A. Vogt

48

So λ is rational and f is not R-linear.

(2.53) f preserves equality of distance.

Any additive map f from R into a normed real vector space Y preserves equality of distance. For, define $p(t) = \|f(t)\|$ for t in R_0^+ . Then for all x and y in R, $\|fx-fy\| = \|f(x-y)\| = \|\pm f(|x-y|)\| = \|f(|x-y|)\| = p(|x-y|)$.

Properties 2.51, 2.52 and 2.53 of Example 2.5 show that Theorem 2.4 fails if X is permitted to be one-dimensional.

References

- N. Aronszajn, Caractérisation métrique de l'espace de Hilbert, des espaces vectoriels et de certains groupes métriques, Comptes Rendus Acad. Sci. Paris 201 (1935), pp. 811-813.
- [2] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [3] Z. Charzyński, Sur les transformations isométriques des espaces du type F, Studia Math. 13 (1953), pp. 94-121.
- [4] S. Mazur et S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, Comptes Rendus Acad. Sci. Paris 194 (1932), pp. 946-948.
- [5] J. von Neumann and I. J. Schoenberg, Fourier integrals and metric geometry, Trans. Amer. Math. Soc. 50 (1941), pp. 226-251.
- [6] S. Rolewicz, A generalization of the Mazur-Ulam theorem, Studia Math. 31 (1968), pp. 501-505.
- [7] I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. 39 (2) (1938), pp. 811-841.

Received July 28, 1971 (372)

STUDIA MATHEMATICA, T. XLV. (1973)

On the conjugates of some function spaces

bу

MICHAEL CWIKEL (Rehovot)

Abstract. For p < 1 and the underlying measure space non atomic, $L(p, \infty)^* = \{0\}$. Results are also given in the atomic case.

I. Introduction. The function spaces L(p,q) form a two parameter family which incorporates the familiar L^p spaces $(L^p = L(p,p))$ as well as other important function spaces. The family L(p,q) is a convenient setting for interpolation theorems for operators, and so is of interest for problems in harmonic analysis.

The dual spaces $L(p,q)^*$ have been studied, and in many cases characterised. (See [1], [2]). This note considers the previously untreated case when $0 and <math>q = \infty$.

Throughout this note (X, Σ, μ) is a σ -finite measure space with $0 \le \mu$.

DEFINITION 1. For each measurable f we define

$$f_*(y) = \mu\{x \mid |f(x)| > y\}.$$

Confining ourselves to those f such that $f_*(y) < \infty$ for some y > 0 define.

Definition 2.

$$f^*(t) = \inf\{y | f_*(y) \leqslant t\}.$$

Definition 3. For $0 , <math>0 < q < \infty$

$$||f||_{p,a}^* = \left[\int\limits_0^\infty \left[t^{1/p}f^*(t)\right]^q \frac{dt}{t}\right]^{1/q}$$

and for 0

$$||f||_{p,\infty}^* = \sup_{t>0} t^{1/p} f^*(t)$$

Define also $L(p,q) = \{f \mid ||f||_{p,q}^* < \infty\}.$

A detailed discussion of L(p,q) spaces may be found in [2].

II. $L(p, \infty)^*$.

THEOREM 1. For 0 and non atomic measure space

$$L(p, \infty)^* = \{0\}.$$

Proof. For conciseness of presentation, take spaces over the real field. Assume a continuous linear functional φ exists on $L(p, \infty)$. Define the functional φ^+ on all $f \geqslant 0$ in $L(p, \infty)$ by

(2)
$$\varphi^+(f) = \sup\{\varphi(g)|\ 0 \leqslant g \leqslant f,\ g \text{ measurable}\}.$$
 It follows that

(3)
$$\varphi^+(\lambda f) = \lambda \varphi^+(f),$$

(4)
$$\varphi^{+}(f+g) = \varphi^{+}(f) + \varphi^{+}(g),$$

$$|\varphi^+(f)| \leqslant C ||f||_{p,\infty}^*$$

for all non negative f, g, in $L(p, \infty)$, all non negative scalars λ , and some fixed constant C. (3) and (5) are obvious. To prove (4)

$$\begin{split} \varphi^+(f) + \varphi^+(g) &= \sup \{ \varphi(h_1 + h_2) | \ 0 \leqslant h_1 \leqslant f, \ 0 \leqslant h_2 \leqslant g \} \\ &\leqslant \sup \{ \varphi(h) | \ 0 \leqslant h \leqslant f + g \}. \end{split}$$

For the reverse inequality, taking $\varepsilon > 0$, there exists $h \leq f + g$ such that

$$\varphi^+(f+g) \leqslant \varphi(h) - \varepsilon$$
.

