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On the isomorphism of cartesian products
of locally convex spaces

by
V.P. ZAHARIUTA (Rostov on Don)

Abstract. The following relation R between topological linear spaces is studied:

(X, ¥Y)eR iff every continuous linear operator T: XY is compact. The results

concerning the relation R are applied to give conditions which guarantee that the

[~ o
. isomorphism of certain product spaces .X X;and X ¥Y;implies near isomorphisms

i=1 =1
X; ~ ¥; (ie. the existence of Fredholm operators from X; onto ¥;) fori =1, 2,...,
and to establish some criteria of quasi-equivalence of all bases is product spaces X x ¥,

§ 1. Let X and ¥ be locally convex spaces (les’s) (). A linear oper-
ator I': X — ¥ will be called a near-isomorphism (mourn wmsomopdusm)
if the following conditions are satisfied:

a) T(X) is closed in ¥ and T is an open map from X onto 7(X),

b) a(T) = dimKerT < oo,

¢) f(T) = codimT(X) = dim ¥ /T(X) <oco (cf. [24])(%). The les’s X
and Y are said to be nearly isomorphic (mourn msomopdurmm) (X ~ Y)(2)
if there exists a near-isomorphism 7' from X onto Y.

In this paper we give some general conditions under which from
(near) isomorphism cartesian products of les’s X,x X, and Y,;X ¥,
there follows that the factors are (near) isomorphic (Section II), The
binary relation (X, ¥)eR defined on the set of pairs of leg’s by the con-
dition “every continuous linear operator from X to Y is compact” plaiys
a very important role here. The greater part of this paper, Sections I, IIT
is an examination of this relation. Our methods lead effectively to an
answer to the question of the isomorphism of a wide class of spaces which.
are not distinguishable by their diametral dimension: I'(X,x X,)
=I'(Y,; x ¥,) = I'(X,), ¢f. [2], [17], [21]. In particular, we give a complete
isomorphic elassification of spaces of the form X, x X,, where X; are
finite or infinite centers of Riesz scales which are Montel spaces (§13).

(*) We consider only Hausdorff locally convex spaces,

(%) In [24] T is called an o-map; one says also that T is a Fredholm operator
or d-operator.

() If X and Y are isomorphic we ghall write X ~ ¥.
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In § 14-15 we consider finite and infinite produets of les’s in particular
of L,(b, r) spaces, which were defined in [7]. Finally, as an application
we quote some results (obtained jointly with Dragilev) about quasi-
equivalence of bases in nuclear spaces belonging to some classes (cf. § 16).
This paper, besides some new results, contains the proofs of all results

announced in [27]. )

~ The author would like to express his warmest thanks to V. Yudovig,
M. Dragilev for valuable discussion of results and Cz. Bessaga for hig
help and useful advices in the preparation of this paper.

1. COMPACT OPERATORS IN LINEAR TOPOLOGICAL SPACES

§2. Let X and Y be les’s. A linear operator T: X —»Y is said
to be compact if there exists a neighborhood U in X such that its image
T(U) is precompact in ¥ (if ¥ is a Montel space it is sufficient to require
the boundedness of T(U) in X).

Now we shall define the relation R being important in the sequel.

DErINITION 1. We shall say that an ordered pair of les’s (X, ¥)
satisfies the condition R ((X , Y) eﬂ%) if every linear continuous operator
T: X — Y is compact.

Further (Section IIT) we shall describe a wide class of pairs of Kdthe
spaces which satisfy condition R. Before we are going to consider some
examples.

§ 3. Examprm 1. Anles X will be called pre- Montel if every bounded
set A< X is precompact. The space X is a Montel space (cf. [5]) if it
is barreled and pre-Montel. The following proposition characterizes the
class of pre-Montel spaces in terms of the relation R. ’

PROPOSITION 1. A mnecessary and sufficient condition for am los Y
to be pre-Montel is: (X, X)e R for every normed space X.

Proof. Sufficiency. Let ¥ be a pre-Montel space, X a normed
space and T; X — ¥ a continuous linear operator. Then T is hounded.
Thus 7 maps the ball U in X into a bounded, and hence precompact,
set T(U) in Y. Therefore T is compact operator.

Necessity. Suppose (X, ¥)eR for every normed space X. We
shall show that every bounded set A in Y is precompact.

Let {llyll;, AeL} be a system of pseudonorms defining the topology
of Y. By the definition of a bounded set, there exists a function m = m(4)
>0, e L such that:

ply) =sup{m(A) ylli: 2eL} <L, yed.

As X we shall take the normed space of all ye¥ with p(y) < co. The
set A is contained in the unit ball U of X. The operator T equal to the
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identity imbedding of X into Y is continuous. Thus, since (X, Y)eR,
it is precompact. Therefore U= T(U) is precompact and therefore the
set A is precompact in ¥. The proposition is proved. '

ExamrLE 2. We shall say, according to Grothendieck [12], that
an les is of type (8) if for every neighborhood U of zero in X there exists
a neighborhood V of zero in X which is totally bounded with respect
to U (cf. [20], p. 239). The class of spaces of type (8) can be characterized
in terms of the relation R as follows:

PROPOSITION 2. 4 los X is of type (S)(*) iff (X, X)eR for every Banach
space Y.

Proof. Sufficiency. Let (X, ¥Y)eR for every Banach space Y.
We shall associate with every absolutely convex neighborhood U of zero
in. X a seminormed space X, which is X with the seminorm

Ppylz) =inf{l > 0: z/AeTU}, 2eX.
We shall denote by X v the completion of the factor-space X /N, where
Ny= {mel\:: p(2) = 0}. The canonical map ny: X — Xy is continuous.
Since (X, Xy)eR, my is compact. Thus, there exists a neighborhood V
of zero in X for which ny (V) is precompact in X ;. Therefore V iz totally
bounded with respect to U, i. e. X is a space of type (S).

