' \leqslant 1\} = ||\eta||_{\psi}^{\#}.$$

This accomplishes the proof of 4.4.

288

4.5. Every functional $\eta \in ((H^{*\psi})')^{\#}$ is represented uniquely in the form

$$\eta = \eta_1 + \eta_2, \quad \text{where} \quad \eta_1 \epsilon \left((H^{*\psi})_m' \right)^\# \quad \text{and} \quad \eta_2 \epsilon \left((H^{*\psi})^{'} \right)^\#.$$

 $((H^{*_{\psi}})'^{\sim})^{\#}$ designates the space of such functionals $\eta \in ((H^{*_{\psi}})')^{\#}$ that $\eta(G) = 0$ for every $G \in (H^{*_{\psi}})'$.

The proof of this theorem, being quite similar to that of 2.8, is omitted.

4.6. For every function $F \in H^{\circ \psi}$ the functional η defined by (+) on $(H^{*\psi})'$ belongs to $((H^{*\psi})'_{vw})^{\#}$. Conversely, for every functional $\eta \in ((H^{*\psi})'_{vw})^{\#}$ the function F defined by (++) belongs to $H^{\circ \psi}$.

Proof. Let $F \,\epsilon H^{\circ_{\psi}}$ and let η be a functional defined by (+) on $(H^{*\psi})'$. Further, let $\{G_n\} \subset (H^{*\psi})'$ be a sequence very weakly converging to 0, and such that $\sup_n \|G_n\|_{\psi}' < M < \infty$. Since $F \,\epsilon H^{\circ_{\psi}}$, by the application of I.3.6 we see that for every $\varepsilon > 0$ there is an $0 \leqslant r < 1$ such that $\|T_rF - F\|_{1\psi} \leqslant \varepsilon M^{-1}$. Hence we get

$$\begin{split} |\eta(G_n)| &\leqslant |\eta(G_n) - T_r^{\sharp \sharp} \eta(G_n)| + |T_r^{\sharp \sharp} \eta(G_n)| \\ &= 2\pi \big| \big((F - T_r F) * G_n \big) (1) \big| + |T_r^{\sharp \sharp} \eta(G_n)| \\ &\leqslant \|F - T_r F\|_{1v} \|G_n\|_v' + |T_r^{\sharp \sharp} \eta(G_n)| \leqslant \varepsilon + |T_r^{\sharp \sharp} \eta(G_n)|. \end{split}$$

By 4.2 we have $T_r^{\sharp} \eta \epsilon ((H^{*v})'_{vw})^{\sharp}$ and so

$$\limsup_{n\to\infty}|\eta(G_n)|\leqslant \varepsilon.$$

This means that $\eta(G_n) \to 0$ as $n \to \infty$, and thus $\eta \in ((H^{*\nu})'_{vw})^{\#}$. Conversely, let $\eta \in ((H^{*\nu})'_{vw})^{\#}$ and F let be a function defined by (+++). By 2.4 and 4.4 we get $F \in H^{*\nu}$ and

$$||T_r F - F||_{1_w} = ||T_r^{\#} \eta - \eta||_w^{\#} \quad \text{for } 0 \leqslant r < 1.$$

In view of the fact that $T_r F \in H^{\circ_{\psi}}$ for $0 \le r < 1$ and that $H^{\circ_{\psi}}$ is closed in $[H^{*_{\psi}}, \|\cdot\|_{1_{\psi}}]$ it suffices to show only that $\|T_r^{\sharp_{\psi}} - \eta\|_{\psi}^{\sharp_{\psi}} \to 0$ as $r \to 1$. Let us suppose this is not so. Then there exist a number $\varepsilon > 0$, a sequence

 $\{r_n\}$ and $\{G_n\} \subset (H^{**\nu})'$ such that $0 \leqslant r_n < 1$, $r_n \to 1$ $(n \to \infty)$, $\|G_n\|_{\nu}' \leqslant 1$ and $|T_{r_n}^{*\mu}\eta(G_n) - \eta(G_n)| \geqslant \varepsilon$ for $n = 1, 2, \ldots$ By III. 5.3 the ball $\{G \in (H^{*\nu})': \|G\|_{\nu}' \leqslant 1\}$ is sequentially very weakly compact. Thus we can find a very weakly convergent subsequence $\{G_{n_k}\}$ of $\{G_n\}$. Applying a procedure similar to that used in the proof of II.4.3, we conclude that $\{T_{r_{n_k}}G_{n_k} - G_{n_k}\}$ converges very weakly to 0. Hence we get

$$\varepsilon\leqslant |Tr_{n_k}^\#\eta(G_{n_k})-\eta(G_{n_k})| = |\eta(Tr_{n_k}G_{n_k}-G_{n_k})|\to 0 \qquad \text{as } k\to\infty\,.$$

