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So A is rational and f is not R-linear.
(2.53) f preserves equality of distance.

serves equality of distance. For, define p(t) = |f(¢

all

Any additive map f from R into a normed real vector space Y pre-
)|l for ¢ in Ry, Then for

@ and y in R,|fe—fyl =f(e—yl = I+f(e—yDl = If(z—yDI

= p(lz—yl).

Properties 2.51, 2.52 and 2.53 of Example 2.5 show that Theorem 2.4

faily if X is permitted to be one-dimensional.
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On the conjugates of some function spaces

by
MICHARL CWIKEL (Rehovot)

Abstract, For p< 1 and the underlying measure space non atomic, L(p, oo)*
= {0}. Results are also given in the atomic case.

I. Introduction. The function spaces L(p, q) form a two parameter
family which incorporates the familiar L” spaces (L” = L(p,p)) as well
as other important function spaces. The family L(p, q) is a convenient
setting for interpolation theorems for operators, and so is of interest for
problems in harmomc analysm

The dual spaces L(p,¢)* have been studied, and in many cases
characterised. (See [1], [2]). This note considers the previously untreated
case when 0 <p <1 and ¢ = oo. .

Throughout this note (X, X, u) is » o-finite measure space with
0< p.

DerINITION 1. For each measurable f we define
Fu(y) = ufo] If(@)] >y}

Ceonfining ourselves to those f such that fi(y) < oo for some y >0
define.
DEPINITION 2.

f16) =int{yl fuly) <t}

DErINITION 3, For 0 <p < o0, 0 < g< 0

o dat g
s =[ [ weror 7]
and for 0 < p < o0
11l 0 = SUPE? f*(2)
>0

Define also L(p, ¢) = {f| Iflipe< o} ’
A detailed discussion of L(p, ¢) spaces may be found in [2].
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II. L(p, )"
TEROREM 1. For 0 < p <1 and non atomic measure space
L(p, o) = {0}.

Proof. For conciseness of -presentation, take spaces over the real
field. Assume a continuous linear functional ¢ exists on L(p, o). Define
the functional ¢t on all f= 0 in L(p, o) by

@) ¢ (f) = sup{p(g)| 0<g<f, g measurable}.
It follows that

(3) PT (&) = 2¢™ (),

(4) Pt (f+9) =" () +o™(9),

) ' e (1 < Ol

for all non negative.f, ¢, in. L(p, o), all non negative sealars 4, and some
fixed constant C. (3) and (5) are obvious. To prove (4)

ot () +ot(9) = sup{p(hi+ 1) 0<h<f, 0<
< sup{p(W)] 0 <h < f+g}
For the reverse inequality, taking e > 0, there exists & < f+4¢ such that
P (f+9) < p(h)—

Put hy(z) = min{h(z), f(x)}, by = h—hy. Then 2, <f, k< yg.

So ¢(h) = @ (b)) +ohy) < eth-+(f) -+t (9) < 9™ () + " (9)-

Since ¢ is arbitrary, ¢* (f+g) < ¢t (f) +9T (9)-

By (3), (4), (B) ¢" extends linearly to a continuous linear functional
on all L(p, o) with

he < g}

T(fy=0 for all £ 0.

o~ =gt —p is also in L(p,
e~ (#)=0 for all f=o0.
The set

co)* with the same positivity property:

E ={feL(p, )| lg* (NI <1}

is convex, and contains some neighborhood of the origin, N, = {f | [l 00 << @}
To complete the proof it will be shown that K is the whole of L(p, o)
and thus ¢* = 0. By identical reasoning ¢~ = 0. This implies ¢ == 0
and so L(p, oo)* = {0}.

LemmA 6. Let f be o step function in L(p, oo)

o0
3
f= 2 W X4,

N=—00

where the sets A, are disjoint. Then feK.}

icm
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Proof.

O ) < flly, 0 < a2P UMy R

for all £ > 0 and some large enough integer m. Divide each set 4, into 2™

disjoint sets, A%, A2 ... AZ", each of measure 27" u(4,) and define 2™
functions in L(p, o), fi,fs... fon, Wwhere

[o=]
D Ol

Nz — 00
FHE) = f*(2™) < a 20p-Um g=mipy=lr and o 2™feN, = K.
Since K is convex
2m
f=Df=2" 22’”1261(
'L=l

proving the lemma.

LemMA 7. For arbitrary f in L(p,
g = 2 Oy, X4, also in L(p,

Hmm =m0

Proof. Let A be the set of all positive numbels 2 such that [f(»)| = 1
for all @ on some set A, of positive measure. A is a countable set since
(X, Z, u) is o-finite. Accordingly if 4 is non empty write 4 = {i,}{* and
introduce the function

oo) there ewists a step function

o) such that —g <f<

I =ZZnXA1n'

=1

g1e I(p, 00) and for all wed = {J 4,,
=]

50 —g:(2) < f(o) < g1 ().

— A. For the function

gu(@) = 1f(@)l,

Tt remains to bound f by a step function on X
»»»»» = fo gy the equation

ha(B* () = ¢
holds for all ¢ > 0. This is a consequence of the inequalities
b u{a] (o 0} < hae(B* (1)) < 8

which are readily deduced for any measurable function A from Definitions
L1 and I.2.

@) = h*(

B (0) < T IFI 0 < 2872 1, oo
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Therefore h*(t) < s(t) where s(¢) is a decreasing step function inseribed
between the two curves t™'?[f|F . and 2¢77|f|» .. The jumps of s(t)
occur at the points ¢ = a, where a,) 0 as % —» —o0, a,1c0 a8 # — -+ oo
(see Fig. 1.)

