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STUDIA MATHEMATICA, T. XLV, (1973 -

Extensions of basic sequences in Fréchet spaces*

by
WILLIAM B. ROBINSON (Potsdam, N.Y.)

Abstract. Criteria aro established for extending a block basic sequence to
a basis in a Fréchet space. An example is constructed in a nuclear Fréchet space
B of a block basic sequence which has no block extension fo a basis for H.

In [15], M. Zippin proved that every block basic sequence relative
to @ basis for a Banach space has a block extension, and applied this
result to reflexivity of Banach spaces with bases. The purpose of the pre-
sent paper is to show that this result cannot be extended to the case of
arbitrary nuclear Fréchet spaces. One expects this situation since in nuclear
gpaces every basis is unconditional ([9]). On the other hand, in a Banach
space with an unconditional basis it is possible that a block basic sequence
has no extension to an unconditional basis [13]. Another reason explain-
ing the difference between the case of Banach spaces and nuclear spaces
is provided by theorems of Dragilev type (cf [10] and [2]) on the
equivalence of bases in some nuclear spaces. Roughly speaking, these
results show that there are not many bases in such spaces. :

The key to the example is Theorem 3.3, which implies that if certain
block basic sequences have extensions they must have trivial extensions.
" The example is obtained in an echelon space of order 1. On the other
hand, it is shown in Theorem 4.1 that every block basic sequence in the
space o has a block extension.

¥or general terminology we shall follow K&the [8]. It (B, F) is
a dual system, then we shall denote the weak topology induced by F on E
by £, (F, 1), and the strong topology induced by F on B by S(F, E).
By a Fréchet space we mean a complete, metrizable, locally convex space.

Wo shall denote by N the collection of positive integers, and the
phrage “for all (each) #” will mean “for all (each) «N”. Sequences indexed
by N will be written as (™), and any other indexing set will be explicitly
mentioned. By a total sequonce in a locally eonvex space B we mean a Se-
quence (2") whose linear span is dense in H.
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1. Basic definitions and theorems. Let E be a Fréchet space with
bagis (2™) and let (p,)n-, De an increasing sequence of integers such that
Py = 0. A sequence (y") of the form

P,
no__ 7.
y = 2 G5
i=pn_1+1

where y™ 5 0 for all n, is called a block basic sequence (relative to (a™)).
The finite dimensional space B™ = [#P»—1t1 ... 2%n] is called. the n-th
block space determined by (pp)m-o. Given a block basic sequence (y™)
in B, we define a block extension of (y") to be a basis (") for ¥
such that

(i) | : @no=y"  for all n,
and i
(ii) #elB™  for all m, for all i with p,_,+1< i< p,.

‘We now state a theorem which establishes a wuseful criterion for
collecting algebraic bases for the nth block spaces into a basis for .

TrrorREM 1.1. Let T be a Fréchet space with the sequence of semi-norms
(l)me1 defining the topology, and let (x™) be o basis for H. Let (p,)7_, be an
increasing sequence of integers with p, = 0, and suppose that (™) is a se-
quence in B such that .

E" = [aPn—1th L Pn], for all m.
Then (") is a basis for B if and only if for each ||, there exists |, and M (kY >0
such that .
r ) Dy,
’ tiz*fk <M@m| 3 4

T=pp—1+1 f=py 1

m

Jor all w, for all integers v with p, ,+1<r<p,, and for all scalars
b1y -o1 by, - ,

The proof will be omitted. One should observe that by making use
of the basis criterion of Retherford and MeArthur in [14], Theorem 1.1

can be extended to the class of complete, barreled spaces.

