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On generalized right modular complemented algebras

by
T.HUSAIN* and PAK-KEN-WONG** (Hamilton, Canada)

Abstract. In this paper, we introduce a class of algebras called generalized right
modular complemented algebras (g.r.m.c.). Some fundamental properties of these
algebras are obtained. For example, it is shown that a generalized right modular
complemented algebra which containg no proper two-sided ideal with zero annihilator
is the direct topological sum of its minimal closed two-sided ideals each of which is
a simple g.r.m.c. algebra.

1. Introduction. In [5], Yood introduced a eclass of algebras called
modular complemented algebras. A structure and ideal theory is devel-
oped for these algebras. The present work is an attempt to generalize
these algebras.

In § 2, which is introductory in nature, we give the concept of gen-
eralized right modular complemented (g.r.m.c.) algebras. A structure the-
orem for these algebras is obtained in § 3. In § 4, we study induced com-
plementors by given complementors. Finally in §5, we investigate the
relationship between g.r.m.c. algebras and modular annihilator algebras,

2. Notation and preliminaries. Let 4 be a topological algebra, R
the set of all non-zero closed right ideals of A and I the set of all closed
modular maximal right ideals of A. We call A a generalized right modu-
lar ecomplemented algebra if it satisfies the following properties:

(2.1) there exists a mapping p from M into R such that M n M* = (0)
for all M. '
(2.2) N{M: MM} = (0).

The mapping p is called a complementor on A. A generalized right
modular complemented algebra will be abbreviated to g.r.m.c. algebra.
It is clear that a g.r.m.c. algebra ig semi-simple.

Analogously we define a generalized -left modular complemented
algebra. We shall restrict our attention to g.r.m.c. algebras with the remark
that similar properties hold for generalized left modular complemented
algebras.
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For any subset F in an algebra 4, let L(E) (R(%)) denote the left
(right) annihilator of B in A. Suppose A is endowed with a topology.
Then we call .4 an annihilator algebra provided that, for every closed left
ideal M and for every closed right ideal I, we have R(M) = (0) if and
only if ¥ =4 and L(N) = (0) if and only f N = 4. If M = L(R(M))
and N = R(L(N)), then A is called a dual algebra.

Let X be a topological space and ¥ a subset of X. Then cl(H) will
denote the closure of ¥ in X.

In this paper, all algebras and linear spaces under consideration are
over the complex field O. .

3. A Structure theorem. Various forms of the following lemma are
probably well known.

Lzvma 3.1, Let A be a g.r.m.c. algebra with a complementor p and M
a closed modular maximal right ideal of A. Then there ewists unique mini-
mal idempotent & of A such that M = (1—e) A and M? = eA.

Proof. Let f be a left identity for 4 modulo M. Since M? = {0}

and since M is a maximal ideal and M+ M7 is an ideal, M -+MP = A.

- Therefore we can write f = m--¢, where meM and e<M®. It is eagy to
see that ¢ is also a left identity for 4 modulo M. Let @ eMP. Since % — ox
eM N M, we have » = ex. Hence MP = ¢d and ¢ = o. It follows now
that (1—e)d = M.

Suppose there is an idempotent ¢’ such that ¢’ 4 = M? and (1—eHd
= M. Then ¢'<L(M) = Ae. Therefore ¢’ = ¢'e. Since ¢—e' el N MP,
We have ¢ = ¢'¢. Therefore ¢ = ¢'¢ = ¢’ and 50 ¢ is unique. This completes
the proof.

We now establish the following structure theorem for a g.r.m.c.
algebra.

TEBOREM 3.2. Let A be a g.r.m.c. algebra which contains no proper
two-sided tdeal with zero annihilator. Then A s the direct topological sum
of its minimal closed two-sided ideals each of which is a simple g.r.m.o.
algebra.

Proof. Let NV be a closed maximal modular right ideal of 4. By Lemma
3.1, N = (1—e) 4 for some minimal idempotent ¢. Henee the socle & of A
is defined. Let w<R(S). Since ¢<S, we have # = o —ope ¥, Since N is
arbitrary, it follows from (2.2) that # = 0 and so by assumption, § is
dense in 4. Therefore by ([4], p: 41, Lemma 3.11) A is the topological
direct sum of its minimal closed two-gided ideals.