S(t) £y, .tV

*
7115 t VP

| | 1
%p-1 %n %n4t t

Figure 1.
Let
B, = {o] ¥ (an) < [B(@)] < B*(a,-1)}
= {&| h(®)] > 1" (a,)} — {&] (@) > W*(a_,)}
80 4 (B,) = hi(R* () »—h*(h*(an_l)) = Oy~ Op_q.
Introduce the function

00

g2 = 2 h*(annl)xu,,

1= — 00
gaeL(p, o0) since g} (1) < s(t) < 2| f|% . and for @eX — A

~9:(2) <f(@) = b(2) < ga(w).

1

Therefore g = g, + g, is & step function in L(p, o) satisfying — g<f<y,
and the lemma is proved. :

Furthermore by Lemma 6 geX and by the positivity of rp"“, fel.
Therefore K = L(p, o) and the theorem is proved.

icm
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II. L(p, co)* for a measure space with atoms. For 4 measure space
containing atoms, L(p, oo)is a direct sum of the two subspaces of functions
vanishing respectively on the atomic and non atomic portions of the
meagure space, and thus to deseribe L(p, oo)* it is sufficient to treat the
case where the measure gpace is purely atomic.

Lo
Put X = | 4,, where {4,}%, are the atoms arranged in order of
Ty e 00
increasing meagure. (It may thus be in order to index with only the positive
or only the negative integers.)
00

I f= %,lf“ %4, <L(p, 00) then

1 ‘ (AR 1 fal S N1, o0

Thus every absolutely convergent series > a, defines a continuous linear
funectional by:

2) P(f) = D) anps(An)"f,-

In general L(p, oo)* is strictly larger than the space of functionals
of the above form. By (1), the linear transformation T,

T(Z fn%zin) = RADPF 1y w(Ao)foy p(A0)"¥ 1, )

maps L(p, oo) continuously into the sequence space I”. If

for each =.

n

(®) D A4 <0< oo

F= o0

for all n

T iy readily seen to be a homeomorphism, and L(p, co)* = (I°)*, the
gpace of all bounded finitely additive set functions on the integers.

Tt (3) does not hold, the characterisation of L(p, oo)* is rather more
elusive. However, given some restrictions on the sequence {u(4,)}, L(p, oo)*
congists solely of functionals of form (2) with the sequences {«,} ranging
over a class larger than It

TunornM 4. Jf (X, Z, u) is atomic and the atoms {4} satisfy

(8) a<p(d,)<b  for each n,

where o and b fived posilive constants, then L(p, co)* =17 the correspond-
once being in the sense of equation (2).
Proof. Assume that

(5" u(4,) =1 for all n.

The same proof with a few technical elaborations works for (5) in place

of (5).
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The main step is to show that L(p, co)* is purely a sequence space
in the sense of equation (2). This is equivalent to proving that any two
functionals ¢, y in L(p, co)* such that ¢(f) = y(f) for every gimple funec-
tion f must be identical.

For such a ¢ and p, 6 = p—1y vanishes on all s1mple functions. Any
function dominated by a simple function must also be simple, so 6+
(Definition I1.2) and also 6~ = 6™ —06, both vanish on simple functions.

As in Theorem ILL, we prove 6 = 0 by showing

= {feL(p, )[I6*(f)I<1}  to be all of L(p, o).

K contains N, = {f| |fl5o<a} for some a>0. For arbitrary
f = ZBuya, in L(p, o) re-index the atoms using the positive integers
5o that the § sequence {|8,|} is non-increasing.

0 < (8) <TI0 < F a0y

for all > 0 and some large enough integer m. Choose an integer » satis-
fying

(6) 7> 2m(2° —1)7!

and define the function g by

g= 2 1Bl 2y, Z Br 2] (Z%Arl—kzm-{ ,)

For any integer k, observe that on the 2™ sets {A,.,|_,czm+,},,,,1 g takes the
constant value which is the maximum value tayken by f on these 2™ sets.
So on the interval (7 -+ k2™, H—(Io-{—l)’)'m) g (#) takes a constant value
which in view of (6 ) lies beneath the curve 2|if|}; ot~ 7. Therefore 1915 00
<20l aRA - g7(0) < a0

2

But 9= s+ y g; Where s is the simple function > [[}"[ 24, and g;

il
= 2, ‘ﬁﬂ+k2m+ller+mm+J

9 (1) < g"(2™1) < 027
80 2"g;eN, = K foreachj =1,2...2", 0% (s) = 0and by convexity of K,
g = 2“”‘2 2"‘9,;»%345](.
fel since |f| < ¢. This proves 67 = 0 and similarly 0= == 0. Consequently
0 =@p—y =0and L(p, co)*isa sequeno space.

To show finally that L(p, oo)* = I iy a simple doduction from the
observation that if f= Ya, X, eL(p, o0,

3 ol < Iflf S0,

Ne=l

The details are left to the reader.

On the conyugates of some funclions spaces 55

Acknowledgement. I would like to thank Yoram Sagher for
introducing the topic to me, and for his stimulating comments and sug-
gestions.

References

[1] M. Cwikel and Y. Sagher, L(p, co)*, Indiana Univ. Math. J., 21 (1972),
pp. 781-786,
(21 R. A. Hunt, On L(p, q) spaces, Engeignement Math. 12 (1966), pp. 249-276.

DUPARTAMENT OF PURE MATHEMATICS
WHIZMAN INSTITUTE OF SCLINOE
REHOVOT, ISRAKL

Reoeived September 22, 1971 (393)


GUEST