Necessity. Let X be a space of type (8), ¥ an arbitrary Banach
space and 7T: X — Y an arbitrary linear operator. Then there exists
a neighborhood U of zero in X such that T(U) « K, where K is the
unit ball in ¥. By the assumption, there exists a neighborhood V = V(U)
of zero in X which is totally bounded with respect to U, so T'(V) is totally
bounded with respect to T'(U), and hence with respect to K. Thus the
set T(V) is totally bounded in ¥. By the completeness of Y, T(V) is
precompact in Y, i. e. the operator I': X — ¥ is compact. So it is proved
that (X, ¥)eR for every Banach gpace Y.

CorROLLARY 1. The relation N is not a partial order in the class of all
les’s.

Indeed, every complete space X of type (8) is pre-Montel space,
and therefore for every infinite dimensional Banach space ¥, (X, ¥)eR
and (¥, X)eR hold sirnultaneously whereas X = Y (see also Corollary 2).

Bxamrre 3. Let A, be the space of all holomorphic functions in
the unit disc and A4, the space of all entire functions of one variable.
Then (4;, 4,)eR. This fact is a particular case of Corvollary 5 (cf. §9).
But (4., 4,)¢R (cf. Corollary 3).

(*) Every complete space of type (§) is a pre-Montel space; the contrary is
not true.
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ExXAMPLE 4. (6, I*)eR [6]. This fact and Douady’s lemma (see § 6)
were used in [6] to prove the unconnectedness of the group of automor-
phisms of the space ¢, x I*.

§4. We are going to demonstrate some simple but important prop-
erties of the relation R.

Tmvva- 1. Let (X, Y)eR. Then (X, Yo)eR for every subspacs(®) X,
which is topologically complemented in X and any subspace Y, of Y.

Indeed, let Ty: X, — ¥, be an arbitrary linear, continuous operator.
By the assumption, there exists a subspace X; in X such that X = X, @X,.
Let T': X — Y be the linear, continuous operator

Tyx  for xeX,,

T(2) =
@) 0 for weX,.

Since (X, ¥)eR, this operabor is compact and therefore Ty is compact.
too. Hence (X,, Y,)eR.

LeMMA 2. If (X, Y)eR and X ~'Y, then X is a finite-dimensional
space.

Indeed, since there exists an isomorphism T': X — ¥ and (X, ¥) %R,

“it follows that T is compact; hence there exists & neighborhood U of zero
in X such that T(U) is precompact in Y. On the other hand 7(U) is a
neighborhood in ¥ (because T is an isomorphism). Hence Y is a locally
compact les, thus it is finite dimensional (¢f. [5], p. 29). Becanse X ~ ¥ the
space X is finite dimensional too. The lemma is proved.

Remark. The requirement in Lemma 1 that X, is topologically
complemented in X is not dispensable. ‘

Indeed, let t(z) be an arbitrary analytic map of the unit dise {¢: |¢| < 1}
onto the complex plane. Then the operator T: x(z) - 2(f(2)) maps iso-
morphically the space 4., into 4, [22]. By Lemma 2 (T,(4.), 4u)¢R
(by lemma 1 it follows moreover that the subspace Ty(4,) is not comple-
mented in 4,).

COROLLARY 2. The relation (A, A,)eR is not valid.

In the opposite case by Lemma 1 there would be (4., X,) R where
X, = Ty(4), and this contradicts Lemma 2. .

CorROLLARY 3. If (X, ¥Y)eR then no infinile dimensional, comple-
mented subspace X, = X is isomorphic to any subspace Y, of Y. In partic-
ular, the space X is mot isomorphic to any subspace Y, of Y.

On the other hand as in Remark after Lemma 2 the space ¥ may
be isomorphic to a subspace of X. ‘

(%) Here and in the sequel by a subspace of an les we mean a closed linear
subgpace,
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In particular, we have a new proof of the following

CoROLLARY 4. ([19], [4]) There is no complemented subspace of A
isomorphic to any subspace of the space 4., .

Let {X ,1,'1 «L} be a collection of les’s X,, where I isa linearly order-
ed set of indices. The product and the sum of the family X, (ef. [20],

p.p. 130, 133) will be written X X, and Y X,, respectively. The follow-
el AeL

ing lemmas will be useful in §. 14.

1

Luvma 3. Let X = X X;. Then i) from (X;, ¥)eR, j =1,2,..., %
=1

it follows that (X, Y)eR, ii) from (¥, X,)eR, j=1,2, <oy it follows
that (Y, X)eR.

Lemma 3a. Let X be an los in which there ewists at least one eontin-
uous norm (not o seminorm!) and ¥ = X ¥,. Then from (¥, X)eR

el

for all AeL there follows (¥, X)eR. ’ .

LeMMA 3b. Let X be an les in which there ewists at least one bounded
absolutely convex absorbing set and ¥ = YY,. Then from (X , Y1) eR for

el

all AeL there follows (X, ¥)eR.

. Lemmas 32 and 3b follow from the statements: a) Under the assump-
th]'ls .of Lemma 3a, for every continuous operator T: ¥ — X , there exists
a finite set 4 = A(T) = L such that from y = (y,)e¥ and Yy, = 0 for

. AeL—A it follows that T(y) = 0; b) under the agsumptions of Lemma

4b for every linear continuous operator 7: X — ¥ there exists a finite
set 4 = A(T) = L such that from y = (y,) T (X) it follows that Y =0
for led,. .

