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ProBLEM 1. If B is a Fréchet space with o basis in which oll block basic
sequences have block extensions, must E be either a Banach space or iso-
morphic 1o w?

One property of w which seems to be of importance for the existence
of block extensions is the fact that « has no continuous norms.

A more general question, which in the case of nuclear Fréchet spaces
is closely related to the existence of complements for subspaces with bases,
is the following: .

PRrROBLEM 2. If (y™) is a block basic sequence (or any basic sequence)
in & Fréchet space B with a basis, is there any basis for I containing (y")
as a subsequence?

Thus, for the example given in Section 3, there may be some less
restrictive method for obtaining an extension.

References

[1] 8. Banach, Théories des Operations Linearies, Warszawa 1932.
[2] C. Bessaga, Some remarks on Dragilev’s theorem, Studia Math. 31 (1968),
pp. 307-318.
[3] — and A. Pelczyiiski, .Propemes of bases in BQ-spaoes, Prace Mat. 3 (1959),
. 123-142,
[4] E Dublnsky, Echelon spaces of order oo, Proc. Amer. Math. Soc. 16 (1965),
pp. 1178-1183.
(8] ~— Perfect Fréchet spaces, Math. Ann. 174 (1967), pp. 186-194.
[6] — and J. R. Retherford, Schauder bases and Kithe sequence spaces, Trans.
Amer. Math. Soc. 130 (1968), pp. 265-280.
[7] A. Grothendieck, Produils tensorial topologiques et espaces nucléaires, Mem.
Amer. Math. Soc. No. 16 (1955).
[8] G. Kéthe, Topological Vector Spaces I, New York 1969.
[9] B. 8. Mitiagin, Nuclear spaces and bases in nuclear spaces, (Russian) Uspehi
Mat, Nauk, Vol. 16, No. 4. .
[10] — Fréchet spaces with a unique unconditional basis, Studia Math 38 (1970),
pp. 23-34.
[11] A. Pietsch, Nukleare Lokalkonvexe Riume, Berlin (1965).
[12] A. Pelezyiski, Some problems on bases in Bamach and Fréchel spaoes, Tsracl
J. Math. 2, (1964), pp. 132-138.
[13] — Universal bases, Studia Math. 32, (1969), pp. 247-268.
[14] J.R.Retherfordand C. W. McArthur, Some remarks on bases in linear topolo-
gical spaces, Math. Annal. 64 (1966), pp. 38-41.
[15] M. Zippin, 4 remark on bases and reflemivity in Banach spaces, Tsrael J. Math.
6 (1968), pp. 74-79.

CLARKSON COLLEGE OF TECHNOLOGY
POTSDAM, NEW YORK

Received December 28, 1970 (406)

icm®

STUDIA MATHEMATICA, T. XLV. (1973)

On the differentiability of Lipscliitz mappings in Fréchet spaces
by
P. MANKIEWICZ (Warszawa)

Abstract. The probem of differentiability of mappings from a subset of a Fré-
chet space into another Fréchet space satisfying the first order Lipschitz condition
is studied. Some extensions of the classical theorem of Rademacher are obtained.
Applications of the result to the problem of the topological classification of Fréchet
spaces are given.

1. Introduction. A classical theorem of Rademacher [11], [6] states
that for every mapping F from the cube C, in R" into R™ satisfying the
first order Lipschitz condition, the differential (DF), exists for almost
all  in O,. The aim of this note is to give an extension of this theorem
for the case of a mapping F satisfying the first order Lipschitz condition
from a subset of a Fréchet space into another Fréchet space.

Some difficulties arise with the definition of the first order Lipschitz
condition. (A simple example of a Fréchet space X and two metrics o,
and g, on X can be given such that the identity mapping I from (X, ¢,)
onto (X, g,) does not satisfy the first order Lipschitz condition with res-
pect to the metrics o, and g,). This leads us to apply the definition in-
troduced in [9] which states that the mapping F from X into Y satisfies
the first order Lipschitz condition if and only if for every continuous
pseudonorm on ¥ there exists a continuous pseudonorm on X such that ¥

. induces a mapping between suitable quotient spaces satisfying the first

order Lipschitz condition (with respect to the norms).