This is a contradiction. Thus we have proved that $\|T_r^\# \eta - \eta\|_r^\# \to 0$ as $r \to 1$. This means that $F \in H^{\circ \psi}$.

4.7. By $(H^{*v})''$ we shall designate the class of all functions F analytic in D for which

$$||F||_{y}^{"} = \sup \{2\pi |(F*G)(z)| \colon G\epsilon(H^{*y})', ||G||_{y}' \leqslant 1, \ z\epsilon D\} < \infty.$$

The following equality is true:

$$[(H^{*\psi})'', \|\cdot\|_{\psi}''] = [H^{*\psi}, \|\cdot\|_{1\psi}].$$

Proof. Let $F \in H^{*\psi}$. Then for arbitrary $G \in (H^{*\psi})'$ and $z \in D$ we have

$$2\pi |(F*G)(z)| \leqslant ||F||_{1\psi} ||G||_{\psi}'$$

This implies that $\|F\|_{\psi}^{\prime} \leq \|F\|_{1\psi}$ and further $F_{\epsilon}(H^{*\psi})^{\prime\prime}$. Let now η° be a functional on $(H^{*\psi}_{v\psi})^{\prime\prime}$ defined by (+) for F. In view of 4.1 we get

$$\begin{split} \|F\|_{1\psi} &= \|\eta^{\circ}\|_{\psi}^{\#} = \sup \{ 2\pi \, |(F * G)(1)| \colon \, G \, \epsilon \, (H_{vw}^{*\psi})', \, \|G\|_{\psi}' \leqslant 1 \} \\ & \leqslant \sup \{ 2\pi \, |(F * G)(z)| \colon \, G \, \epsilon \, (H^{*\psi})', \, \|G\|_{\psi}' \leqslant 1 \,, \, \, z \, \epsilon \, D \} = \|F\|_{\psi}''. \end{split}$$

Thus we have $H^{*\psi} \subset (H^{*\psi})''$ and $\|F\|_{\psi}'' = \|F\|_{1\psi}$ for every $F \in H^{*\psi}$. Let now $F \in (H^{*\psi})''$. Then for every $0 \le r < 1$ we have $T_r F \in H^{*\psi}$. Hence we get for $0 \le r < 1$

$$\begin{split} \|T_r F\|_{1\psi} &= \|T_r F\|_{\psi}^{\prime\prime} = \sup \left\{ 2\pi \left| (F*G)(zr) \right| \colon G \epsilon(H^{*\psi})^{\prime}, \|G\|_{\psi}^{\prime} \leqslant 1, \ z \in D \right\} \\ &\leqslant \sup \left\{ 2\pi \left| (F*G)(z) \right| \colon G \epsilon(H^{*\psi})^{\prime}, \|G\|_{\psi}^{\prime} \leqslant 1, z \in D \right\} = \|F\|_{\psi}^{\prime\prime}. \end{split}$$

From this we conclude that

$$\sup\left\{\|T_rF\|_{1\psi}\colon\ 0\leqslant r<1\right\}\leqslant\|F\|_{\psi}^{\prime\prime}.$$

This implies that (see [5]) $F \in H^{*\psi}$. Thus $(H^{*\psi})'' \subset H^{*\psi}$.