II. NEAR-ISOMORPHISMS AND ISOMORPHISMS
OF THE CARTESIAN PRODUCTS OF LCS’S

§5. Let X, ¥ be les’s. Recall that by the sndex of a near-isomorphism
T:X - Y one understands the number ind T = o(T)—B(T), where
o(T) = dim ker T, (T) = codim T(X) = dim ¥/T(X).

Levma 4 (ef. [16], [23], [24]). Let T: X — Y be @ near-isomorphism
and let 8: X — Y be linear compact operator. Then T8 is a near-isomor-
phism and ind(T+8) = indT.

. LEMI.VLA 5. (Cf. [11], [24], [26]). An operator T: X - Y is a near-
wsomorphism iff there ewists am operator y: ¥ — X satisfying conditions

a) T =Ix+B where B: X - X is a compact ( finite-dimensional)
operator,

b) Iy =Tp4C where C: ¥ ~ Y is a compact (finite-dimensional)
operator.
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§ 6. The following lemma will play an important role

Dovapy’s Lemma(®). Let X = X, x X, and ¥ = ¥, X Y, be les’s,
(X, Y)eR and let T: X — Y be a near-isomorphism given by the matriz
[T,;] where Ty: X; — Y. Then the operator T: X — XY given by the matriy

Tll TIZ

0 T,
is a mear-isomorphism too. If moreover (¥, X;)eR, thm the. operators
Ty: X, - Y, and Ty: X, - ¥, are near-isomorphisms and
(1) indT = indT,, +indT,,.

Proof. From (X,, ¥,)eR it follows that the operator sz X -5,
is compact so that the operator S: X — ¥ given by the matrix

0 0
T, 0
is also compact. By Lemma 4, the operator T =T—48: X — Y is a near-
isomorphism and
) indT = ind 7.
By Lemma 5 there exists an operator : ¥ - X such that wZN’ = Iy+
+ B, f’qp = I+, where B and C are compact in X and ¥ respectively.

Let v be given by the matrix [y,;]. By the second assumption (¥, X,)eR
50, the operator L: ¥ — X defined by the matrix

o o
| va1 0

is compact. Therefore the operator 9 = p—L: ¥ X is a near-isomor-
phism and

(3) Thp =Tlp—I) =Ly+C, 91 = (p-D)T = Ix+B,

where the operators B = B——Lf’, 0 =0~TL are compact in X and ¥,
respectively. Taking into account that the operators I' and P are given
by the upper triangular matrices from (3) we have

(4) Ty = IY,L-+6’1‘,1': Yuly = Ixﬁ"ﬁm i=1,2,

(6) The case when X, = ¥;, X, = ¥, are Banach spaces is considered by
Douady in [6]; our lemma is an immediate generalization of the result of Douady.
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where f?ﬁ, C~’¢,~ are compaet in X; and ¥, respectively. Hence, by Lemma 5,
T, and T,, are near-isomorphisms.
We shall check now the relation (1). By (4), it follows that

(5) [vn | [Tn 0 - I.X] Y1 Ty + By, ? )
0 0 Ty 0 IX2 0 B,

The first summand on the right-hand side of (5) is a near-isomorphism
of X into itself with the index equal to zero. Since the second summand
is a compact operator in X the right-hand side is a near-isomorphism
with the index equal to zero. And. because indAB = indA +indB,
we have now: indT, --ind7,, = —mdw =indT =indT. So the lemma
is proved.

The last proposition can be extended, by induetion, as follows:

PrOPOSITION 8. Let X = X X;,, Y = X Y;, (X X, X Y)eR
n T=8+1 j= 4=1 J=8+1
X X X)eR, s=1,...,0—1;let T: X Y be a near-isomorphism

=1 1m=g+1

defmed by the matriz [T;;] where Ty: - Y, 4,5 =1,...,n. Then the
operators Ty: X; > Y, are mear- wommphisms for i =1,...,n and

n
ndT = Mind Ty
i=1

§ 7. As a consequence of Douady’s lemma we mention the following
criteria for the (near) isomorphism of cartesian products in terms of the
(near) isomorphism of the factors. From Douady’s lemma there follows
immediately

ProposITION 4. Let X =X, xX,, Y =¥, xY, be los’s, and
(X1, Yo)eRy (Y, Xo)eR. Then X n Y iff X, ~ Y, and X, ~ ¥,.

Let X® denote an arbitrary subspace of the les X of codimension §
(all such spaces are isomorphic) when 420 and when i< 0 an arbitrary
space X X Z where dimZ = —

In general, under the assumptions of Proposition 4, the isomorphism
of X and ¥ does not imply the isomorphism of the factors. But the follow-
ing iy true:

THEOREM 1. Under the conditions of Proposition 4, X o~ Y iff there
exists am 8 such that Y, o~ X, ¥, o~ X{9,

Proof. Sufficiency. ¥;x ¥,cz X x X{ ~ X, x X,.

Necessity. Let T: X — ¥ be an isomorphism. By Douady’s lemma,
Ty: X, Xy, Ty: X, - Y, are near-isomorphisms. Hence ¥, ~ X{&%
where s, = ind7, and ¥, o~ X% where s, = ind7,,. But ind T = ind T, +
+ind Ty, = 0. So it is sufficient to take s = §) == —8,.
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§ 8. We shall denote by @, the class of all les’s X such that the
space X is isomorphic to X only for ¢ = 0. If X ¢, we put

m(X) = 1: X® ~ X},
and, if Xe®, we put m(X)

Every les X belongs to one of the classes &, = {X: m(X) = s},
§=1,2,... The classes ¥, and &, are non-empty: @, contains, for
example, infinite-dimensional Hilbert spaces, ®,-all finite-dimensional
les’s. Bxamples of infinite-dimensional spaces of the class @, were given
first in [2], [17] (see also [7]). It is unknown whether the classes @, for
1< 8 < oo are non-empty. .