The other difficulty is the following. There are known examples
in which a mapping satisfying the first order Lipschitz condition from
the interval [0, 1] into a Fréchet space ¥ does not possess a differential
at any point of the interval [0, 1]. For example the mapping F from the
interval [0, 1] into L, ([0, 1]) defined by the formula

F(t) = a0 for 1[0, 1],

where y,, denotes the characteristic function of the interval [0, ¢].
(A similar example can be given for the space ¢,).

On the other hand Gelfand proved in [7] (see also [6]) that for every
mapping F from the interval [0, 1] into a separable conjugate Banach
space X satisfying the first order Lipschitz condition, the derivative F’(¢)
exists for almost all ¢ in [0, 1] with respect to one-dimensional Lebesgue
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measure. It seems to us to be reasonable to restrict our considerations
to the case of mappings satisfying the first order Lipschitz condition into
Fréchet spaces which satisfy the following property:

(GF) For every mapping F from the interval [0, 1] into X salisfying the
first order Lipschite condition the derivative F'(8) ewists for almost
all t in [0,1].

A Fréchet space satistying the property (GF) is said to be a Gelfand-
Fréchet space.

In Section 2 we study some immediate consequences of the defi-
nition of Gelfand-Fréchet space. We prove that the class of Gelfand—
Fréchet spaces is rather rich (it contains some important well known
spaces), however it does not contain any space with a subspace isomorphic
to L, or ¢,. Moreover we prove that the property “being the Gelfand—
Fréchet space” is in fact a “separable property”.

In Section 3 we consider the existence of the derivatives of mappings
from a Hilbert cube into a Gelfand—Fréchet space satisfying the first
order Lipschitz condition. We obtain some extensions of the theorem of
Gelfand which are useful in Section 4. We prove that in suitable sense,
for every such mapping and every direction in the cube the derivative
in this direction exists for almost all points in the cube.

Section 4 contains the main results of this note. In this section we
study the differentiability of mappings satisfying the first order Lip-
sehitz condition from a Hilbert cube into a Gelfand—Fréchet space in
order to derive an extension of the theorem of Rademacher (Theorems 4.4:
and 4.5). We prove that if F is a mapping from the Hilbert cube @ into
& Gelfand-Fréchet space satistying the first order Lipschitz condition
then the differential (DF), exists for almost all p in Q. The corresponding
result for mappings from a separable Fréchet space into a Gelfand—Fréchet
space is proved too.

In the last section we give some applications of Theorem 4.5 to the
problem of the topological classification of Fréchet spaces.

We thank prof. Figiel who read the manuseript and made many
suggestions for simplifying several of our proofs.

2. Gelfand-Fréchet spaces. Unless otherwise specified, all vector
spaces will be assumed to be vector spaces over the field R of the reals.

Let X and Y De locally convex spaces and let 4 < X,

DerFINTION 2.1. The mapping F from 4 into Y is said to sabisty
the first order Lipschitz condition if and only if for every continuous pseudo-
norm @(-) on Y there exists a continuous pseudonorm P(-) on X such
that for every pair »y, z,¢4 the following inequality holds

Q(—F(Wﬂ ‘“F(mz)) < Pz —a,).
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Observe that if X and ¥ are Banach spaces then the definition above
coincides with the standard definition (with respect to the metrics).
In the following we shall often say “F is a Lipschitz mapping” instead
of “F satisfies the first order Lipschitz condition”.

Let F he a Lipschitz mapping from a subset 4 = X into ¥ and
let wed, aeX be such that x+Aaed for sufficiently small A¢R.

DmprNIrIon 2.2. The mapping F is said to possess a derivative ab
the point # and in the direction a iff

lim F(x+Aa) — F ()
A0 A ,
exigts (in the topology of ¥). If it exists we denote this limit by F, ().

Let I denote the interval [0, 1]. In the following we shall consider I
as a subset of a one-dimensional Banach space (R, |-|).

If ¥ is a Lipschitz mapping from I into ¥ then it is easy to see that
for every wel and every 0 s acR, the existence of F.(x) is equivalent
to the existence of lf’a' (x) for every 0 # @eR. In this case we say that
the mapping F' possesses the derivative at the point # and we write 7" ()
instead of Fi(z).

TEmoREM 2.3. (Gelfand) Let F be o Lipschite mapping from I into
a Banuch space Y. Then F possesses a derivative F' (x) for almost all @ in I
(with respect to the one-dimensional Lebesgue moasure p') provided that Y
is isomorphicaly embeddable in a separable conjugate() Baniach space.