2. Fréchet spaces and echelon spaces. We now restrict our attention
to Fréchet spaces which have a continuous norm, or equivalently to Fré-
chet spaces whose topology is generated by a sequence I" of norms (i [l)2,,
where it may be assumed thatb ||n|l, < [|#l,, for all & and for all z<E. In
this setting, a basis is always a Schauder basis ([12]).
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If A: F; - F, denotes a linear map between two subspaces of a Fré-
chet space (E, i Hk)), then we shall refer to the norm of 4 as an opera-

~ tor from the normed space (Fy, || [,,) to be normed space (F,, || |;) as

the (&, m)-norm of A, for arbitrary positive integers % and m. We shall
denote this by |4, and from the standard definition of the operator
norm we have

Al = 0 {M >1: || Azl < M, for all zek.}.

Let (2") be a basis for B, and let (p,)>, be an increasing sequence
of integers such that p,= 0, and let E"= [aPn-1%1 ... z¥n], for all n. Let
Gn = Pp—Pn—1- Given integers # > 1 and r such that 1 <7 <g,, define
the projection =;: E" — E" by

Dy, Pp—1tr
ﬂﬁ( 2 tim") = E a0
i=pp_1+1 =P, 3+1

The following theorem reduces the problem of finding block exten-
sions from an infinite dimensional problem to a sequence of problems
involving the existence of finite dimensional operators.

Trrorem 2.1. Let (B, (| |l) be a Fréchet space with a continuous
norm, and let (a) be & basis for E. Let (y™) be a block basic sequence in B
of the form

Dy,
Y= Z ot
i=pp—1+1
with block spaces ~B"*= [xPn—1t1 .., aPn]. Then (y") has a block extension
if and only if for each wn there ewists an isomorphism A,: BE™ - B such
that A,a"n = y" for all n, and such that for each k there emists m = m (k) =k
and M = M (k)= 1 such that for all w, and for each positive integer v < q,,,,

“AIL”;LA-;l”k,m < M.

Proof. Let (2") be a block extension of (y"). For each n, B"= [¢n~-1+1,
.., #"n], so the linear maps 4, on E" defined by

Py, Dy,
(Y w)= Y
i1 Py 1+l

are isomorphisms. Now by Theorem 1.1 applied to ("), it is true that

for each k there exists m >k and M > 1 such that for all # and for any
D,
integer » such that L <7< g,, and for any o = > §af<B"
i=Pp1t+1,
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But since each 4, is an isomorphism, we may make the sqbstitution
y = 4,2, so that for each n the inequality becomes

At AT Yl < Mlylla,  for all yeB”,
which is equivalent to the 1nequa11ty
A nmr A7 o < M.
It is easily seen that A4, a%» = y" for all n.

Conversely, if we assume the existence of the isomorphisms 4,
we define (") by # = 4,2" if p,_;+1<i<p,. Then #*n = y* for all
and a straightforward application of 1.1 shows that (2") is a basis, complet-
ing the proof. :

2.2. An important class of Fréchet spaces with a continuous norm -

is the class of echelon spaces. Echelon spaces of order p,1<{p <
were introduced by Kothe ([8], § 80), and echelon spaces of a more general
type were defined by Dubinsky in [4] and [5].

If1isa sequence space, its Kothe dual is defined to be the sequence
space

A= {(’%):2 ;5] < oo for all wsl}.
=

" Then the pair {4, A forms a dual system via the duality
{wyup = 29%’““

A.1s said to be perfect it A = A*". 2 is called a step if 1 is perfect, A[7,(47)]
is a Banach space, and I* = 1 < I*. Note that each of the spaces I?,
1< p< o, i8 a step. Also, 1is a step if and only if A* is. ([5], p. 188).

Leét 4, be a sequence of steps, (a*) a sequence of sequences such that

for meld, uel®.

() 0 < af < af*?
and.

for all » and %,

1

" 1
(i) gy Apg1 < ?;Zk, for all %.