The next lemma gives a necessary condition for a space to belong
to D,

LDMZMA 6. If I'(X) = I'(XV), then Xe®,,.(")

Indeed, by Proposmon 7 of [18] the inclusions I'(X®) o I'(X™)
5 I'(X), s>1 hold("). Hence I'(X) 5 I'(X®), so X® & X for s>1,
which implies Xed,,.

THEOREM 2. If X,, X,e®,, then under the assumptions of Theorem 1.
X~Y iff X, =Y, and X, = 1Y,.

inf {i >

0.

"

HI. SUFFICIENT CONDITIONS FOR (X, Y)e%R

The importance of the theorems of the former paragraph essentialy
depends upon how large is the class of spaces satisfying the assumpions.
In this paragraph we shall take this problem into consideration

§ 9. Definition 2 (c¢f. [7], [4]). Let X be a countably-normed space.

We shall say that Xed;, 1 =1, 2, if there exists in X an absolute basis

{#}=1 and a system of norms {|#},,» =1,2,...}, defining the topology
of X such that

HpVqHr:

VpHgVr:

it k= ko = ko(p) q),
ifk=ky =1k (p,7),
This definition is somewhat different from that given in [7] and
coincides with it if in the aboveé conditions one may take a regular basis
{w) (et. [7], p. 1B3).
ExAMPLE 5. Following [18], we denote

415 < 1l 2

= |“’k|p [l

for 4 =1,

|z la = for ¢ =2.

B, (@) = Iimprojl(expia,),

A<a

—o00 < 0

-+ o0,

(") For the definition of diametral dimension I'(-) see §12.
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The space H, (a;) i8 called the center of the Riesz scale 1(expiay). If a < -+ oo
then B, (a;) will be called finite, and if & = oo — infinite center of the scale.
If a7 oo, then F,(a;) is a Montel space.

PrOPOSITION 5. (cf. [7], p. 154.) If a < oo, then B, (a,)edy; if @ = oo,
then B, (ay)ed,.

Other examples of the spaces of type d; will be considered in § 10.

The spaces belonging to different classes d, and d, have very different
properties. The following theorem confirms it.

THEOREM 3. Let X edy, Yed; and ¥ be a Montel space. Then (X, Y)eR.

Proof. Let T: X - ¥ be an arbitrary linear, continuous operator.

We have to show that T' is compact,

According to Definition 2 we choose the bases {,} and {y,} in X
and Y respectively. Since they are absolute, we may assume that the
topologies in X and Y are defined by the systems of norms:

Z[Ekl !mk!q; T = ZEIGWkEX,

=1 le=1

Sindivdy v = X nagne ¥

G =1

Iwiq =
lyll, =

Let hk = T'Tlc == Z t’zlc?’/n b= Z EI:”‘k! Yy = Tz = 2"7{%
Then 7; = 2 tig & The contmulty of the linear operator T means that

there ex1sts a function ¢ = ¢(p) for which

(6) sup 3 el 9l /104ly < O0) < o0, 9 =1,3, ...

¢ d=1
Since Y is a Montel space, to prove that 7' is compaet it is sufficient
to show that some neighborhood Uy = {weX: ||, < 1} is mapped into
a bounded set, tha.t is,

Zmzuv/mp: Mp)< o, p=1,2,...
=
if y = 3 ny; = Tw, xe U,,. Certainly it will hold if there.exists ¢ = ¢,
=1
such that
Y . sup thmum I/ 6lg, << M () < 0.

L=t

Since Y ed,, by Definition 2

(8) P, VPEP, = Po(0): Willy < [Willy, [9illp, — Tor @3> iy(p)
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and since Xed, for ¢ = q(py), there exists g = ¢, such that for every
g, (we choose g = q(ps)):

(9 lmklgo = @elg, [Bslays T2 Too(D).

By (8), (9), (6), and the Cauchy inequality we obtain:

sl ”( Mlm) ( II%HW)
Zlm g <0 )Z s o

T I lc[ql |q2
19sllp, )1/2< I\%Ilp2 12
@ ol )
(2| o ; W

<L) (C(p)) (0 ()} = M(p) < 005 p =1,2,...,

which means that inequality (7) holds, and so the operator 7' is compact.
The theorem is proved.

Applying Proposition 5 we have

COROLLARY 5. If a< oo, then (H,(ay), Eo(b))eR, independently
of (a) and (by), provided b, oo.

§ 10. A more exact description of the relation (X, ¥)eR can be
obtained for a special class of Kothe spaces which were considered in [7]
by M. M. Dragilev.

DerINiTION 2. (CE [7], p. 169). Let f be an increasing odd function
on (—oo, + o) which is logarithmically convex on [0, +o0) (i. e. @(w)
= In(f(expw)) is convex on (—oo -|—oo)) Tp /7y b =(b,), b, 7 co. Denote
by L;(b,r) the Kothe space generated by the matrix [exp f(r,b,)], i. e.