DEFINITION 2.4. A Fréchet space X iy said to be a Gelfand—Fréchet
space (abbreviation “a GF-space”) iff for every Lipschitz mapping F from I
into X, F possesses a derivative F'(x) for almost all # in I (with respect
to the one-dimensional Lebesgue measure).

The following theorem is an easy consequence of Definition 2.4 and
Theorem 2.3.

THROREM 2.5. (i) every reflewive Banach space is a GF-space,

(ii) every closed subspace of a separable comjugate Bamach space is
a GF-space.

Turorem 2.6. (i) every closed subspace of a GF-space is a GF-space,

(ii) @ finite or countable Cartesian product of GH-spaces is a GI-space,

(itl) @ space isomorphic to o GF-space is a GF-space.

Proof. (i) and (iil) are trivial. In order to prove (ii) it is enough to
observe that a mapping F from I into a Cartesian product of Fréchet
spaces satisfies the first order Lipschitz condition if and only if for every

() A Banach space ¥ is said to be a m\j‘}:ga’ce space iff there exists a Banach
gpace X such that X* = ¥.

2 — Studia Mathematica XLV.1
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neN the mapping P,oF satisfies the-first order Lipschitz condition,
where P, denotes the canomical projection onto the nth component of
the product. -

COROLLARY 2.7. Let X be o Fréchet space. If the topology on X oan
be defined by o sequence of pseudonorms {P,}nay such that the completion X,
of a quotient space X, = X [P, is a GF-space for n =1,2,... then X s
o GF-space.

Indeed, in this case we have that X is isomorphic to a closed subspace
of the Cartesian product ¥ = [] X, and Corollary 2.7 becomes an easy

n=1
consequence of Theorem 2.6.

The following theorem shows that in fact the property “being a GF-
space” is a “separable” property.

THEOREM 2.8. A Fréchet space X is a GF-space if and only if every
closed separable subspace of X is a GI-space.

Proof. Since by Theorem 2.6 every closed subspace of a GF-space
iz a GF-space it is sufficient to prove that if every separable closed sub-
space of a Fréchet space X is a GF-space then X is a GF-space. Let ¥
be a Lipschitz mapping from I into X. The space X, = spanF'(I) is a sep-
arable closed subspace of X, hence it is a GF-space. It follows from the
definition of GF-spaces that the derivative F'(w) exists for almost all
in I, if we consider F' as a Lipschitz mapping from I into X,. This implies
that the derivative I (x) exists for almost all » in I, if we consider I
as a Lipschitz mapping from I into X, which concludes the proof of the
theorem. )

THEOREM 2.9. Hvery Montel-Fréchet space is a GF-space.

Proof. Let X be:a Montel-Fréchet space and let {£,},.v be a funda-
mental sequence of continuous linear functionals on X. Let ' be a Lip-
schitz mapping from I into X, Consider the mappings f, = &,0F for
#=1,2,... from I into E. Obviously for every ne<N the mapping f,
satisfies the first order Lipschitz condition. Hence by a well known the-
orem from the theory of real functions we have that the measure of the set

M = {wel: f,(») exists for n =1,2,...}

is equal to 1. This implies that for every xeM the differential quotient

Iz 2)—F ()
9a(@) = T

is weakly convergent as 2 — 0 with respect to the fundamental system of
functionals. Since for the Montel-Fréchet space such a convergence of
a bounded sequence is equivalent to the strong convergence we conclude
that the derivative F'(x) exists for every # <M and the theorem is proved.
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3. The existence of the derivatives. We start with two facts which
are immediate consequences of the Fubini Theorem.

LevmA 3.1, Let (Xy, p,) and (X,, py) be two measure spaces with
p(Xy) < 0o and py(X,) < co and let 8 be a measurable subset of the prod-
et measure space (XX Xa, py X fiy) such that for almost all e X, we have
l"l({mlexl: (w1, mz)fs}) = 0.
Then (uq X ) (8) = 0.

For every neN denote by u™ the n-dimensional Lebesgue measure
on R". Then we have the following corollary.

COROLLARY 3.2. Let 0 # acR" and S be a measurable subset of R™ with
the property that for every xS the one-dimensional measure of the set
8 n{peR": p =a+la, AR}
is equal to 0. Then p"(S) = 0.

