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A general ratio ergodic theorem for Abel sums

by
RYOTARO SATO (Sakado)

Abstract. The main purpose of the present paper is to prowe the following resul:
Let (X, #, u) be a o-finite measure space and T a linear contraction on L(X).
If {pp;nz 0} is a T-admissible sequence then for any feL!(X), the limit
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n=0

exists and is finite almost overywhere on {z; E Pn(x) > 0}. This result is the analogue
for Abel sums of Chacon’s general ratio e;éoglic theorem for Cesiro sums.

1. Introduction. The main purpose of this paper is to obtain the
analogue for Abel sums of Chacon’s general ratio ergodic theorem [7],
[8] for Cesiro sums. Let (X, 4, u) be a o-finite measure space with posi-
tive measure x and let L'(X) be the Banach space of equivalent classes
of integrable complex-valued functions on X. Let 7' be a linear contrac-
tion on I'(X). A sequence {p,;n > 0} of non-negative measurable func-
tions on X is said to be T-admissible if feZ'(X) and |f| < p, for some n
imply |fT| < py,.. We shall prove below the following

TueorEM 1. If T is o Unear contraction on L*(X) and {p,; n > 0} is
a T-admissible sequence then for any feI*(X), the limit

o
exists and s finite almost everywhere on {w; > p,(2) > 0}

n=0
In Section 4 we shall see that ratio ergodie limits for Abel sums coin-
cide with ratio ergodic limits for Cesaro sums almost everywhere, and
in the last section we shall congider a general ratio ergodic theorem with
weighted averages.
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9. Preliminaries. It is known (cf. [10]) that for a linear contraction
T on I(X) there exists a unique positive linear contraction = on LX),
called the linear modulus of T, such that |fT]<
gr = sup{|fT|; feI'(X) and |f| < g} for all 0 < gel'(X). In what follows,
we shall denote by T a linear contraction on LHX) and by v its ]1110(»1'
modulus. It follows easily that a sequence of non-negative measurable
functions on X is T-admissible if and only if it is z-admigsible. Hence such
a sequence will be called, simply, an admissible soquence. Lot {p,; n > 0}
be an admissible sequence and Ee#. Following Akcoglu [1], we define
a possibly finite sequence {,} of non-negative measurable functions on X
ag follows:

n
. \ 1 I
@y = 1y, @, = L1y (Ppy— 2, Oy T )s

Ie==1

where 1, denotes the indicator function of E. Let
Qu{pa}) = D [ i
k

where the summation is taken over the set of indices & for which a), is
defined. It follows directly that if 0 < geI*(X) then {ge"; # > 0} is an
admissible sequence and Qz({gz"}) < ligl.

Let {f,; m =0} be a sequence of measurable functions on X and

define )
= 'rkfy(a)
k=0

for re(0,1) and weX if it exists. It follows easily that if feL'(X) and
fo =JT" for all » >0 then for almost all x<X, the series

2 ¥ ka

=0
has at least unit radius of convergence as a power series in 7.

The following lemma is the exact analogue for Abel sums of Akcoglu’s
maximal ergodic theorem [1] for Cesaro sums and an extension of the
maximal ergodic theorem of Edwards [11].

LevmA 1. Let {p,; » = 0} and {q,,, "z 0} be two admissible sequences
and Fed. Then lnnTsup[S {Pa}) @) — 8, ({@u}) (@)1 > 0 a.c. on H implies

that
‘QE {pn} ‘QE {Qm} .

Proof. If ¢> 0 is given, choose a sequence {g,; # 3
positive integrable functions such that

8, ({fa}) (@)

8, ({fT"}) (x)

> 0} of strictly

]

D lgall < e

n=0

Iflz for all feI*(X) and
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Suppose that z<H and limsup[S,({p,}) (=)
rfl

that for some 7¢(0,1) and n, >0,

Z"o ﬁk — (@)

k=0
Here we may assume that

)> 0.

m

D (04 () — qul)) < 0

Icm()

Hence it follows from ([3], Lemma 2.2) that

g

D) (pu(@) — (@) > 0

Te=0

for 0 < m < m,.

(Pza( )— Qk(w))
IE 2 (Plc Qk

¢ for all m > n, then clearly lim su'pz (pr(2)

OMMS

I
2 x)) < 0 for some m > n,, let

m

m, = min {m > 5 2 (22 () — gp(2)) < 0}.
k=0

We now choose 7,¢(0, 1) and =, > m, such that

.y
D (@) — gul@)) > 0,

Ie=0

m

i
D pe@) — (@) <0 for my < m <y,
k=0

m0-L 'mo-l

im0 Y k(o) — @) < (@) + D) (u(@)—g0).