Ly(b, r) = limprojl[expf(r,b,)]
P

‘Without loss of generality we may assume that f(u) > 0 for u > 0.
DeriniTIoN 3. (Cf. [7], p. 170). We ghall say that an increasing fun-
ction ¢ defined on [0, co) increases rapidly if, for every o < 1, hm(p (ot) /(2

= oo, and it increases slowly if, for every o > 1, 11m p(at)/pt) = r( ) << oo,

LeMmA 7. (CE [7]). Let f be an increasing lo garithmically conven fune-
tion .on [0, o). Then, for every a > 1,

limf(aw)/f(u) =
Moreover, either a) 7(a) = oo, or b) 7(a) < oo for 1 < a < 0o and z(a) A o

for a oo,

So, under the conditions of Definition 3, the function f is always
slowly or rapidly increasing.
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ProrosiTioN 6. (CE [7], p. 170). Let X = L;(b,r) be a space satis-
fying conditions of Definition 3. Under the assumption that f is slowly incre-
asing, X is isomorphic lo a finite centor of Riesz scale provided r < oo,
and X is isomorphic to an infinite center provided r = co; in the first
case X ed,, in the second X ed,.

Assuming that f is rapidly increasing we have Xed, if 0 <r< o
and Xedy if —oo<r <0,

THEOREM 4. Let f, f, satisfy conditions of Definition 3 and let p=FT'of,
be rapidly increasing. Then
(Lfl(“z 1), Ly, (b, 3))EER
ffO<r< oo, 0 <8 0o and ‘

(sz(b, 8), Ly, (a, 1)) eR

if —o<r<<0, —co <8< oo independently of the choice of the sequences
a = (a), b = (by).

Proof. First, we shall consider only the case 0 < 7 < o0, 0 < § <
Let T': L,l(a, r) Ly (b, 8) ) be an arbitrary linear continuous operatm
‘We represent T' as a matrix in bases of unit vectors in X and Y. Arguing

as in Theorem 2 we may assert the existence of a function ¢ = g(o¢) such
that

(10) sup 3 [t xp {fy (05 —fr(0ax)} < O(0) < o0,
K ]
for 0 <o<s, 0<p(o)<r.

‘We must show that T' is compact. Since the space Ly, (b, s) is Montel,
it is sufficient, as in Theorem 2, to show the existence of ¢ = g, <r for
which

el
(11)  sup D ltglexp {f,(aba ~filea)} < M(o) <o, 0<o<s.
i=1
‘We shall show that (11) holds if we take g, 50 that
(12) inf{o(o): 0 < o <8}<<gy<r.
We fix an arbitrary o: 0 < o < ¢ and 0 with 0 < ¢ < co. We designate
(13) Ny = N0, 0) = {i &, < Cp(oby)}.

‘We break the sum in (11) into two summands which we shall esti-
mate separately. :
First we ' shall estimate:

Bi(0) = D ltul exp {f,(ob) —fr(eom)}

Ny,


GUEST


212 . V. P. Zahariuta

We take oy such that 0 < gy < s and g, = p(0,) <.g, becanuse of (12)
it is possible. Then, using (10) we obtain

8i.(0) < O(ay)sup {exp Ly (0): ¢ Ny},
where
Ly (0) = fo(ob) —fi(eoan) ~fo (o)) +Fi (0, ) -
By (13), for ¢ ¢N, the inequality (14) holds

M) Iglo)< sup{fl( F)+hlan-flen: 0 <o < s}

By Lemma 7 the expresgion under the sup divided by f,(ga), for
a — oo, tends to

1 1

15 — ]
() 1(090)+T(g_o)
[

Choosing the constant ¢ sufficiently large it ié possible to make
the number (15) negative, because g, < g,. But this means that for a > a,
= a,(0) the expression under the sup in (14) is negative. Hence

5:0)< Olyexpeun (£ 5]+, @0) Aol 0 <0 ) = (o).
Now we estimate the second summand:

Z |f¢kleXP{f2(Gbi —fi(eom)}

€Ny,

We take o, = 0,(0),0< 0, <s and g, =.p(0y). Using (10) we obtain

(16) ) Ep0) < Cfo, SUP{GXPI% ): deNy},
where i

(0) = fo(obys) —f1(Qo ) — fy oy by )+ fi(ear).
By (13) for i¢N, we have the inequality
(17) ﬂ;k(c') = "’fl((p(albi)) +f1(‘7’(db¢)) +fi(a1az) —fileo )
< SIIP{~f1(¢(01’)))+f1(fp(db)) +f1(0glq9(a'b)): 0<b< °°}
" Since the function @ increases rapidly
VA > 0@by = by(4, 6)VD = by: p(0yb) > Ap(ab).
So for b > b, .
(18)  —fi(p(ayb)) +fy(p( db)+f1{001¢(0b))
—fi(de(0b)) +1, (p(ob) )+f1(091¢(<fb))-
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By Lemma 7, the right-hand side of this inequality divided by
f1(dp(ob)) tends to
IURE S
z(4) 4
T( 001)
for b — oo. Choosing 4 = A(¢) sufficiently large the right hand side of

the inequality (18) is negative for b 2> b,(s). So, by (16), (17) and (18),
we obtain

Ry, (o)
< Oy(o )expsup{ fl(‘P oy b +f1( Ub)) “|“f1(0@19’3(¢7b)): 0<bg bl(a)}
= M, (o) < oo.

So, inequality (11) holds for M (o) = M, (o) +M,(c) if g, is chosen as in (12).
The proof of the second part of the theorem is analogous.
TuroREM 5. (i) (Ly(a,7), L;i(b, 00))eR if 0 <7< co.

(ii) (Ly(@, 0), Lyb,7))eR if —co<r< 0 and the function f incre-
ases rapidly.
This theorem may be proved by methods given in the proof of The-

orem 3. If f(u) = u the statement (i) coincides with Corollary 3.