LemmA 3.3. Let A be an open subset of R™ and let F be a Lipschitz
mapping from A into a GF-space X. Then for every aeR™ the measure of
the set "

S = {zmed: F,(z) does not exist}
is equal to 0.
Proof. Let {P,},.v be a fundamental system of pseudonorms on X
and let
lel = 3'27*Py(@)/(L+P;(«))
i=1
for weX. For 1, <R\ {0}, ped put

| F(p-+4a)—F(p) -~ Flp+da)—F(p) U
Fur(@) =1 Z ¥ ,
0  otherwise.

if it is defined,

Observe that for every pair 4, 2’ ¢ R\ {0} the function S, v 18 lower semicon-
tinuous in A. Hence the functions defined by the identity

R 1
@) = su{fualp): 0.< 11, 141 < 3}
are semicontinuous as well for # =1,2,... Since for every peAd the
sequence {g,(P)}ny is monotone decreasing we infer that the function
g(p) = lim g,(p)
is measurable. Observe that

8 ={ped: g(p)> 0}.
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This implies that the set § is measurable. For every z<§ consider the
mapping F restricted to the set

I, ={peR": p =w-+Aia, leR} N A.

It is easily seen that for every xS the mapping F/I, satisfies the first
order Lipschitz conditions as a mapping from the set I, into X. On the
other hand observe that for every ze8, I, i3 a union of an at most count-
able family of open intervals. It follows from the definition of GI'-gpace
that the assumptions of the Corollary 3.2 are satisfied. Hence u™(S) = 0

and the lemma ig proved.
i ’
Let @ be a Hilbert cube, @ = ]] I;,where I, = [—27% 27%] for 1eN,

Wlth standard metric o4, defmed for p,, p2e@, Py = (1011,192 19 +ee)y

= (P1,2) P32, ---) by the formula
0q(P1; P2) = Z P~ Paal-
1=1

Therefore we can consider Q as a subset of I;. Let us define the product

measure 4 = X j4; on @, where for every i< N the measure x; is normalized
i=1

Lebesgue measure on I;. From the definition'of z; we have u,(I;,) =1

for ¢eN, so u(Q) = 1. It is easy to see that x is a Radon measure on .

Let x4 be a completion of the measure u.

ToEOREM 3.4. Let F' be a Lipschitz mapping from the Hilbert cube @
into o GF-space X, and 16t & = (ay, as, ..., az, 0,0, ...) Q. Then the deriv-
ative F,(p) of F in the direction o exists for u-almost all p in Q.

Proof. Let D = {p<Q: Ty(p) exists}. Tt is obvious that

={peQ: g(p) =03},

where g(p) for peQ is a meagurable real valued function defined in the
same manner as in the proof of the previous lemma. Hence we conclude
that the set .D is measurable.

Now We consider ¢ as the Cartesmn product of a k-dimensional
[] I, and a Hilbert cube @, = [] I;. In the following we shall

t=k+1
consider Ok as a subset of R*. In this mterpretamon the meaysure & becomes

cube () =

the product of the measures g = X ; and by = X 4:- Moreover we

Gk 1

have that u; is absolutely contnmous with respect to ithe k-dimensional
Lebesgue measure u*. Therefore we can consider F as a mapping from
the Cartesian product ), x @ into X putting for peQp = (p’, p’’), where
p'<C); and p" €Qy. Since, according to the assumption, ¢ = (a’, 0) where

icm

Differentiability of Lipschits mappings in Fréehel spaces 21

a’eC; and 0 =(0,0,...)eQ;, we infer that the derivative I, (p) exists
at the point p = (p’, p”') if and only if the mapping F,.(p") = PF((p’, ")}
from €, into X possesses the derivative in the direction a’<(, and at
the point p’ «Cy.. It is easy to see that for every fixed p'* @, the mapping F,
defined above considered as a mapping from the k-dimensional cube
0 = R" into a GF-space X satisfies the first order Lipschitz condition.
For every p'’ eQy put
‘ ={p'cC;: (p',p")eD}.

According to the pl‘evious lemma we have that for every fixed p'' <@,

(D) = g ({0 €0y (T} (p') exists}) = 1.
Let § = @\.D. The last equality means that the assumptions of
Lemma 3.1 are satisfied and we infer that the derivative F;(p) exists
for p-almost all p in @ and therefore.the theorem is proved.