Put $h_1(x) = \min\{h(x), f(x)\}, h_2 = h - h_1$. Then $h_1 \leqslant f, h_2 \leqslant g$. So $\varphi(h) = \varphi(h_1) + \varphi(h_2) \leqslant \varphi^+ h + (f) + \varphi^+(g) \leqslant \varphi^+(f) + \varphi^+(g)$.

Since ε is arbitrary, $\varphi^+(f+g) \leqslant \varphi^+(f) + \varphi^+(g)$.

By (3), (4), (5) φ^+ extends linearly to a continuous linear functional on all $L(p,\infty)$ with

$$\varphi^+(f) \geqslant 0$$
 for all $f \geqslant 0$.

 $\varphi^-=\varphi^+-\varphi$ is also in $L(p\,,\,\infty)^*$ with the same positivity property: $\varphi^-(t)\geqslant 0$ for all $f\geqslant 0$.

The set

$$K = \{ f \in L(p, \infty) \mid |\varphi^+(f)| \leqslant 1 \}$$

is convex, and contains some neighborhood of the origin, $N_a = \{f \mid \|f\|_{p,\infty}^* < \alpha\}$. To complete the proof it will be shown that K is the whole of $L(p,\infty)$ and thus $\varphi^+ = 0$. By identical reasoning $\varphi^- = 0$. This implies $\varphi = 0$ and so $L(p,\infty)^* = \{0\}$.

LEMMA 6. Let f be a step function in $L(p, \infty)$

$$f = \sum_{n=-\infty}^{\infty} a_n \, \chi_{A_n}$$

where the sets A_n are disjoint. Then $f \in K$.

Proof.

$$0 \leqslant f^*(t) \leqslant t^{-1/p} \|f\|_{p,\infty}^* \leqslant a 2^{(1/p-1)m} t^{-1/p}$$

for all t > 0 and some large enough integer m. Divide each set A_n into 2^m disjoint sets, $A_n^1, A_n^2 \dots A_n^{2^m}$, each of measure $2^{-m} \mu(A_n)$ and define 2^m functions in $L(p, \infty), f_1, f_2 \dots f_{2^m}$, where

$$f_i = \sum_{n=-\infty}^{\infty} a_n \, \chi_{\mathcal{A}_n^i}$$

$$f_i^*(t) = f^*(2^m t) \leqslant \alpha \ 2^{(1/p-1)m} \ 2^{-m/p} t^{-1/p}$$
 and so $2^m f_i \in N_a \subset K$.

Since K is convex

$$f = \sum_{i=1}^{2^m} f_i = 2^{-m} \sum_{i=1}^{2^m} 2^m f_i \epsilon K$$

proving the lemma.

Lemma 7. For arbitrary f in $L(p, \infty)$ there exists a step function $g = \sum_{n=-\infty}^{\infty} a_n \chi_{A_n}$ also in $L(p, \infty)$ such that $-g \leqslant f \leqslant g$.

Proof. Let Λ be the set of all positive numbers λ such that $|f(x)| = \lambda$ for all x on some set A_{λ} of positive measure. Λ is a countable set since (X, Σ, μ) is σ -finite. Accordingly if Λ is non empty write $\Lambda = \{\lambda_n^*\}_1^{\infty}$ and introduce the function

$$g_1 = \sum_{n=1}^{\infty} \lambda_n \, \chi_{A_{\lambda_n}}.$$

 $g_1 \in L(p, \infty)$ and for all $x \in A = \bigcup_{n=1}^{\infty} A_{\lambda_n}$

$$g_1(x) = |f(x)|, \quad \text{so } -g_1(x) \leqslant f(x) \leqslant g_1(x).$$

It remains to bound f by a step function on X-A. For the function $h=f\cdot\chi_{X-A}$ the equation

$$h_*(h^*(t)) = t$$

holds for all t > 0. This is a consequence of the inequalities

$$t - \mu \{x \mid |h(x)| = h^*(t)\} \leqslant h_*(h^*(t)) \leqslant t$$

which are readily deduced for any measurable function h from Definitions I.1 and I.2.

$$h^*(t) \leqslant t^{-1/p} \|f\|_{p,\infty}^* \leqslant 2t^{-1/p} \|f\|_{p,\infty}^*$$

On the conjugates of some functions spaces

Therefore $h^*(t) \leq s(t)$ where s(t) is a decreasing step function inscribed between the two curves $t^{-1/p} \|f\|_{p,\infty}^*$ and $2t^{-1/p} \|f\|_{p,\infty}^*$. The jumps of s(t) occur at the points $t = a_n$ where $a_n \downarrow 0$ as $n \to -\infty$, $a_n \uparrow \infty$ as $n \to +\infty$ (see Fig. 1.)