4.8. As in Section III, we can consider subspaces $((H^{*v})'_m)'$ and $((H^{*v})'_{vv})'$ of the space $(H^{*v})''$ corresponding to the spaces of functionals $((H^{*v})'_m)^{\ddagger}$ and $((H^{*v})'_{vw})^{\ddagger}$, respectively. On account of Theorems 4.4 and 4.6 we easily obtain the following identities

$$[((H^{*\psi})'_m)', \|\cdot\|''_w] = [(H^{*\psi})'', \|\cdot\|''_w] = [H^{*\psi}, \|\cdot\|_{_{1\psi}}]$$

and

$$\left[\left(\left(H^{*_{\psi}}\right)_{vw}'\right)',\,\left\|\cdot
ight\|_{\psi}''
ight]=\left[H^{\circ_{\psi}},\left\|\cdot
ight\|_{1\psi}
ight].$$

5.1. The equality $(H^{*\psi})' = (H^{*\psi}_{vv})'$ occurs if and only if ψ satisfies the condition (∇_2) .

Proof. Let ψ satisfy (∇_2) . Then (see [3]) its complementary function ψ' satisfies condition (Δ_2) . Then we have $L^{*\psi'} = L^{\circ\psi'}$. By 1.4 and 3.3 we get $(H^{*\psi})' = (H^{*\psi})'$.

Conversely, suppose ψ does not satisfy (∇_2) . Then there exists a sequence of positive numbers $\{u_n\}$ such that

$$2^{n+1}\psi(2^{-n}u_n) > \psi(u_n) > 2^n$$
 for $n = 1, 2, ...$

In the interval $(0, 2\pi)$ we find a sequence $\{E_n\}$ of pairwise disjoint sets such that their measures are $\max E_n = \frac{1}{4} (\psi(u_n))^{-1}$ and we define a sequence of real functions

$$f_n(t) = \begin{cases} u_n & \text{when } 2\pi - t \, \epsilon E_n, \\ \psi_{-1} \left(\frac{1}{2^{n+1}\pi} \right) & \text{for other } t \text{ from } [0, 2\pi). \end{cases}$$

Next we define a sequence of analytic functions

$$F_n(z) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log f_n(t) dt\right) \quad (z \in D).$$

It is known ([15], Chap. VII (7.33)) that $F_n \in N'$ and that these functions are such that $|F_n(e^{it})| = f_n(t)$ for almost every t from $[0, 2\pi)$. In view of this fact and also of

$$\mathscr{I}_{\psi}(f_n) \leqslant \psi(u_n) \cdot \frac{1}{4} \left(\psi(u_n) \right)^{-1} + \frac{1}{2^{n+1} \pi} 2\pi \leqslant 1$$

following from I. 3.3 we infer that $F_n \in H^{*v}$ and $\|F_n\|_{lv} \leq 1$ for $n=1,2,\ldots$ Let us notice that $|F_n(e^{tl})| = f_n(t) \to 0$ as $n \to \infty$ for almost every $t \in [0,2\pi)$. Thus, by Ostrowski's theorem ([8]) it follows that $\{F_n\}$ very weakly converges to 0. Now we define a function

$$f(t) = \begin{cases} 2^{-n}u_n & \text{for } t \in E_n, \ n = 1, 2, \dots, \\ 0 & \text{for other } t \text{ from } [0, 2\pi). \end{cases}$$

For this function we have

$$\mathscr{I}_{\psi}(2f) = \sum_{n=1}^{\infty} \psi(2^{-n+1}u_n) \cdot \frac{1}{4} (\psi(u_n))^{-1} \leqslant \sum_{i=1}^{\infty} 2^{-n+1} \cdot \frac{1}{4} = \frac{1}{2}.$$

Hence $||f||_{1\psi} \leqslant \frac{1}{2}$ and $||f||_{(\psi)} \leqslant 1$. It is known ([3] p. 73) that then $\frac{d\psi}{du} \left(f(\cdot) \right)$

 $\epsilon L^{*v'}$, where $\frac{d\psi}{du}$ denotes a right-hand side derivative of ψ . We finally define

$$g(t) = \begin{cases} \frac{d\psi}{du}(f(t))\operatorname{sgn} F_n(e^{-t}) & \text{for } t \in E_n, n = 1, 2, \dots \\ 0 & \text{for other } t \text{ from } [0, 2\pi). \end{cases}$$