4. The differentiability of Lipschitz mappings. For every ¢ >0
denote by @, the Hilbert cube, @, = (1-+¢)Q = 1, and put @ = span. Q.
Observe that for every pe@ and every direction aeé there exists 6 > 0
such that p-Aee@, for |A| < 4.

DermNiTIOoN 4.1. A Lipschitz mapping F from the Hilbert cube @,
into a locally convex space X is differentiable at the point peQ if and
only if for every ' direction a,eé the derivative F,(p) exists and the
mapping (DF), from é into X defined by the formula

(DF),(a) = Fy(p)
is linear. The ma,ppmg (DF), is said to be the differential of F at the point
peq. '

It is easily seen that if the differential (DF), exists for some p <@
then it is a continuous linear mapping.

LeMMA 4.2, Let f be a real valued function from the Hilbert cube Q,
satisfying the first order Lipschite condition. Then the differential (Df),
emists for wu-almost all pe@.

Proof. Since the space of real numbers considered as a one-dimens-
ional Banach space (R, |-]) is a GF-space we have that for every
= (0y, Ay ooy 0, 0,0,...)¢ Q the set of p in @ such that f,(p) exists
hag measure equal to 1 (Theorem 3.4). Denote by Q the set of mtional
numbers and putb

W = {a = (a, ag, ..

for a,eé

e é: a;eQ for 1N and only a finite number
of a; is different from 0}.

Let

exists}.

D =N\ {pe@: fu(p)

aelV
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Obviously D is measurable and has measure equal to 1. Observe that

for every ac<W,peD we have

where g,(p) =n (f(lﬂ + %) wf(P))

i

falp) = iim (),

for sufficiently large » (such that (Q—I— 7—:') < @,). Hence for every a<W

the function f, is measurable. For every a, bW let M(a,b) denote the
set

{peD: fo(p)+f; (D) =f¢;+b(_’l’)}-

We shall prove that for every a,beW such that a = (ay, as,...) and
b = (By, By ...) We have u(M(a,d)) =1. Indeed, let % be a positive
integer such that a; = §; = 0 for ¢ > k. Now (in the notation of the proof
of Theorem 3.4) for every p"<@), we consider the function f,.(p')
=f((p, ")) for p’<C;. Since for every p’’ <@, the function f,. satisties
the fifst order Lipschitz condition as a function from (), < RF into R
then by a well known theorem of Rademacher [11] we obtain that the
measure yy of the set p’«C;, such that (Df,.), exists is equal to 1. Denote
this set by M (p’’). Obviously we have

(p'yp")eM (a, b)}.

Put 8§ = @\ M (a, b). It is easy to see that the assumptions of Lemma 3.1
are satistied (for the measure spaces (Oy, u;) and (@, uy))- Hence M (4, by
has the measure equal to 1 for every a, b<W. Since the set W is countable,
the measure ux of the set

M= () M(a,b)

a,beW

M(p") < {p' <0y

is equal to 1. We shall prove that for every peM the differential (Df),
exists. Let a = (ry, 7, .. eQ, where r,eR for ¢ =1,2,..., be an arbi-

trary direction in @. It is enough to prove that for every p el the deri-
vative f,(p) exists and that

P) = D rfi (o),

where ¢; = (0,0,...,0,1,0,0,...) (the unit on the ith place) for ieXN.
Observe that if K is a Lipschitz constant(?) for the function f, then

@IS K  for peM,i=1,2,...

() Which means that |f(p)—f{g)l < Elp—gl| for every p, geQ,.
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Fix peM and a,eé. Given &' > 0. Let beW, b = (w,, w,, ...) where

w;eQ and w; = 0 for ¢ >k be a direction in é such that Ja—bd] <&
It follows from the first part of this proof that there exists 6 > 0 such
that for every 0 £ |i|< & P

+ Ab) — ST
,i(p Z) () —;:wif”*‘(p)[“

Hence for 0 s |A] < § we have

) — >, -
flp+ 6;) fo) yﬁf%(p)is f(p+la)lf(p+lb) l+

=1

+;M+%) —f(p Zwlf% { [Smmmf;gp)]

<KW+M~
4]

{p+ )|

+6 § w; — 7 Isup{ifa, ()]: 1N}
=1
< Ke'+é+Ke =(2K+1)¢,

where K i3 a Lipschitz constant for the function f, which concludes the
proof of the lemma.