Then (ary A) is called an echelon system, and the sequence spaces 1

1
= ﬂ -—A,, and u = U a* 7% are called the correspondmu echelon and co-
k=1

eohelo'n, spaces, respectively. If 1, = 1P
space of order p.
THEOREM 2.3. A co-echelon space is the Kothe dual of the cor responding
echelon space, and both are perfect. Moreover, every echelon space is a Fréchet
" space im its strong topology.

y1<p < oo, A iy called an achelon

icm
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The proof of Theorem 2.3 is given in [5], p 189. The following result
is well known ([7]).

o

: 1

TEEOREM 2.4. An echelon space B = (N —; X, is nuclear if and only
k=1 Q&

— 11, where (b%) is such that for each & there emists n(k) > & with

Thus for nuclear echelon spaces we may restrict our attention to

1
echelon spaces of order 1, and if F = (M)—1%, the topology on F is gener-
at "’

ated by the norms || ||, where |zl), = 3 |m,|af = |z-a®|y, for all weE.
n=1

Moreover, if ¢" denotes the sequence in B which has 1 in the nth-coordi-
nate and 0 elsewhere, it is clear that (¢") is a basis for B. Finally, if (2")
M for all =, %, then (2 is similar to the

© 1
basis (¢") of M b—kll, so that by (1.5) it suffices to consider only block
k=1

basic sequences relative to (&").

In order to apply Theorem 2.1 we need to compute the (%, m)-norm
of operators on finite-dimensional subspaces of E. Let F = [¢",..., ¢°]
be such a subspace, and let ¢ = s—7r-1. For each %, let D,: ¥ —1I*
be the diagonal map defined by D@ = a*-z for all zeH. D, is continuous
by nature of the norms on F, and is one-to-one since a > 0 for all n.

If A: F — F is a linear map, then A has a unique ¢ x ¢ matrix repre-
sentation relative to the basis {¢", ..., 6°} of F'; that is, there exists a

8
unique ¢ x ¢ matrix (8;)5_, such that if » = 3 @6, then

i=r

Az = 287 (28‘ Bii mj) é

t=r  J=r

Let D AD; (%) = a* o- for well. Then D, AD;! |, is a linear map

% \8
a;
of F onto itself and has matrix (ﬁﬁ 7»—},;) . In the following lemma we
i,j=r

record the results of the elementary computations needed to apply (2.1)
in echelon spaces of order 1.

Levma 2.4. Let F =[¢,...,¢] be a finite dimensional subspace

© 1
of B= ("~ A: F - T a lincar map with matriz (8;)y..
k=1 @
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8
() 14l = sup (X [B4l).
PEIKS 1=
(i) For arbitrary k and m, ||4|xm

(i) 4, = su Z 1B m)

\s’LT

= | D AD3} pla.

Proof. (i) and (ii) are strmghtforwa;rd computations and (111) follows
from (i) and (ii).

3. The example. In this section we construct a block basic sequence
in a nuclear echelon space which has no block extension. The key to the
example iy Theorem 3.3, which implies that if all bloek spaces E" have
dimension 2, then a block extension will exist if and only if a trivial exten-
sion exists.

Let p, = 2n, 5o that ¢, =2 and B" = [#"*
(y™) be a block basic sequence in F of the form

2n

, 6] for n > 1. Lt

yn - Z < 6"',

it=2n—1
so that for each =, either ¢,, , #* 0 or ¢,, # 0.

By Theorem 2.1 it suffices to consider all sequences (4,) of iso-
morphisms on E" such that 4,6 =y for all n. Bach 4, has a 2x2
matrix representation relative to the basis {¢*%, 6"} of B, which we shall

write as
A = (binwl 02n—1).
" b Can
Note that det A, # 0. We then obtain directly from Lemma 2.4 (iii),
that for each » and for arbitrary % and m,
(R VY b | =—1-max n Iy 22 + (03] 1B20] —
w1 4 lk,m detAn 20 2n-1 aZn—l 2 n 2%—1
. 7c
s a
ol Bl 22 [y ] }
a, oy,