Figure 1.

Let

$$B_n = \{x \mid h^*(\alpha_n) < |h(x)| \le h^*(\alpha_{n-1})\}$$

= $\{x \mid |h(x)| > h^*(\alpha_n)\} - \{x \mid |h(x)| > h^*(\alpha_{n-1})\}$

so $\mu(B_n) = h_*(h^*(a_n)) - h_*(h^*(a_{n-1})) = a_n - a_{n-1}$. Introduce the function

$$g_2 = \sum_{n=-\infty}^{\infty} h^*(\alpha_{n-1}) \chi_{B_n}$$

 $g_2 \, \epsilon \, L(p \,,\, \infty) \ \text{ since } \ g_2^*(t) \leqslant s \, (t) \leqslant 2 t^{-1/p} \, \|f\|_{p,\infty}^* \ \text{ and for } \ x \, \epsilon \, X - A$

$$-g_2(x) \leqslant f(x) = h(x) \leqslant g_2(x).$$

Therefore $g=g_1+g_2$ is a step function in $L(p,\infty)$ satisfying $-g\leqslant f\leqslant g$, and the lemma is proved.

Furthermore by Lemma 6 $g \in K$ and by the positivity of φ^+ , $f \in K$. Therefore $K = L(p, \infty)$ and the theorem is proved.

III. $L(p, \infty)^*$ for a measure space with atoms. For a measure space containing atoms, $L(p, \infty)$ is a direct sum of the two subspaces of functions vanishing respectively on the atomic and non atomic portions of the measure space, and thus to describe $L(p, \infty)^*$ it is sufficient to treat the case where the measure space is purely atomic.

Put $X = \bigcup_{n=-\infty}^{\infty} A_n$, where $\{A_n\}_{-\infty}^{\infty}$ are the atoms arranged in order of increasing measure. (It may thus be in order to index with only the positive or only the negative integers.)

If
$$f = \sum_{-\infty}^{\infty} f_n \chi_{A_n} \epsilon L(p, \infty)$$
 then

(1)
$$\mu(A_n)^{1/p} |f_n| \leq ||f||_{p,\infty}^*$$
 for each n .

Thus every absolutely convergent series $\sum a_n$ defines a continuous linear functional by:

(2)
$$\varphi(f) = \sum a_n \mu(A_n)^{1/p} f_n.$$

In general $L(p, \infty)^*$ is strictly larger than the space of functionals of the above form. By (1), the linear transformation T,

$$T\left(\sum f_n \chi_{A_n}\right) = \left(\dots \mu(A_{-1})^{1/p} f_{-1}, \ \mu(A_0)^{1/p} f_0, \ \mu(A_1)^{1/p} f_1, \dots\right)$$

maps $L(p, \infty)$ continuously into the sequence space l^{∞} . If

(3)
$$\sum_{k=-\infty}^{n} \mu(A_k)/\mu(A_n) \leqslant C < \infty \quad \text{for all } n$$

T is readily seen to be a homeomorphism, and $L(p, \infty)^* \equiv (l^{\infty})^*$, the space of all bounded finitely additive set functions on the integers.

If (3) does not hold, the characterisation of $L(p, \infty)^*$ is rather more elusive. However, given some restrictions on the sequence $\{\mu(A_n)\}$, $L(p, \infty)^*$ consists solely of functionals of form (2) with the sequences $\{a_n\}$ ranging over a class larger than l^1 .

THEOREM 4. If (X, Σ, μ) is atomic and the atoms $\{A_n\}$ satisfy

(5)
$$a \leqslant \mu(A_n) \leqslant b$$
 for each n ,

where a and b fixed positive constants, then $L(p, \infty)^* \equiv l^{\infty}$ the correspondence being in the sense of equation (2).