LemMA 4.3. Let X be a separable Fréchet space. Then there oxists a sequ-
ence of oommuous linear functionals {&,}nn such that for every z, yeX
the equality &,(x) = E,(y) holds for n =1,2,... if and only if x =y.

Proof. Smee every separable Fréchet space can be isomorphically
embedded in the space C(R) of all continuous real valued functions defin-
ed on R, it is enough to observe that such a sequence of continuous
linear functionals on € (R) exists (for example the evaluations at the ration-
al numbers).

THEOREM 4.4. Let F be a Lipschitz mapping from the Hilbert cube Qs
into a GF-space X. Then the differential (DF), ewists for u-almost all p
in the Hilbert oube Q.

Proof. Since the ILilbert cube @, is separable we can assume that X
is a separable GF-space. If it is not the case we restrict our consideration
to spin]f’(@j which is separable and by Theorem 2.6 (i) is 'a GTF-space.
Let {£,},.v be & sequence of continuous linear functionals on X, existence
of which was stated in the lemma above. Consider a sequence of real
valued functions {f,}ny on @, defined by the formula f, = &,0F, for
m=1,2,... It is trivial that for every neN the function f, satisfies the
first order Lipschitz condition. Let

M = {peQ: (Dfy,), exists for every neN}.
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By Lemma 4.2 we have that u(M) = 1. Consider the set

= {p<Q: Fy(p)
It follows from Theorem 3.4 that ,u(]li) = 1~ Hence u(M N M) = 1.
We shall prove that for every peM, = M n M and for every a,beW

Fo(p) +F,(p) = Foy(p)-
Indeed, it suffices to prove that for every neN, a,beW and pelf,

But this is an immediate consequence of the followmg easily verifiable

’iden’city ; (I'( ))
Y

exists for every aeW}.

(B (p) — tim ST @ H30) = = (Df,)u(0)

0 A
for n=1,2,...,peM, and ceW.

Using a similar argument as in the second part of the proof of Lemma
4.2 we can show the existence of the differential (DF'), for every peMo,
which concludes the proof of the theorem.

THEOREM 4.5. Let F be o Lipschite mapping from a separ abZe Tréchet
space X into a GF-space Y. Then the set M of meX such that the dq,ffm ential
(DF), exists is dense in X.

Proof. Without any loss of generality it is sufficient to prove that
the origin belongs to the closure of M. The general case when a, ig an arbi-
trary point in X can be reduced to the previous one by the substitution
Fa) = Plo—a,).

Let {a,}ny be an arbitrary bounded, linearly independent and line-
arly dense sequence in X. Fix an £> 0 and define the mapping F, from
Q. into X by the following formula

Fo(p) = Fol(ay, o, ...) = Za,;a,i for p = (ay, ay,...)€Q,.
=1

It is easy to see that the mapping F, satisties the first order Tipschitz
-condition. Indeed, let P(-) be an arbitrary continuous pseudonorn on X
and let py, Poe@s, Py = (a1, 0ay...), Do = (B4, Bay ...). Then

PWMm—mm»~PQj ag < Zm[mwM

1~1
ieN}o( 201;272) = K|p,~p.|.
Since the composition of Lipschitz mappings satisfies the first order
Lipschitz condition then # — FyoF is a Lipschitz mapping from the
Hilbert cube @, into a GF-space Y. Hence the differential (.D]f:")j, exists

< sup {P(a;):

icm

Differentiability of Lipschitz mappings in Fréchet spaces 25

for p-almost all p in @ (Theorem 4. 4). Assume that for some p,eQ the
differential (Dl’),, exists. We shall show that this implies that the
differential (DF)I,O(JOO) exists. Denote Fy(py) by @,. It follows from the
existence of the differential (DF)

that for every aeQ, a = (0, ay, ...)
the limit

B —F .
fim “if’o,wl_)_li(l’l = F.(p,)
P

exists and moreover
(+) Topo) = > 0, (po).
i=1
Observe that by the definition of the mapping T we have that for aeQ),
@ = (aiy gy -.-)