Remark 3.1. We shall say that a block basie sequence (") is in
2n

) % lcie‘, and if for each n either ¢,, = 1 or ¢, = 0
=an— M

and ey,_, = 1. If (") is an arbitrary sequence of the form (y") = 3 g,

standard form if ¢y =

and if Tusdnn1

1 .
- if Cop, 7 0,
v, = Con
" L if 0
i =
P Can 3
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then (y,y™ is in standard form, and (4") will have a Dblock exten-
gion if and only if (y,y™) does. Moreover, it suffices to consider isomorphisms
A, such that det 4, =1, so that for each m, by, 16y, —bs,Con_1 = 1.
. Finally the choice of b,, ;, and b,, for those % for which either ¢y, ,
Or ¢y, is 0 can be made easily. If ¢,, , = 0, so that ¢,, = 1, choose b,, = 0
and b,,_; = 1. If ¢, = 0, so that ¢, , =1, let b,,_, = 0 and b,, = —1.
In both cases we obtain from (1) that for each k& and m > &, ||4,7x,
< 1, since (¢*) is increasing. '
Thus, if (y) is in standard form, it suffices to consider J = {n: 6,,_
_b‘zn-l”‘:L
Can—1
Lezvwma 3.2. Let B be an echelon space of order 1, and let (y™) be a block
basic sequence in B in standard form, and let J = {n: ¢y,_; # 0, 6, = 1}.
Then (y™) has & block extension if and only if there exists o sequence (byy_1)ney
such that for each k there exist m =k and M = 1 such that for all ned

A'r: 1”k,m

# 0 and ¢,, = 1}. For nedJ, det 4, = 1 implies that b,, =

' ak,_,
<M
() [Ban—l ar ’
i
(b) [@a1] Doy | —— < M,
gy,
byp_y—1 k
(e) _.zﬁ__l#_ :’f” <M,
Cpp—1 | Ggn—1
ak,
(d) 1L =bgp sl — P < M.

Ao,

Proof. If conditions (a) through (d) hold for a sequence (by, 1)pery °
then we let

bzn—l -

by Cope
A, = (bz: ! 12" 1), where by, = -

, for ned.
Con—1
Each A,, ned, determines an isomorphism on E" such that 4,6" =y
and detd, = 1. Then the inequalities (a)~(d) inserted in (1) imply that
for ned,

HAn”’nglnk,m < 2M’
so that Theorem 2.1 is satisfied and we have an extension.

Conversely if (y*) has a block extension then by the Remark 3.1
and Theorem 2.1 we obtain isomorphisms A, on. B" for #J, with matrices

bon—1 Cap—1
.A (2%1 2%)’

by Con
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such that det A, = 1. Then the inequalities (a) through (d) follow from
Theorem 2.1 and (1). This completes the proof.

In the remainder of this section we shall say that a sequence (by, ),
determines o block ewtension of a block basic sequence (y") in standard
form if (b,_;) satisfies the statement of Lemma 3.2.

° 1 .
TEEOREM 3.3. Let B = () P 1t be an echelon space of order 1. Let
k=1

(y™) be a block basic sequence in B in standard form, J = {n: o, , 0,
Gy, = 1}, Then (y™) has a block ewtension if and only if there exist disjoint
sequences I, and I, in J, whose union is J, such that if by, , = O for nel,
and if by,_, = 1 for nel,, then (by,_,)n.s determines a block extension of (y™).
" Proof. Given (by, 1),y a8 in the hypothesis; then it follows from
Lemma 3.2 that (¥") has a block extension. For the converse, Lemma 3.2
guarantees the existence of a sequence (by,_;),.; determining an exten-
gion, and satisfying (a) through (d).
Then let Iy = {n: by 4| < 3} and I, = {ned: [byy| > 3} Clearly
I, nI, =@, and I, UI, =J. For (by,_,)s as defined in fthe theorem,
‘the inequalities of Lemma 3.2 are equivalent to

]
~ ok
(b) [Can—1l 2’;,,1 < M, for ’)1,612,

Gy,
and
- 1 ak,

(e) <M, for mel,.