Clearly, g also belongs to $L^{*\psi'}$. Thus, applying 1.3, we see that the Cauchy integral G of g belongs to $(H^{*\psi})'$. Moreover, by III. 1.6 and on account of the fact that the functional represented by the integral $\int_0^{2\pi} f(t) g(t) dt$ is modular continuous on $L^{*\psi}$, we get

$$2\pi (F_n*G)(1) = \lim_{r \to 1-} \int\limits_0^{2\pi} F_n(re^{-it}) g(t) dt = \int\limits_0^{2\pi} F_n(e^{-it}) g(t) dt$$

for n = 1, 2, ... We verify that

$$\begin{split} \int\limits_{E_n} F_n(e^{-it}) \, g(t) \, dt &= \int\limits_{E_n} |F_n(e^{-it})| \frac{d\psi}{du} \left(f(t) \right) dt \\ &= u_n \, \frac{d\psi}{du} \left(2^{-n} \, u_n \right) \cdot \frac{1}{4} \left(\psi(u_n) \right)^{-1} \geqslant 2^n \psi(2^{-n} \, u_n) \cdot \frac{1}{4} \left(\psi(u_n) \right)^{-1} > \frac{1}{8} \end{split}$$

and

$$\bigg| \int\limits_{[0,\,2\pi) \searrow \mathcal{U}_n} F_n(e^{-it}) \, g \overset{\circ}{(t)} \, dt \, \bigg| \leqslant \psi_{-1} \! \bigg(\frac{1}{2^{n+1} \pi} \bigg) \int\limits_0^{2\pi} \int\limits_0^{2\pi} |g \, (t)| \, dt \, .$$

The integral appearing in the above inequality is finite, since $L^{*v'} \subset L^1$. Thus we get

$$\lim_{n\to\infty}\inf 2\pi |(F_n*G)(1)|\geqslant \tfrac{1}{8}.$$

This proves that $G \notin (H_{vo}^{*\psi})'$.

5.2. If ψ does not satisfy the condition (∇_2) then $((H^{*\psi})'^{-})^{\#}$ is a nontrivial space, i.e. there exist non-trivial functionals $\eta \in ((H^{*\psi})')^{\#}$ such that $\eta(G) = 0$ for every $G \in (H^{*\psi})'$. For these functionals there are no functions F analytic in D and such that (+) is satisfied.

Proof. Since $(H_{nn}^{*\psi})'$ is a closed linear subspace of $[(H^{*\psi})', \|\cdot\|_{\psi}']$, the functional

$$p(G) = \inf\{\|G - F\|'_{\psi} \colon F \epsilon(H^{*\psi}_{vw})'\}, \quad (G \epsilon(H^{*\psi})')$$

is a pseudonorm on $(H^{*v})'$ such that p(G)=0 if and only if $G \in (H^{*v}_{vv})'$. This pseudonorm is non-trivial, since by 5.1 we have $(H^{*v})' \neq (H^{*v}_{vv})'$. We take an element $G_0 \in (H^{*v})' \setminus (H^{*v}_{vv})'$ and put

$$\eta(aG_0) = ap(G_0)$$
 for any number a .

Further, by the Hahn-Banach theorem, we extend η to the whole space $(H^{*\nu})'$ so that $|\eta(G)| \leq p(G)$ for every $G \in (H^{*\nu})'$. Clearly, η is a non-trivial functional and belongs to $((H^{*\nu})'^{-})^{\ddagger}$. Let us suppose that for $\eta \in ((H^{*\nu})'^{-})^{\ddagger}$, $\eta \neq 0$, there is a function F analytic in D and satisfying (+). Then its coefficients are

$$\gamma_n(F) = (F * U_n)(1) = \frac{1}{2\pi} \eta(U_n)$$
 for $n = 0, 1, 2, ...$

Since $U_n \epsilon(H_{vv}^{*v})'$ for n=0,1,2,..., it follows that $\gamma_n(F)=0$ for n=0,1,2,... This implies that F=0 and, further, $\eta(G)=2\pi(F*G)(1)=0$ for every $G \epsilon(H^{*v})'$. This contradicts our assumption that $\eta \neq 0$.

5.3. In the space $(H^{*v})'$ modular convergence is equivalent to norm convergence if and only if ψ satisfies condition (∇_2) .

Proof. We need only to show that modular convergence in $(H^{*v})'$ implies norm convergence if and only if ψ satisfies (∇_2) . Let then ψ satisfy (∇_2) . Then its complementary function ψ' satisfies (Δ_2) . It is known (see I.2.4) that then modular convergence in $L^{*v'}$ implies norm convergence. Let $\{G_n\}\subset (H^{*v})'$ be a sequence such that $\mu'_v(G_n)\to 0$ as $n\to\infty$. By 2.2 and 2.1 we know that there exists a sequence $\{g_n\}\subset L^{*v'}$ such that G_n are Cauchy integrals of corresponding g_n and $\mathscr{I}_{\psi'}(g_n)\leqslant \mu'_{\psi}(G_n)+\frac{1}{n}$ for $n=1,2,\ldots$ From this we get $\mathscr{I}_{\psi'}(g_n)\to 0$ as $n\to\infty$ and $\|g_n\|_{(\psi')}^*\to 0$ as $n\to\infty$. This in turn implies by 1.3 that $\|G_n\|_v^*\to 0$ as $n\to\infty$.