Let I be a minimal closed two-sided ideal of 4. We show that I
is a g.r.m.c. algebra. Let S; be the socle of I. By ([4], p. 41, Lemma 3.10),
8 =8n1I=48I=1I4 Since § is dense in 4, it follows. that §; = (0)
and 8o cl(8;) = I. Let M be a closed maximal modular right ideal of I.
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Since M $ Sp, by ([4], p. 38, Lemma 3.3), we can write M = (1—e)I,
where ¢ i§ a minimal idempotent of I. By the proof of ([4], p. 41, Lemina
3.10), ¢ is a minimal idempotent of 4. Henee N = (1—e)A is a cloged
modular maximal right ideal of A; clearly M = N n'I. We show that
N? nI #(0), where p is the given complementor on 4. Suppose this’
is mob true. By Lemma 3.1 we can write ¥” = f4 and N = (1 —f)4 for
some minimal idempotent fed. Since N?I < N? NI = (0), it follows
that fI = (0). Hence I = (L—f)I <« N. Therefore M =N nI =1,
a contradiction. This shows that N? N I s (0). Since N® is a minimal
right ideal, we have §? < I. Now define M® = N?. Itis clear that M* ~ M
= (0). Therefore condition (2.1) is satisfied. Let N be a closed modular
maximal right ideal of A and write N = (1—é)4 for some minimal
idempotent ¢ in A. Suppose N NI = (0). If e¢I, then ed N I = (0) and
80 eI = (0). Therefore I = (1—e)I = N. If ¢cl, then (L—6)I = N N 1.
Hence we have either ¥ = I or ¥ N I is a closed modular maximal right
ideal of I. We have shown before that each closed maximal modular
right ideal M of I is of the form M = N n I. It follows riow that condi-
tion (2.2) holds for I. Hence I is a g.r.m.c. algebra. This completes the proof.

4. Annihilator Banach algebras, In this section, 4 will be a semi-
simple Banach algebra with norm ||- || which is a dense subalgebra of a semi-
simple Banach algebra B with norm |-|. Further 4 and B have the
following properties: ‘

(i) There emists a constant & such that k|»| = lw| for oll zed, %.6.,
II*1l majorizes |-|.

(i) Bvery proper closed left (right) ideal 4n B is the intersection of
maximal, modular left (réght) ideals in B.

If A is an A*-algebra and B is the completion of 4 in an auxiliary
norm, then the above conditions automatically hold (see [3]).

Notation. For any subset B of A, el (B) (resp. cl(H)) will denote
the closure of H in 4 (resp. B).

LummA 4.1. Suppose for each minimal idempotent ¢ of A, we have
Ae == Be and eB = ed. If A has the dense socle, then A and B have the
sama socle.

Proof. Let § be the socle of 4. It is clear that § is contained in the
socle of B. By assumption, § is a two-sided ideal of B. Let f be a minimal
idempotent in B. Since § is dense in A, it follows that § iy dense in B.
Therefore fB N 8 5 (0) and so fefB <« § = A. Thus the socle of B is
contained in §. Hence 4 and B have the same socle. '

LemyMa 4.2. If A has dense socle, then B is a dual algebra.

Proof. Thig is proved in [3].
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THEOREM 4.3. Let 4 and B be given as before. Then the following
statements are ' equivalent:

(i) A 48 an annihilator algebra.

(i) The socle 8 of A is dense in A and eA = ¢B; Ae = Be for all mini-
mal idempotent ¢ of A.

Proof. (i) = (ii). This follows immediately from ([2), p. 100, Oorollary
(2.8.16)) and the proof of Lemma 3.2 in [3].

(ii) = (i). Suppose (ii) holds. Let us assume first that 4 iy simple.
Then B is simple. In fact let M be a non-zero closed two-slded ideal of B
and let § be the socle of 4. By Lemma 4.1, § is the socle of B. Hence M
contains a minimal idempotent e¢ of A. Therefore M o AeA. Since A4
is simple, ol (Aed) = A and so M > cl(4) =B. Hence M = B and
therefore B 'is simple.

' Let ¢ be a minimal idempotent of A and let I = A4e. Since Ad¢ = Be, I
is a minimal left ideal of 4 and B. It is clear that |- || and [-| are equiva-
lent on I. By ([2], p. 61, Theorem (2.4.12)), 4 and B can be considered
as operator algebras on’ I. Since by Lemma 4.2, B is a dual algebra, it
follows from ([2], p. 101, Lemma (2.8.20)) that B contains all operators
with finite rank on I. By ([2], p. 104, Theorem (2.8.23)), I is reflexive.
Since A and B have the same socle 8§ and since § coincides with the set
of all operators with finite rank on I, it follows that A contains all operators

~ with finite rank on I. Since el (8) = 4 and since I is reflexive, 4. is an
annihilator algebra by ([2], p. 104, Theorem (2.8.23)).

Now suppose that 4 is not simple. Let ¢ be a minimal idempotent
in 4 and let J = cl (Aded). Then J is a minimal closed two-sided ideal
of A and J is simple. Let K = cl(J). Since B is a dual algebra so is K

y ([2], p. 100, Theorem (2.8.14)). Hence J is an annihilator algebra.

Since 4 has dense socle, A is equal to the topological sum of its minimal
closed. two-sided ideals. Therefore by ([2], p. 106, Theorem (2.8.29)), 4
is an annihilator algebra. This completes the proof.

COROLLARY 4.4. A s annihilator algebra if and only if A and B have
the same socle 8 and cly (S) = A.

Proof. This follows from Lemma 4.1 and Theorem 4.3.

THBOREM 4.5. Let A be an annihilator algebra and p a complementor
on A. Then p induces a complementor p’ on B.