[ean—a| a5n—1

But (b;,.,) does satisfy (a)—(d) with some M’ > 1, and nel, implies that
—Ib—,———lg 2, and nel, implies that |L-—by, ;| > 3. Hence for mel,, (b)
2n—1
reduces to (b) with M = 2 M, and for n I, (c) reduces to (¢) with M = 24,

completing the proof.
CoROLLARY 3.4. Let E be an echelon space of order 1, let (y™) be a block
basic sequence of the form

2

Yy = Z a6,  and

=01

J o= {nety, , # 0, ¢y #* 0}

Then (y") has a block extension (2") if and only if 2" may be chosen, to be
either ™" or @™,

1 1.
Proof. Let y, = — if ey, # 0, 9, = —— if ¢,, = 0. Then (y,4")
20 0211—1

is in standard form and has an extension if and only if (4) does. By Theo-
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rem 3.3 and the Remark 3.1 this is equivalent to the existence of an exten-
sion (2") of (2,y") with 2** = 1,4™ for all n, and

if ¢, =0,

o
_e~”’

201
L)

— 0y
I n 6211» ,

Cap—1

if ¢,y = 0, or if nel,,
if %eIl,

where I, and I, are disjoint sequences in J whose union is J. Define (4,) by

-1, it 6, =0,
P 1, if ¢,_, =0, or if nel,,
n
— G . N
——-:?—z—l—, if mel,:
l GZn

Then. if 4! = 1,2*"" and ¥ = y™ for all %, (w") is the desired block
extension. Since the converse is clear, the proof is complete.

‘We are now in a position to give the example. Let (4*) be the sequence
of sequences defined by af, , = k™ and af, = #* for all & and n. Then

for each %,
% k 1
Za;m _Z(k+2) +g @ =T

© 1
80 the echelon space B = () " It is nuclear, by 2.4.
k=1

As an immediate consequence of Lemma 3.2 and Theorem 3.3 we
have the following: :

COROLLARY 3.5. Let (y™) be o blook basic sequence in E in standard
form. Then (y") has a block extension if and only if there ewist disjoint se-
quences I, and I, suchthat I, I, =J = {n: 6, 7 0, 6, = 1}, and such
that for each % there exists m =k and M = 1 satisfying

1 m
e L M i I
(Bx) [aﬂn—ll X o, 3 Or Ned,,
”m
(Ba) [Can—1] < MF’ for nel,.
LEMMA 3.6. (i) (B,) holds on a subsequence I, of J only if
(2) ‘ E ]azn—l!lm > 0 .
N~—+00
nely

On the other hamd, if (14) holds for a subsequence I, of J, there ewists a sub-
sequence I, of I, such that (B,) holds on I;.
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(i) (B,) holds on a subsequence I, of J if and only if

3) ‘ lm. [6y,, "™ = 0.
' ety

Proof. (i) (B,) implies that for each % there exists m > & and M 3 1
I

. »
such that for all nely, |cy,_| >WM gy 80 that
— Tefm
w 1
Lim e,y [ 2 lim M2 = >0,
N0 N->00 me we
nely nely

On the other hand, if lim |e,_,|Y" > 0, there exists a subsequence I}
N—+00

nely , X
of I, and &> 0 such that for all nely, |o, ,|'* > e Given &, choose
m = max{k, 2/e}, so that if mely, | o> 2/m. Now infa™" =1,
mI{

o given k and m as above, there exists #, such that # = n;, and nel;
min

imply that 2 >#™">1, and hence |6, /"> . Thus given % we

1 m"
have m >k and m, such that for nel;, n>my,, TS
2')1-«1

n

M — for all mel;.

Let
,nm
M = ma.x{l, |€gp—1] il = n,ﬂ}, so that

‘02n-1|
(ii) Similarly, (B,) holds on a subsequence I, of J 1f and only if for
each k there exists m >k and M > 1 such that

m/ n

m |e,, o[ < lim M2 1)k,
N—=>00 N—>00 k
nely nely

which is equivalent to (3).

COROLLARY 3.7. (i) (B,) holds on a subsequence I, of J if and only if
2) fails on every subsequence of I,.