(I’o +Aa)— (1’0) — F(Fo(Po‘I‘za))‘F(Fo(Po)) -

A A

i -F(mo“l“ {2 “i“i) — F(z,)
=1

i

Hence we conclude that the existence of the derivative I, . (po) implies
the existence of the derivative qu) (2,) and 1«’a(p.,) = Frg(a) (@,). It follows
from the differentiability of F at the point P, that for every aespan @
the derivative l’l,o(a (o) exists. The linearity of F, and () imply that
for every a,, a,<span @ we have

Fryan) (@) -+ Fryag) (20)

Sinece for every ae@, AeR we have Fiy ) () = AF (o) (%) then the map-
ping F, from X, = span{al,y into ¥ defined by the formula

F, (@) = Fi(a,)

is defined and linear. It can easily be proved ([9], Section 3) that the
mapping 17 , Satisfies the first order Lipschitz condition with the same seb
of oongtmts a8 I and therefore is continuous. Since X, is a dense subspace
of X the mapping -Ero can be uniquely extended by continuity to the
continuous linear mapping Iy, from X into Y. We shall show that
(DF), exists and moreover (DF) = Fy,. It is sufficient to show that
for every aeX, I, (a,) = oy (a).

Fix ¢’ > 0 and a<X. Let P(-) be an arbitrary continuous psendonorm
on Y. Since F satisfies the first order Lipschitz condition there exists
a continuous pseudonorm @ (-) on X such that

P(F(ml) —F(wz)) < Q(®y~ )

= F%O(“l) +Folas) (@)

for zeX,

for every @, 2, X.
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Since X, is dense in X there exists a; <X, such that Q (a;—a) < &. Finally,
since F;l(m(,) exists we infer that there exists 6 > 0 such thatfor 0 = [A] < 6
( F () + Aay — I ()

P A

—F;1(~’”o)) <e

Then we have i .
P ( g<wo+zj>\—1ﬂ(mo> 7, (a))
F(mﬁza);l«"(wﬁzal)) +P(F(wo+loc;)—1“(wo) —F;I(wo)) n

x|

+ 2P )= Ty @) < SO0 <, ()= o)

L&+e' +é& =3¢ X

for |4| < & which concludes the proof of the existence of the differential
DF), ..

( )I% order to prove that the closure of M contains the origin it is suffi-
cient to observe that the set M, of p in @ such that the differential (DIF'),
exists has measure u equal to 1 and therefore is dense in @. Let {p,}uy
be a sequence of points in M, tending to 0 = (0,0,...). It was proved
above that if this is the case then (DF)z,, exists for » =1,2,...
Hence F,(p,,) <M for neN. It follows from the definition of the mapping F,
that the sequence {F,(p,)}lny 18 convergent to the origin which completes
the proof of the theorem.

Observe that in the same manner we can prove the following

THEOREM 4.5'. Let F be a Lipschitz mapping from an open monemply
subset U of a separable Fréchet space X into a GF-space Y. Then the st M
of @ e U such that the differential (DF), exists is dense in U.

Let us note that Theorems 3.4 and 4.4 remain valid if we replace
the measures u; by arbitrary normalized measures absolutely continuous
with respect to Lebesgue measure.

Remark. Let F be a Lipschitz mapping from @ into a GF-space X-
Qince there exists a Lipschitz retraction of I, onto the Hilbert cube @
there always exist extensions of F' to a Lipschitz mapping from I, into X.
However, it follows from the proof of Theorem 4.4 that the differentia-
bility of the extended mapping at the point peQ does not depend on the
extension (in particular it does not depend on the way we extend F to
the Lipschitz mapping defined on @,). In fact we have proved that for
€@, (DF), exists if and only if for every a in W the derivative (X'/Q),(p)
exists and moreover the eqality

(FIQ)a(p) + (F/Q)(P) = (F[Q)ars (D)
holds for every a, belV.
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5. Applications. In this section we give some applications of The-
orem 4.5 to the problem of the topological classification of Fréchet spaces
[1]. Let us remark that the similar arguments to those we use in this
section were presented by Lindenstrauss in [8] and Enflo [5].

DEFINITION B.1. A mapping F from a subset 4 of a locally convex
space X into another locally convex space Y is said to be a Lipschitz em-
bedding of A into Y iff T is a one-to-one mapping and both F and F-*
satify the first order Lipschitz condition. A locally convex space X ig
said to be Lipschits embeddable in a locally convex space Y iff there exists
a Lipschitz embedding of X into Y.