Jew=s0 k=0

Then the argument of ([3], p. 604) shows that

225

—8,({g.})(2)]1 > 0. It follows

— Gk (m))

My~ L ny
0 < o™ Mok (a) — qul@)) + D) (Pu(2) — g (@)
Iw() k=ny
e L
< @)+ D) (Pel@) — (@) < D) (907 (@) +21(0) — (@)
Tos0) fe=0
Since lUmsup [8, ({g,7" +1,}) (2) — 8, ({g.}) (%)] > 0, an induction argument
41
gshows that if we let g = Zﬂn then
n==0
m
limsup Y (g7 (@) +pi () — () > 0

M—+00 ](‘n()
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Hence we may apply Akcoglu’s maximal ergodic theorem [1] to infer that
Qg({g7"+p0}) = Qg( {Qn}

Since Qgz({gr"+pa}) = 2z{{g7"}) + Lu( {pn} < &+ 2({Pa});
pletes the proof of Lemma 1.

The following lemma, which is a special case of Theorem 1, is a direct
consequence of Lemma 1. Since the argument is similar to that given
in [1] for the proof of a ratio ergodic theorem for admissible sequences,
we omit the details.

LeMMA 2. Let {p,; »>=
feL*(X), the limit

this com-

0} be an admissible sequence. Then for amy

B,({f="}) (@)

8, ({pa)) (@)

) > 0}
geLl(X) Then we shall denote
_ S ({fT™}) (=)

exists omd s finite a.e. on {x; Z P (@
Let feL'(X) and 0 <

A
f,9)(@) M m,,,})(m) :
8, ({f"}) (@)
a(f, 9) (@) = {gr"}
As an 1mmedmte corollary of Lemma 2, we hzwe the following: .
a(f, g)(2) = hm a.(f, 9)
exisis and is finite a.e. on {w; Z gt” ) > 0},

It is well-known [6] that + decomposes X into two disjoint measurable
sets ¢ and D, called, respectively, the conservative and dissipative parts

‘of X, such that if 0 < geI'(X) then Zg-c
29" ) <ecoa.e.on D. A set Eed is ca.lled invariant it feL (X

por'oed on B then so is fr. It is also known [6] that € is invariant and
the invariant subsets of ¢ form a o-field # with respect to C.

For a measurable set B, Ty and vy will denote the linear operators
on L'(X) such that fTy = (fT)1y and fry = (fo)ly for feL'(X). We now
define the linear operators P, and P, on L*(X) as follows:

z)=0 or oo a.e. on C, and

) is sup-

fPp = lim Z (flp) T Ty -+flg,

Nreo fom

fP, = lim Z (flp)theg+ 11y

N0 12y

It may be readily seen that P, and P, are contractions on L*(X).
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General ratio ergodic theorem for Abel sums 227
LemMA 3. If feL*Y(X) and 0< geLl(X) then
11msup |4, (fPp~f, g)(%)] =0
ae. on A =0n{wx; ZW (x) > 0}.
n=
Proof. It follows eas1ly that limsup |4, (fT"—71, g)(z)| = 0 a.e. on 4

41

for each n > 1. Thus

tmsup| 4, (£, () = 4, ( 3 (L) T+ (FL5)T57 + flo, g) @) = 0
rtl =0

0. Hence it follows that
_f ' g ) (m)i

a.e. on A for each n >

limsup |4, (fPy
741

<timsup 4, ( 3 (10, 0)(a )| +1im sup| 4,{(f15) 75 o) )]
T k=n+1 -

a.e. on 4. Put for each =,

D (flp)THTy  and by, = (flp) T
Fe=m--1
It follows that lim||f,/| = 0. Let E be a measurable subset of 4 with

N~>00

u(B) < co. If £> 0 is given, let
En =K n {w; limsup IAr(fm g) (@) > 8}
r41
and

F’n =FEn {w$ limsupar(}fnl! g)(.’b‘) > 6‘}.
41

Then clearly B, c F for each k, and Lemma 1 implies that

Ifell 2 g, ({Ifel7"; » > 0})
> eQp ({7 v 0}) > ¢ [gap.
Fr

Hence lim [gdu = 0. An mcluctmn argument now implies that }clm J‘I g7 du
o0 10y, 00 Ky,
= 0 for e(mch 7= 0. Since Z gt"(@) = oo a.e. on A, this demonstrates
n=0
that limu(F,) = 0 and hence hm,u(F,ﬂ) = 0. An analogous argument
k-yo0 Ie~00

a8 above also implies that

Lmu (B N {; hmsup |4, (7, 9)(@)] > &}) =

koo
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Thus the lemma is proved. )
LeMMA 4. Let X = C and u(X) < oo, andlet fe LN (X) and 0 <X g e L} (X).
Then ‘

) {5 So"(@)> 0} = {u; Blgl#}(a) > 0},

z s 3 M
(i) a(f, g)(=) 2%“'6' on {w;Zogr () > 0}.