(i) (Bs) kolds on a subsequence I, of J if and only if (By) fails on cvery
subsequence of I,.

The proof is immediate from Lemma 3.6 (i) and (ii).

(*¥) To construct a block basic sequence which has no block emtension
in B we will define a sequence (cy, 1), of mom-zero scalars such that
neither (B,) nor (B,) hold on N, and such that whenever (By) holds on
a subsequence I, of N, then (B,) fails on NN\I,. Then by Corollary 3.5,
the block basic sequence (y™) given by y" = cy,_ 6™ e which is in
standard form with J = N, will have no block extension.

Batensions of basic seugences in Fréchet spaces 11

First define the infinite matrix (u;)-, by

(E—j+1), it i>7,
Uy = 1 it )
: - it <.
((j—wrl)!) B
Then
1
' (E) (3*)
2 1 (1)
(Ug)i3=1 = 2!
3 2 1

We may write (16;)57-1 as & sequence (u,)a., via the bijection of N x N
onto N given by

i 1V (ii—9
(H-D6+=2)

n(i, j) = s

This bijection may be indicated schematically as
12 47
3 5 8
6 9
10
We then define (cy,_,)aey bY €y,_1 = 4, for all n. The proof of (%)
may be broken into three parts.
(a) Let I, = (n;)2; be the subsequence of N defined by n; = n(s, 1)

for all 4, so that (u,,)iZ, corresponds to the first column of the array (u)-
Then

2
Lm |uy P’”» = 11m( ) L+ — 1 > 0,

{-»00 i~v00

50 (B;) holds on I,, and hence (B,) fails on N.
(b) For fixed ¢, let I§= (My)jzip1, Where ny = n(i, ) for j=i+1.

l G=i4-1
Then Uy = (E;:m) , so that
2(j—i+1) 2j—i+1)
1 H=EH -+ —— 1 a2
o =i e
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Replacing m by (j—4-+1), we obtain,

1 1/3m
Hm g M < 11111 (~~—) = 0.
>0 m!

Hence (B,) holds on each I%, so that (B,) fails on N.

() Finally, we show that if I, is a subsequence of N on which (B,)
holds, then (B,) fails on. N\I; = I,. Given I, then from step (b) and
Corollary 8.7 (ii), it follows that I, may not contain any subsequence
of any I}. Thus for each ¢ there exists a largest index j; such that u. (¢, j,) I 1

Suppose that j; <4 infinitely often. Then I, = N\ I, containg infin-
itely many integers of the form n(¢, ¢ +1), say a sequence (41,(7,, ) By L ))

W]

1
Then u,(4,, 4,+1) = — for all », and on this sequence the required upper

limit is positive, so ( 2) fails on I, by Lemma 3.6 (ii).

Thus we may suppose there exists an integer 4, such that j, > ¢ for
all 4 > 4,. If (B,) holds on I, = N\ I, then in particular (B,) must hold
on the subsequence (m)7 i1 Of I, defined by m; = n(i, j,--1) for ¢ > 4,.
From (3) we have

. 2(j;—1-+1)
) (i) =1 122

1
5 O—ILmu Y — fim [~
(5) 74 = T | e
But now we show that (5) implies that (B,) does not hold in I 1, Which
is a contradiction.
Oonsider the subsequence (8:)i2sp1 of I, given by s, = n(i, j;). Then
: 2i=i+1)

(6) lim|u, |V = 1i ( 1 W =B +%
11]51 g [¥% = Iim [——
00 (jz—q,_l_l)')
— =ity
< lim (f; — § + 2) OH-0GH-2 2
o 2(jg—i+1)
lim|——
Now =00 (.71”“7/+2)
(7) Lim (j;— i +2) w—J1 1)(1 T i (7 = y
o f-r00
and
e 2= 1+1)
(8) le L EHIGH R s I
' i—i+2)! <lim
o \( i+2)! on (o

<lim [ Y- hm( G

100
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But hm ((]1’ —i+2)}) ('“*)(”“"I)Hi < llm(]1 )

1—»00

Then a,pplymg (7) and (8) to (6) we obtain

wa.,

‘< + oo by Stirling’s Formula.