IV. LINEAR TOPOLOGICAL INVARIANTS OF CARTESIAN PRODUCTS

§11. Let & be the class of les’s and let K be a certain set. One says
that the map 7: & — K generates a linear topological invariant z(X),
Xed& if the fact that X, Ye £ and X, ¥ are isomorphic implies that
T(X) =7(Y).

One of the easy to compute linear topological invariants is the
diametral dimension ([17], [18]):

(X)) ={y = (y,): VUEVp,d,(V, U) >0, 5 — o}

where U and V are neighborhoods of zero in the space X and d,(V, U),
is the m-dimensional Xolmogorov diameter of V with respect to U ([2],
[13], [14], [25)).

The consideration of invariants like I'(X) leads to the solution of
isomorphism problems for many lcs’s (see e. g. [7], [14], [15], [18]). But
there exists some simple examples ([2], [7], [17], [21]) of spaces of the
form X x Y,, X x ¥, for which I'(X x ¥,) = I'(X X ¥,) = I'(X), though
X4 XxY;, i=1,2. The dimensions I'(Y,) are “absorbed” by the
dimension of the factor.

2 — Studia Mathematica XLVI.3
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In these cases the comparison of the diametral dimensions does
not give the means to distinguish non-isomorphic spaces X and X x ¥,
and the question of isomorphism of the spaces X' x ¥, and X x ¥, is
unsolved if I'(Y,) = I'(Y,).

Theorem 1 allows us to define a new linear topological invariant
stronger than the diametral dimension but defined not on the whole
class of les’s. It is defined only for some special (but considerably large)
classes of les’s which contain in particular all the spaces mentioned in.
the above examples.

Let &, and &, be two classes of les’s such that (X,, X,)¢R whenever
X, &, and X,e &,.

‘We shall write

E\X &y ={X =X, X X,: X,e8y, Xye &5}

and with every Xe¢ &, x &, we shall associate the set I’ (X) of all different
pairs (I'(X®), (X)), where s =0, 4-1,... From Theorem 1 we
obtain immediately

THEOREM 6. f’(X) is a linear topological imvariant defined om &
= & X &,.

Remark 1. One may obtain in the same way other linear topolo-
gical invariants 7 (X) defined on &= &, x &, instead of I'(X) congider-
ing another topological invariant 7(X) (for example @(X), the approxi-
mative dimension (cf. [14], [15])).

Remark 2. From Theorem 2; it follows that Theorem 5 is appli-
cable to t{le class & = dy X (M N d;) where M is the class of all Montel
les’s. Let d; denote the class of all spaces from d; for which in Definition 2
it is possible to take as {w,} a regular basis.

Recall that a basis {z,} in X is regular (cf. [71, p. 1B3) if there exists
a system of norm {|js(|,} defining the topology of X and such that all sequen-
ces |wll,/llowyll, are monotone. Then we have

PrROPOSITION 7. (cf. [7]) Two spaces X and ¥ in d”1 ] 072 are isomor-
phic iff they are both in the same class d; and N'X) =I'(Y).

This proposition differs from the Theorem 7 of [7] by dropping
the requirement of the nuclearity of the spaces (which in fact is not
used in the proof).

Using Theorems 5, 6 and Proposition 7 we obtain following
_ TwmoreM 7. If X and Y are in D = dyx (M  dy), then X ~ Y iff
D(X) =I'(Y).

§12. It is quite simple to compute the invariant f(X YViEX,eDy,0=1,2.
In this case, the set f’(X ) contains only one element: the pair (]"' (X 1), T(X,)).
If Xiedimi, where m; < co, 4 =1, 2, then f’(X) containg a finite number
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(equal to sup{m,, m,}) of elements: however if one of m, is infinity, then
the set f“(X ) is countable.
§13. Let us recall the notation
E,(a;) = limprojl (expiay).
t<a
TuEOREM 8. Let X = F,(al) x B (af)), ¥ = B,(bP) x B, (bY), where

a, B <oo, ad, b 5 co. Then X and Y are isomorphic iff there exists an
integer s such that

(19) 0 < limal, /b < limald, b < oo,
F->c0 koo

(20) 0 < lim aff, o) < lim a2, o) < o.
koo ~>00

This theorem follows from Theorem 6 and the isomorphism criterion
of centers of scales (Proposition 18 in [18]).
Remark. If

(21) limaf’/af}), > 0, limaf)/af), >0, -
ko0 .

k00

then, using the notation of Theorem 7, a necessary and sufficient condi-
tion for X ~ ¥ is that (19) and (20) be satisfied for s = 0. If one of the
inequalities (21) is satisfied, then in Theorem 7 one may take s = 0 in
the corresponding inequality (19) or (20).

_ This statement may be obtained from Corollary 5 and the following
lemma.

LeMMA 8. Let X = E,(a), o< oo, ay 7 co. Then

@) Hm—2% >0 iff Xy,
koo Qpqq

) lm-—2 =0 iff Xed,.
S Gy

Using the fact that from Proposition 18 of [10], and from a; < @y,
it follows

Ay

lim >0 iff (X)) = I'(XM)

oo Oy

it is sufficient to apply Lemma 6 (§ 8). .

The product X = X, x X, of two centers of the same type of Riesz
scales is isomorphic to the center of a Riesz scale too. Therefore Theorem"?
combined with Proposition 18 of [18] gives us a complete isomorpl_nc
classification of all spaces of the form X, x X,, where X, X, are finite
or infinite centers of compact Riesz scales.