It is obvious that if a complete locally convex space X is Lipschitz
embeddable in a Fréchet space then X is a Frécheh space.

TuworEM 5.2. If o Fréchet space X is Lipschitz embeddable in aGF-space
Y then X is a GF-space.

Proof. By Theorem 2.8 it is enough to prove that every separable
closed subspace of X is a GF-space. Let X, be a closed separable subspace
of X and let I be a Lipschitz embedding of X into Y. Consider F restrict-
ed to X,. By Theorem 4.5 there exists @yeX, such that the mapping #
restricted to X, is differentiable at the point #,. It can be easily shown
that the mapping (DF[X,),, from X, into ¥ is a Lipschitz embedding o}
a Fréchet space X, into ¥ (see e.g. [9], Section 3). Since the mapping
(DF|X,)g, is linear we infer that (DF[X,), is an isomorphic embedding of
X, into Y. Hence by Theorem 2.6 (i) and (iii) we have that X, 18 a
GF-space which concludes the proof of the theorem.

It follows from Theorem 2.5 (i) and Corollary 2.7 that every pre-
Hilbertian Fréchet space is a GF-space. Using the same argument as
before we can prove the following theorem.

THEOREM 5.3. If o separable Fréchet space X is Lipschite embeddable
in & pre-Hilbertian Fréchet space Y then X is a pre-Hilbertian Fréchet
space.

Observe that a space X Lipschitz embeddable into a separable Fré-
chet space is a separable Fréchet space. Since every nuclear Fréchet
space is a separable pre-Hilbertian Fréchet space [10] and a space X
isomorphically embeddable in a nuclear space is nuclear we obtain in
a similar manner ag the previous theorem the following result.

TnroreM 5.4. If o Fréchet space X is Lipschitz embeddable in a nuc-
loar Iréchet space then X is a nuclear Fréchet space.

In [9] it is shown (Lemma 4) that if ¥ is a Lipschitz embedding
of a Fréchet space X onto a Montel-Fréchet space ¥ (such an embedding
is said to be a Lipschitz homeomorphism) and if the differential (DEY,,
existy for some xeX then the differential (DF), is a (linear) isomorphism
of X onto Y. This and Theorem 2.9 imply
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THEOREM B.5. If &' Fréchet space X 1is Lipschitz homeomorphic to
a Montel-Fréchet space Y then X is isomorphic to ¥.

It can be proved ([9], Section 5) that if a Fréchet space X is uni-
formly homeomorphic to a Montel-Fréchet space ¥ then X is Lipschitz
embeddable in Y. Combining this result with Theorem 5.4 we obtain

THEOREM 5.6. (i) If a Fréchet space X is uniformly homeomorphic
to a nuclear space then X is a nuclear space,

(ii) 4f @ Fréchet space X is uniformly homeomorphic o o Montel-IFréchet
space then X is o Montel-Fréchet space.

We conclude with the following result.

THEOREM 5.7. If @ Fréchet space X is uniformly homeomorphic lo
the space s of all sequences then X is isomorphic to s.

Proof. s is a Montel-Fréchet space. Hence X is Lipschitz embeddable
in s. Let F be a Lipschitz embedding of X into s. Since s is a separable
space by Theorem 4.5 there exists ¢ X such that F' is differentiable at the
point z. This implies that (DF), is an isomorphic embedding of X into s
(linear). Tt was shown in [2] that every closed infinite dimensional
subspace of s is isomorphic te s which concludes the proof of the
theorem.

For more details and other applications of Theorem 4.5 the reader
is refered to [9].

Remark. Let X be a Fréchet space over the field € of the complex
numbers. It is easily seen that X is a pre-Hilbertian (nuclear, Montel)
Fréchet space if and only if X considered ag a vector space over the field R
of the real numbers is a pre-Hilbertian (resp. nuclear, Montel) space.
Observe that this implies that Theorems 5.2, 5.3, 5.4, 5.6 and 5.7 remain
valid if X and Y (or only one of them) is a complex vector space.

QuesTIoN. Does Theorem 5.5 hold provided that X and Y are vector
spaces over the field C of the complex numbers?
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