Let us assume that ψ does not satisfy (∇_2) . Then in view of 5.2 there exist non-trivial norm continuous functionals on $(H^{*\psi})'$ which are not representable by (+), and, by 4.4, they are not modular continuous. This implies in consequence that norm convergence and modular convergence are not equivalent on $(H^{*\psi})'$.

5.4. The equation $(H^{*\psi})' = H^{*\psi'}$ occurs if and only if ψ satisfies simultaneously conditions (Δ_2) and (∇_2) .

Proof. In view of 1.5 it suffices to show that $(H^{*\psi})' \subset H^{*\psi'}$ if and only if ψ satisfies simultaneously the conditions (Δ_2) and (∇_2) . Let ψ satisfy both (Δ_2) and (∇_2) . Let $G \in (H^{*\psi})'$. Applying 1.2, we see that G is the Cauchy integral of some function $g \in L^{*\psi'}$. Since the complementary function ψ' also satisfies (Δ_2) and (∇_2) , it follows from Ryan's theorem (see I.2.6) that the conjugate function \hat{g} also belongs to $L^{*\psi'}$. Thus we find

that a function

$$h(t) = \frac{1}{2} \left(g(t) + i\hat{g}(t) + \frac{1}{2\pi} \int_{0}^{2\pi} g(x) dx \right), \quad 0 \leqslant t < 2\pi,$$

belongs to $L^{*\psi}$. We verify that its Poisson integral equals

$$\begin{split} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - r^{2}}{1 - 2r\cos(t - \tau) + r^{2}} h(\tau) d\tau \\ &= \frac{1}{4\pi} \left(\int_{0}^{2\pi} \frac{1 + re^{i(t - \tau)}}{1 - re^{i(t - \tau)}} g(\tau) d\tau + \int_{0}^{2\pi} g(x) dx \right) \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{1 - re^{i(t - \tau)}} g(\tau) d\tau = G(re^{it}), \quad 0 \leqslant r < 1. \end{split}$$

Hence $G(e^{it}) = h(t)$ for almost every $t \in [0, 2\pi)$ and $G \in H^{*\psi}$. This means that $(H^{*\psi})' \subset H^{*\psi'}$.

Conversely, let $(H^{*\psi})' \subset H^{*\psi'}$. We take an arbitrary function $g \in L^{*\psi'}$. By 1.3 its Cauchy integral G is an element of $(H^{*\psi})'$. From our assumption $G \in H^{*\psi'}$. It follows that $G(e^{i\cdot}) \in L^{*\psi'}$ and that

$$\hat{g}(t) = i \left(\frac{1}{2\pi} \int_{0}^{2\pi} g(x) dx + g(t) - 2G(e^{it}) \right), \quad 0 \leqslant t < 2\pi,$$

belongs to $L^{*\psi'}$. This leads us to the conclusion that the mapping $g \to \hat{g}$ sends $L^{*\psi'}$ into itself. On account of I. 2.6, ψ' satisfies (Δ_2) and (∇_2) . Hence ψ also satisfies (Δ_2) and (∇_2) .

5.5. The following conditions are equivalent:

 1° y satisfies simultaneously (Δ_2) and (∇_2) ,

2º H** is a reflexive space (in the norm sense),

3° H° is a reflexive space (in the norm sense),

 $4^{\circ} H^{*\psi} = H^{\circ \psi} \text{ and } (H^{*\psi})' = (H^{*\psi}_{vv})',$

 $5^{\circ} (H^{*\psi})^{\ddagger} = (H^{*\psi}_{vw})^{\ddagger},$

 $6^{\circ} (H^{*\psi})' = H^{*\psi'}$.