The following statement on spaces of analytic functions of several
complex variables is an immediate consequence of Theorem 7.
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THEOREM 9. Let A(E") be the space of all analytic functions in the
wnit polyeylinder B* in C*, and let A(C*) be the space of all entire funciions
of k wariables. Then

A(E™) X A(C*) = A(B™) x A(CH) - iff (n, k) = (ny, ky).

§ 14. Assume that two binary relations are defined on a clags & of
les’s: the partial-order relation a and the equivalence relation f. Further-
more the relations a, f are compatible, i.e. X,8X, ¥,pY and Xa¥ imply
X,aY,. Two spaces X, Ye & are comparable it either XoY¥ or YoX or
XBY. Assame that in every space Xe & there is a continuous norm (or,
equivalently, there is an absolutely convex neighborhood of zero contain-
ing no line). Finally, assume that Xa¥ implies (X, ¥)eR.

Under these assumpions we have

ToeoREM 10. Let X = X X,, ¥ = X ¥, where X,;, Y, are in-

L . . JeL nell
finite-dimensional los’s, L, M are linearly ordered sets and X 1 Y, & for

AeL and pe M. Furthermore, X,aX;, Y,0Y, for A <Ay and p < p, and
all the pairs X,, ¥, are comparable. Then:

If L an infinite set, then X ~ ¥ iff

(a) there is am order-isomorphism v: L — M with X 1 Yo

If the Set L is finite, then X ~ Y iff the conditions (a) above and

(b) there are integers v, with X®» ~ Y.y ond Yv, =0, are satisfied.

In the case when I is finite this theorem can easily be reduced to
Proposition 3 (§ 6). So we shall congider only infinite sets ..

Proof. Necessity. Let 4, denote the identity injection of X, into X

and p, — the natural projection of X onto X,. For the space Y we use
respective notations Jur Qv

Let T: X — Y be an isomorphism and § = 7~': ¥ — X. Wirte ,

Tys =80T X, + ¥, 8,, =p,"8,: ¥, >X,. The statement (a)
after Lemma 3b gives: for every ue M there exists a finite set @ = Q(u) < L
such that T, , = 0 for AeL\¢, and for every AeL there exists a finite
set B = R(A) « M such that 8. =0 for ue M\ R. Moreover

(22) LB, = I.‘Y‘,;
AeQ(y2)

(23) D) 8l = Iy,
uelR(4)

We shall show that for every A< there exists exactly one u = v(A)eM
such that X;8Y,. Uniqueness of u follows from compatibility of « and
and monotony of the families {X,} and {¥,}. Suppose that for some iel
there is no u <M with X,8 Y,. Then, for every ueM either X, oY, or Y, aX;.
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Therefore either (X;, ¥Y,)eR or (¥,, X,;)eR. Hence 80T X, > ¥,
iy compact for peM. The last statement contradicts (23) because X,
is infinite-dimensional.

Thus, the transformation ¢: L — M satisfies the condition X, BY.-
This transformation is bijective (applying the previous arguments to M
and L taken in the reverse order we obtain a transformation ¢: M — L
which is the inverse of 7). Moreover 7 is an order-isomorphism. Indeed,
let A< 2y, then since XY, Xllﬁl/',m) and Xzale, the relation
Y. ye¥,;, holds and therefore 7(A) < z(4).

We shall show that X; ~ ¥,,. To that end rewrite (22) and (23)
in the form

Ss,en Tepyr = Lay— ) S3uToas
ueR(2)
r#ET(2)
2 T‘r().),vsv,r(l)'
e

T—z(}.),l Sl,r(l) = IY,(;.) -

The sums on the right-hand side define compact operators in X and ¥
respectively. Hence (see §5) the operator Toapa: Xy~ Yo is a near-
isomorphism. This finishes the proof of necessity.

The sufficiency is a consequence of the following lemma.

LevMA 9. Let X = X X,, Y = XY,,X, ~Y;, L, L an infini-

AL el
t¢ set. Then X ~ Y. ‘

Proof. Let us consider first the case when I is a countable set. With-
out loss of generality we may assume that L ={1,...,4,...} and
Y, X0 9,20,i=1,2,..

Let us consider the decompositions: X; = X’i@Zi, where dimZ; = o;
=»n+...+ryand ¥, = f,-@Wi,wheredimWi =0;_,,0,=0,1=1,2,...
For every 4 take any isomorphism T;: X, ~ ¥,;, 8;: Z; - W,,,. Then
the required isomorphism T: X — Y can be defined by 7, = Tz,

Dy =T+ 8wy for 22 0 1 = (w;),y = (¥,)

In general case we represent I as a union of countable pair-wise -
disjoint sets: L = | J.L,. Then X o~ X (X X;) = X (X ¥,) =~ Y. Lemma

yel' vel' AeL, yel' AeL,
is proved.

It is easy to state an analogous theorem for infinite sums X = 3 X,
AeL
Y = Y Y,. In the proof of such a theorem one needs to use Lemma 3b

peM
instead of Lemma 3a.

§ 15. We shall consider the set § of all pairs [f, #], where f is a func-
tion satisfying the conditions of Definition 3 and — oo <7 oo, We are
defining an order on &: [fi, 7 ]1¢ [f., 2], if one the conditions holds:
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a) ¥, > 0, 7, <0 and f, is a rapidly increasing function,

b) r, <0, r,<0.and fi'of, is a rapidly increasing function,

¢) r,> 0, r,> 0 and fy'of; is a slowly increasing function,

d) r, <0, 7, =0 and fi'ofy, fi 'of: are slowly increasing functions
and f; is a rapidly increasing function,

e) 7, = 00, —o0 <7y, < oo and filofy, fitof, are slowly increasing
functions.