Proof. Assume that

(5')
$$\mu(A_n) = 1 \quad \text{for all } n.$$

The same proof with a few technical elaborations works for (5) in place of (5').

On the conjugates of some functions spaces

55

The main step is to show that $L(p, \infty)^*$ is purely a sequence space in the sense of equation (2). This is equivalent to proving that any two functionals φ , ψ in $L(p, \infty)^*$ such that $\varphi(f) = \psi(f)$ for every simple function f must be identical.

For such a φ and ψ , $\theta = \varphi - \psi$ vanishes on all simple functions. Any function dominated by a simple function must also be simple, so θ^+ (Definition II.2) and also $\theta^- = \theta^+ - \theta$, both vanish on simple functions.

As in Theorem II.1, we prove $\theta = 0$ by showing

$$K = \{f \in L(p, \infty) | |\theta^+(f)| \leq 1\}$$
 to be all of $L(p, \infty)$.

K contains $N_{\alpha} = \{f \mid ||f||_{p,\infty}^{p} \leq a\}$ for some $\alpha > 0$. For arbitrary $f = \Sigma \beta_{n} \chi_{A_{n}}$ in $L(p, \infty)$ re-index the atoms using the positive integers so that the sequence $\{|\beta_{n}|\}$ is non-increasing.

$$0 \leqslant f^*(t) \leqslant t^{-1/p} \|f\|_{p,\infty}^* \leqslant \frac{1}{2} \alpha 2^{(1/p-1)m} t^{-1/p}$$

for all t > 0 and some large enough integer m. Choose an integer r satisfying

$$(6) r > 2^m (2^p - 1)^{-1}$$

and define the function g by

$$g = \sum_{n=1}^{r} |\beta_n| \, \chi_{A_n} + \sum_{k=0}^{\infty} |\beta_{r+k} \cdot 2^m + 1| \left(\sum_{j=1}^{2^m} \chi_{A_r + k2^m + j} \right).$$

For any integer k, observe that on the 2^m sets $\{A_{r+k2^m+j}\}_{j=1}^{2^m} g$ takes the constant value which is the maximum value taken by f on these 2^m sets. So on the interval $(r+k2^m, r+(k+1)2^m)$ $g^*(t)$ takes a constant value which in view of (6) lies beneath the curve $2 \|f\|_{p,\infty}^* t^{-1/p}$. Therefore $\|g\|_{p,\infty}^* \le 2 \|f\|_{p,\infty}^*$ and $g^*(t) \le a2^{(1/p-1)m}t^{-1/p}$.

But $g = s + \sum_{j=1}^{2^m} g_j$ where s is the simple function $\sum_{n=1}^r |\beta_n| \chi_{A_n}$ and $g_j = \sum_{k=0}^{\infty} |\beta_{r+k2^m+1}| \chi_{A_{r+k2^m+j}}$.

$$g_j^*(t) \leqslant g^*(2^m t) \leqslant \alpha 2^{-m} t^{-1/p}$$

so $2^m g_j \in N_a \subset K$ for each $j = 1, 2 \dots 2^m$, $\theta^+(s) = 0$ and by convexity of K,

$$g = 2^{-m} \sum 2^m g_j + s \, \epsilon K.$$

 $f \in K$ since $|f| \leq g$. This proves $\theta^+ = 0$ and similarly $\theta^- = 0$. Consequently $\theta = \varphi - \psi = 0$ and $L(p, \infty)^*$ is a sequence space.

To show finally that $L(p, \infty)^* \equiv l^{\infty}$ is a simple deduction from the observation that if $f = \sum a_n \chi_{A_n} \epsilon L(p, \infty)$,

$$\sum |a_n| \leqslant ||f||_{p,\infty}^* \sum_{n=1}^\infty n^{-1/p}.$$

The details are left to the reader.

Acknowledgement. I would like to thank Yoram Sagher for introducing the topic to me, and for his stimulating comments and suggestions.

References

- [1] M. Cwikel and Y. Sagher, $L(p, \infty)^*$, Indiana Univ. Math. J., 21 (1972), pp. 781-786.
- [2] R. A. Hunt, On L(p, q) spaces, Enseignement Math. 12 (1966), pp. 249-276.

DEPARTAMENT OF PURE MATHEMATICS WEIZMAN INSTITUTE OF SCHENCE REHOVOT, ISRAEL

Received September 22, 1971

(393)