Proof. (i) is known (see, for example, ([12], pp. 28-29])). Hence,

to prove (ii), we may assume without loss of generality that X .

= {@; f gt"(x) > 0} and f> 0. Then, by virtue of Lemma 1, a slightly
n=0

modified argument of ([12], pp. 29-30) is sufficient for the proof, and we
omit the details.

Combining Lemmas 3 and 4, we have the following

LevyA 5. Lel fel'(X) and 0 < geL*(X). Then

(i) a(f, 9)1y is S-measurable,

(i) for each A<t [a(f, 6)(gP) du = [IP.dp.

Proof. Let u’ be a finife measure equivalent to x andlet ¢ == du’[du.
Then L} (X, &, u'}) = {f'; fee [} X)}. Define a positive linear contraction
7 on LNX, B, ') by f'; v = (fe)zfo for f eI (X, #, u'). Now, applying
Lemmas 3 and 4 to the contraction v/, the lemma follows easily.

3. Proof of Theorem 1. By virtue of Lemma 2 it suffices to prove
that for feL'(X) and ¢ < geL'(X), the limit

(1) A(f,9) =lim4,(f, g) (@) s
il et
exists and is finite a.e. Clearly (1) exists and is finite a.e. on D. On the
other hand, since limsup [4,(fPr—F, 9)(x)] = 0 a.e. on ¢ by Lemma 3,
41

It may be assumed without loss of generality that f is supported on C.
Here we utilize a theorem due to Akcoglu and Brunel [2], which states
that I' decomposes uniquely € into two disjoint invariant sets " and 4
sach that

(i) there exists a measurable function ¢ on I satistying |s| == 1 a.e.
on I' and fT' = (sf)73 for any feL'(I"), where 5 is the complex conjugate
function of s and L'(I") is the subspace of L*(X) consisting of all functions
that vanish a.e. on X T,

(i) {fT—f;feI*(4)} is dense in L*(4) in the norm topology.
X feI'(I') then fI™ = (sf)+"5 for each n > 0, and hence it follows from
Lemma 2 that the limit (1) exists and is finite a.e. on ["and the limit satisties

A(f,9)(a) = s@)al(sf, 9)(@) ae.
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Next suppose that feL'(4). It follows from (ii) that for each &> 1
there exists a function h.eL'(4) such that If— (T — 1)l < 1/k. - Let
e = L —hy. Since Hm A, (f;, g)(x) = 0 a.e., it follows that

41

liIIrlTSIUP\A,.(f, )~ 4, (f~fr ) (@) =0  ae.

On the other hand, since lim|f—f,| =0, the same argument as in
k—ro0
the proof of Lemma 3 implies that if ¥ is a measurable subset of 4 with
u(B) < oo, then
limu(B O {o; limsup |4, (f —fi, ) (@)] > &} =0
00 41
for each &> 0. Therefore the limit (1) exists a.e. and the limit satisfies

A{f,9)(@) =0 ae.
This completes the proof of the theorem.

4. Identification of the limit. Let {p,; % > 0} be an admissible sequen-
ce. Chacon’s general ratio ergodic theorem [7], [8] for Cesiro sums states
that for any feL'(X), the limit

0
2 fT*(a)

lim £=0

Y pl@)
k=0
exists and is finite a.e. on {#; ¥ p,(2) > 0}. In this section we shall prove
k=0
the following i

; Ll(ﬂ.‘;IEOREM 2. If {pu;n>0} is an admissible sequence them for any
€ )s

o0 K
X 1T (@) > fT*(x)

lim %= = lim £=0
1 \ Nr00
" S 7 3
Je=a0 =

o
ae. on {m; Y pylw) > 0}
k=0

Proof. Let feL'(X) and 0 < geL*(X), and define

3 T (a)
R(f, g)(®) = lim 22—,

3 — Studia Mathematica XL VL8
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Tt is clear that A(f, §)(») = R(f, g)(#) a.e. on D. Lemma 3 implies that
A(f, 9)(@) = A(fPgp, gP;) (w) a.e. on C. On the other hand, Akcoglu’s
maximal ergodic theorem [1] for Ceshro sums together with an argument
similar to that given in the proof of Lemma 3 implies that I( f , g)(a,
= R(fPp, gP.) (@) a.e. on C. Thus it follows from [2] that R(f, g)(#) = 0
a.e. on 4, and hence A(f, 9) (@) = B(f, ¢)(2) a.e. on 4. Since fT' = ?f)rg
for any f cL1 T), it also follows from [6] and Lemma b that A(f, ¢