Proof. By Corollary 4.4, 4 and B have the same socle. Let M bo
& maximal modular right ideal of B. Then we can write M = (1 —o)B,
where ¢ is a minimal idempotent in A. Let ¥ = (1L—¢)d4 and so N is
a maximal modular right ideal of 4. Mence we can write N = (1—f) 4
and N? = fA, where f is a minimal idempotent of A. Define M?" = fB.
It is easy to show that p’ is a eomplementor on B and the proof is complete,

‘We now establish the converse of Theorem 4.5.
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THEOREM 4.6. Let A be an annihilator algebra and let p' be a comple-
mentor on B. Then it induces a complementor p on A.

Proof. Let N be a maximal modular right ideal of A and write

= (L—¢)4 with ¢ a minimal idempotent in A. Then M = cl(X)

= (L—e)4 is 2 maximal modular right ideal of 4. It is clear that N

= M n .A. We can write M = (1—f)B and M¥ = fB, where f is 2 minimal

idempotent in B. By Corollary 4.4, fed. Let N* = fA. It is easy to see
that p is a complementor on. 4. This completes the proof.

5. Miscellaneous properties of g.m.r.c. algebras. An algebra A4 is
called a modular annihilator algebra if, for every maximal modular left
ideal I and for every maximal modular right ideal J, we have R(I) = (0)
if and only if I = 4 and L(J) = (0) if and only if J = 4.

TaworEM 5.1. Let A be a semi-simple topological *-algebm with con-
linuous involution * such that x+x = 0 implies x = 0. Suppose every mawi-
mal modular right ideal of A is closed. Them A is a modular annihilator
algebra if and only if it is a g.r.m.c. algebra.

Proof. Suppose that A is a modular annibilator algebra. Let M
be a maximal modular right ideal of A. Define M? = L(M)*. It is clear
that M?® is a closed right ideal of 4. If xeM? N M then &*<L(N) and so
oxw = 0. Hence x = 0. Therefore M? N M = (0). Hence 4 is a gr.m.c.
algebra. The converse of the theorem follows easily from Lemma 3.1.

OOROLLARY 5.2. Let A be o Bx*-algebra. Then A is o dual algebra if
and only if it is g.r.m.c.

Proof. This follows immediately from the above theorem and ([4],
p. 42, Theorem 4.1).

THEOREM 5.3. Let A be a semi-simple commuiative topological algebra.
Then we have :

(i) If A is g.r.m.c., then A has a unique complementor.

(ii) Suppose every modular maximal ideal M of A is closed.

Then A is o modular annihilator algebra if and only if it is g.r.m.c.

Proof. (i). Suppose 4 is gr.m.c. and p is a given complementor
on A. Let M be a closed modular maximal right ideal of 4. Since M*M
o M N MP = (0), we have M* < L(M). If we L(M) N M, then 2M = (0)
and 2.M? = (0). Henece w4 = (0) and so # = 0. Therefore L (M) N M = (0).
Since L(M) > M? and A = M+M?, it follows that L(M) = MP. There-
fore p is uniquely determined.

(ii). Suppose 4 iz a modular annihilator algebra. For each maximal
modular ideal M of A, let M? = L(M). It is clear that M N M* = (0).
Hence A is gr.m.c. The converse follows from Lemma 3.1 and this
completes thé proof.
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Maps which preserve equality of distance

by
ANDREW VOGT (Corvallis, Oreg.)

Absteact. If f: X — ¥ is a continuous surjection, f(0) = 0, and ||fz — fy|| depends
functionally on |z —yl, then f is linear.

A theorem due to Mazur and Ulam ([2]; p. 166 and [4]) states that
every isometry of a normed real vector space onto a normed real vector
space is linear up to translation. Charzyrniski [3] and Rolewicz [6] have
shown, respectively, that surjective isometries of finite-dimensional
F-spaces and of locally bounded spaces with concave norm are
also linear.

The present paper extends the result of Mazur and Ulam in a differ-
ent direction. The spaces remain normed real vector spaces, but we
replace isometries by the more general notion of equality of digtance
preserving maps, maps with the property that the distance between image
points depends functionally on the distance between domain points.

‘We prove in Section 1 that every continuous equality of distance
preserving map from a normed real vector space onto a normed real
vector space is affine-linear. This result generalizes the Mazur—Ulam
theorem and yields a characterization of the similarity group of a space
which does not presuppose linearity. In Section 2 the continuity hy-
pothesis of Section 1 is shown to be a consequence of surjectivity when
the domain has dimension =2,

Schoenberg [7] and von Neumann and Schoenberg [5] investigated and
clagsified all continuous equality of distance preserving maps from one
geparable or finite-dimensional ¥ilbert space into another. Corollary 2.3
in Section. 2 shows that their continuity assumption is also redundant
when the domain has dimension > 2.

L. Let R denote the set of non-negative real numbers. Let X and ¥
be normed real vector spaces of dimension > 1, the norms in each space
being denoted by the symbol || .

DeriNirroN L1. A map f: X — Y preserves equality of distance itf
there exists a function p: R — By such that for each 2 and y in X
llfe—Ffyll = p(le—yl). The function p is called the gauge function for f.
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