We shall say that [fy, 7] ~ [fa, 72] if both filof, and fi'of; are
slowly increasing functions and one of the following conditions is satbis-
fied: a) —00 <7y, <0, f) 0Py, Py< 00, YY1y =17y =0, 0)1r =1,
= 0o, ¢) f; increases slowly, —oo < #;,7, < oo.

We shall call two pairs comparable if either [fy, 7:] & [fy,72] or
[fos 721 & [fry 71 or [fy, 71l ~ [fas 72

Remark that [fi,7:] ~[fs, ra] and [fy, 7] & [g,8] imply [fe, 74]
& [9,5]

The results of Theorems 3, 4 togethe rwith Proposition, 6 and Theorem 2
can now be joined in the following statement:

TuroreM 11. If [f,r] & [g,8] then (L,(a,r),Lﬂ(b,s))eiR indepen-
dently of the choice of the sequences a, b. (%)

From the above observations it follows that the class & of all spaces
I, (a, r) satisties conditions of § 14, if we set

Ly(a, r)aLy(b, ) = [g, 51 = [, 71,
Ly(a, 1)L, (b, 8) = [f, 7] ~ [g, 51.

In connection with Theorem 9 for this special case it is worth no-
ticing the following '

. ProrosITION 8. (Cf. [7], pp. 170-171). Let ¢ = g~ 'of. Then Ly(a,r)
18 mear-isomorphic to L,(b, 8) iff [f, r] ~ [g, s] and there ewists an integer v
such that either

0 <limbyfp(a,,,) < Bbyfp(n,,) < o,
00

ko0

when r = oo or r = 0, or f is slowly increasing and
limsb,/@(ray,,) =1
k~sco

for the other cases.

¢ In thfb definition of the space Lg(b,r) (§11) it was assumed that by oo,
The theorem is valid without this assumption for the first space.
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§ 16. Finally we shall give some applications of the previous results to
the problem of quasi-equivalence of bases in nuclear spaces. The resulls -
of this section were obtained jointly with M. M. Dragilev.

Let X be a nuclear countably-normed space with a basis {«;}. Let
{lwlp, » =1,2,...} be a system of norms defining the topology of X.
According to [9], we denote by K(X) the class of all different Kothe
spaces L (A Iz, ll) where {n,} is an arbitrary sequence of natural numbers
tending to infinity and 4, is an arbitrary sequence of positive numbers
(two Koéthe spaces are different, if they are set-theoretically different).

PROPOSITION 9. (M. M. Dragilev [9])(®) The class K (X) does not
depend on the choice of the basis {m} and the system. of norms defining the
topology of X, and it is a linear topological invariant.

The following statement is a modification of the Theorem 4 of [8].

ProposITION 10. Let X = X X, be a nuclear space, L—a finite or
AL

countable set. Assume that X ~ X Y,, where Y,eK(X,) iff ¥; ~ X, for
AeL

all 1<L. Moreover, in each space X; all bases. are quasi-equivalent. Then

all bases in X are quasi-equivalent. ‘

Proof. Assume that for each Ael, {@}pen, Is & basis of X,, the sets

N, are pair-wise disjoint and UN, =N ={1,2,...}. Let {@}ry be
AeL

the basis of X obtained by joining together the bases {wy}pay,- Let {y}
be another basis of X. According to Proposition 9 (see also [4], lemma 2.0),
there exist a sequence of natural numbers {n,} tending to infinity and
numbers 4, > 0 such that the basis {y,} is equivalent to the unit-vector-
basis of the Kothe space ,

Z = L{kllo )

Denote M, = {k: myeN,}. Let Z; be the Kothe space generated
by the matrix [A e, lp ke, - BY the assumptions X ~ Z implies X, ~ Z;
for each 1, i. e. there exist integers », such that X, o~ {2, Tt L is finite,
we can choose v, such that Zv, = 0. Without loss of generality we shall
agsume that », = 0 for AelL.

Let ¥, = span{y,: keM,;}. Then ¥, ~Z, and therefore ¥, ~X,.
Since all bases in X, are guasi-equivalent there exist isomorphisms T;:
X, ~ Y,, bijective transformations o;: M, — N, and numbers ;> 0
such that g, = 4,Tw, ) for kell,. Congequently, there are defined: an
isomorphism T: X — X (To = {T,2,} where # = {,}), & bijective trans-
formation ¢: N —» N (o(k) = o,(k) for keM,) and numbers 4, > 0 such
that y;, = A T#,4, keN. This completes the proof of the proposition.

(°) This result was announced by M. M. Dragilev at the seminar on the theory
of functions and functional analysis at the Rostov University in 1966.
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TEEOREM 12. Let X = X, x X, be a nuclear space, Xyed,, X,ed,.
EBach X; let admit a regular basis. Then all bases of X are quasi-equivalent.

Proof. In each space X;,i = 1,2, all bases are quasi-equivalent
(cf. [9], Theorem 6). Since X ed; implies K (X)< d; (for the definition of
d; see §9), by Theorem 6, the assumptions of Proposition 10 are satis-
fied and, consequently, all bases in X are quasi-equivalent.

THEEOREM 13. Lot X = X X, L-countable, linearly ordered set. Assume

el
that X, = Ly, (b;, 72) are nuclear and [fy, ry] < [fi, 7] of A< X. Then
all bases in X are quasi-equivalent.

Proof. In every X, all bases are quasi-equivalent because of [7],
Theorem 6. For X = L;(a, #) the class K (X) consists of the spaces of the
same form IL;(d, ), where (b,) = () (up to a diagonal isomorphism).
Hence, to complete the proof it suffices to apply Theorem 9, considera-
tions of §15 and Proposition 10.
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