The equivalence of 1° and 6° follows from 5.4. The equivalence of 1° and 4° we get from I. 3.8 ([5]) and 5.1. The equivalence of any 2°, 3°, 5° with 1° we obtain by assembling the results of I. 3.8, III. 3.1, III. 3.2, III. 3.3, III. 3.4, III. 3.8, 2.7, 4.1, 4.4, 4.6, 5.1, 5.2 and 5.3. For instance we deduce 1° from 5° by III. 3.4, III. 3.8, 2.7 and 5.1.

5.6. The results given in 1.4 and 3.3 can be presented in another form if we consider the operator: $g(t) \to h(e^u) = e^{-u}g(2\pi - t)$ for g defined

(532)

icm©

on $(0, 2\pi)$. This operator maps isometrically the space $L^{*v'}$ onto itsey and, respectively for $L^{\circ v'}$. For $g \in L^1$ and $n = 0, 1, 2, \ldots$ the equalitly $\int\limits_0^{2\pi} g(t)e^{-int}dt = 0$ holds if and only if $\int\limits_0^{2\pi} g(2\pi - t)e^{-it}e^{i(n+1)t}dt = 0$. From this and III. 1.8 we deduce that this operator maps the space $L^{*v'}_+$ onto $H^{*v'}$ and, respectively $L^{\circ}_+{}^{v'}$ onto $H^{\circ v'}$. Thus, we have

The space $(H^{*v})'$ is isometric isomorphic to the quotient space $L^{*v'}/H^{*v'}$ (with the norm similar to that of 1.4) and the space $(H^{*v}_{vv'})'$ is isometric isomorphic to the quotient space $L^{\circ v'}/H^{\circ v'}$ (with the norm similar to that of 3.2). This isomorphism establishes the operator

$$G(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{h(e^{-it})e^{-it}}{1 - ze^{-it}} dt = \frac{1}{2\pi i} \int_C \frac{h(\zeta)}{1 - z\zeta} d\zeta \quad (z \in D),$$

where C is the boundary of D with the positive orientation. Moreover, then for $F \in H^{*_{\psi}}$ and $h(e^i) \in L^{*_{\psi'}}$ we have

$$\begin{split} \lim_{r\to 1-} (F*G)(r) &= \lim_{r\to 1-} \frac{1}{2\pi} \int\limits_0^{2\pi} F(re^{-it}) h(e^{-it}) e^{-it} dt \\ &= \frac{1}{2\pi} \int\limits_0^{2\pi} F(e^{-it}) h(e^{-it}) e^{-it} dt = \frac{1}{2\pi i} \int\limits_C F(\zeta) h(\zeta) d\zeta. \end{split}$$

The results of this section generalize the well known results for linear functionals in Hardy spaces H^p , 1 (see [12]).

References

- [1] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [2] K. Hoffman, Banach Spaces of Analytic Functions, N. Y. 1962.
- [3] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Groningen 1961.
- [4] R. Leśniewicz, On conjugate functions and Fourier series in Orlicz spaces, Bull. Acad. Polon. Sci., 14 (1966), pp. 627-636.
- [5] On Hardy-Orlics spaces, I, Comm. Math., 15 (1971), pp. 3-56.
- [6] On Linear Functionals in Hardy-Orlics Spaces, I, Studia Math., this volume, (1973), pp. 53-77.
- [7] J. Musielak and W. Orlicz, On modular spaces, ibidem, 18 (1959), pp. 49-65.
- [8] A. Ostrowski, Über die Bedeutung der Jensenshen Formel für einige Fragen der komplexen Funktionentheorie, Acta Lit. Ac., Sc. Szeged 1 (1923), 80.
- [9] R. Ryan, Conjugate functions in Orlicz spaces, Pacific J. Math., 13 (1963), pp. 1371-1377.
- [10] A. E. Taylor, Weak convergence in the space H^p, Duke Math. J., 17 (1950), pp. 409-418.

- [11] Banach spaces of functions analytic in the unit circle, I, Studia Math., 11 (1950), pp. 145-170.
- [12] Banach spaces of functions analytic in the unit circle, II, ibidem 12 (1951), pp. 25-50.
- [13] S. S. Walters, The space H^p with 0 , Proc. Amer. Math. Soc., 1 (1950),
- 14] Remarks on the space Hp, Pacific J. Math., 1 (1951), pp. 455-471.
- [15] A. Zygmund, Trigonometric Series, Vol. I, Cambridge 1959.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES (INSTYTUT MATEMATYCZNY PAN)

Received May 2, 1972