= R(f, g)(x) a.e. on I'. Therefore in order to complete the proof it ﬁuﬂlce%
to show that

2] n
2 rtgr(a) > g7"(2)
(2) lim £=2 = lim *=2

Nkl " 3 p(e)
k=0 =0

a.e. on {m Z‘ P(#) > 0}. Clearly (2) holds good for almost all zeD N

N {x; Zpk(m > 0} Let a > 0 be any positive number and set

Bt(a) = 0 niz;Lim =
" 2"1%
i

‘We now choose a seduence {fs; 4= 0} of strictly positive funetions i
L‘(X) such that hm [If} = 0. It follows easily from the same argumen

as in the proof of Lemma, 1 that for each i > 0,

lims::p [2 (7" (@) + f; 7 (@) — Zapk(w ] 0

, k=0 k=0

a.e. on B* (a). Thus

2 git(@) + X fid(@)
lim k=0 -~ Je=:0 > 1
o > apy ()
k=0

a.e. on BT (a). Since im [Ifsll = 0, we may apply Akeoglu’s maximal ergodic

theorem [1] for Cesaro sums and the method used in the proof of Lemma 3
to infer that if F is a measurable subset of B (a) with u(H) < oo and & > 0,

icm
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then
3 k
Z fit" (@)
limp Eﬁw;limf—?— > e =0.
1—+00 . N—>00 eroapk(w)
Hence it follows that
n
2 g7 ()
lim22— —>a ae on Bf(a).
3 o)
An analogous argument is also applied to obtain that
3 k
2 gt (@)
Tim £=2 <a
N—=+00 Z pk(m)
k=0
a.e. on
2 @)
B (a) = C Nnjz;lim =w <a
Y A
k=0

This completes. the proof of Theorem 2.

5. A general ratio ergodic theorem with weighted averages. In this
section we shall extend Theorem 1 to a more general form. Let {w,; » > 1}
be a sequence of non-negative numbers whose sum is one, and let {u,; n > 0}
be the sequence defined by %, = w,ug-+F...+w3%,_;, %, = 1. Then we
have the following '

THEOREM 3. If {p,;
feI'(X), the limst

n >0} is an admissible sequence then for any

o
> "I (@)
lim*>~=%

Y Ut p, (@)

n=0
oo
ewists and is finite a.c. on {v; 2 Uy Py () > O}

Before the proof we note tha.t if w, =1, w, = 0forn> 2 then u, =1
for all » > 0 and hence the above theorem contains Theorem 1 as a special
case, and that if 7' is positive and p, = ¢I™ for all n > 0 for some 0< g
eL'(X) then the above theorem reduces to the ergodic theorem of Béez-
Duarte [3] (see also [11]).
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The following proof is analogous to that given in [9] for the proof

of Baxter’s ergodic theorem [4], [5] in a stronger form.

: Proof of Theorem 3. Let ¥ be the positive integers, £ all possible
" subsets of Y, and A the measure on (¥, #) defined by A({1}) =1 and

M{EY) =Ll—w,—...—w,;_; for i>2. Let {o,;n>1} be the sequence

defined by ¢, = w,/(1—w,—...—~w, ), 0 =w,. Let § be the linear

operator on IL(Y) satisfying

a8 = Dod, and 4,8 =(1—0,)dy_, for n>2

n=1

where d, denotes the indicator function of the set {n}. Then it is known
[9] that S is a contraction on I*(Y) and d,8™(1) = u, for each n > 0.
Taking (X X ¥, #Q %P, ux 4) to be the direct product of (X, #, u) and
(Y, #,2) and T x 8 the direct product of 7 and 8, it follows that T x 8§
is a linear contraction on I'(X x ¥) and satisfies jd,(7x 8)"(=,1)
= fT™(x)d, 8" (1) = u,fT"(#) for all n>0. Now define a sequence
{Pn; n = 0} of non-negative measurable functions on X x ¥ as follows:
Po(®y i) = p,(0)d, 8" (5) for (z,4)eX x Y.
It is easily checked that {p,; n > 0} is'a T x S-admissible sequence. Hence
Theorem 1 completes the proof of the present theorem.
Remark. The method above may be applied to obtain the exact
analogue for Cesaro sums (see [13]).
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