9) hm |14g |1/"w =0.

But this is equivalent to the statement that (B,) holds on (8824021, DY
Lemma 3.6(if), which is contrary to the fact that (s;) = I,. Hence the
claim in () is true, and the proof is complete.

4. Extensions in the space w. As one final result, we consider the
nuclear space o, which is a Fréchet space with the topology (¢, w)
= S,(p, w) ([8], p. 408).

THEOREM 4.1. Let (y") be a block basic sequence in w relative to a basis
(&™) for w. Then (y") has a block extension.

Proof. Since every basis for o is similar to the uncondltlonal basm

(¢™), as was shown in [3], Theorem 7, then we may assume that 2" = ¢*
Py, .
for all n. Suppose y"= Y ¢, for all #, and E"= [ePr-1T1, ..., ¢Pn]

i=py 1+l
is the nth block space. If for each w, {#Pn—-1+1 L 2Pn} i5 an algebraic basis

: )
“for B", then |J {Pn-1%1 ..., ¢Pn} = (") is a basis for w. For if zew,
n=1
© 0 Dy,
x = ane” = ( 2 wie‘).
n=1 . n=1 i:]]n__1+1

But for each n, there exist unique scalars {#;}{2, ., such that

Dy, Py,

T i
S o= 3o

'i=yn__1+l =Py _1+1

and hence for each zew there exists a unique sequence

such that z ==2t4z‘.

=1

oo
(tn)vo:;l = U {ti}']i)i'zzn_l—}-l

Thus for each » we ma,y select any algebraic basis {}/z e s+1 10T B

such that 2?» = 4", and then U {8 ,+1 18 the desired block extension.
=l

n—-

4.2. Remarks and problems. There are two directions for further
investigation which are suggested by the results given here. The first
involves characterizing the Fréchet spaces in which block extensions
always exist, and the second involves finding more general types of exten-
sions. These can be formulated as follows:
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ProBLEM 1. If B is a Fréchet space with o basis in which oll block basic
sequences have block extensions, must E be either a Banach space or iso-
morphic 1o w?

One property of w which seems to be of importance for the existence
of block extensions is the fact that « has no continuous norms.

A more general question, which in the case of nuclear Fréchet spaces
is closely related to the existence of complements for subspaces with bases,
is the following: .

PRrROBLEM 2. If (y™) is a block basic sequence (or any basic sequence)
in & Fréchet space B with a basis, is there any basis for I containing (y")
as a subsequence?

Thus, for the example given in Section 3, there may be some less
restrictive method for obtaining an extension.
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On the differentiability of Lipscliitz mappings in Fréchet spaces
by
P. MANKIEWICZ (Warszawa)

Abstract. The probem of differentiability of mappings from a subset of a Fré-
chet space into another Fréchet space satisfying the first order Lipschitz condition
is studied. Some extensions of the classical theorem of Rademacher are obtained.
Applications of the result to the problem of the topological classification of Fréchet
spaces are given.

1. Introduction. A classical theorem of Rademacher [11], [6] states
that for every mapping F from the cube C, in R" into R™ satisfying the
first order Lipschitz condition, the differential (DF), exists for almost
all  in O,. The aim of this note is to give an extension of this theorem
for the case of a mapping F satisfying the first order Lipschitz condition
from a subset of a Fréchet space into another Fréchet space.

Some difficulties arise with the definition of the first order Lipschitz
condition. (A simple example of a Fréchet space X and two metrics o,
and g, on X can be given such that the identity mapping I from (X, ¢,)
onto (X, g,) does not satisfy the first order Lipschitz condition with res-
pect to the metrics o, and g,). This leads us to apply the definition in-
troduced in [9] which states that the mapping F from X into Y satisfies
the first order Lipschitz condition if and only if for every continuous
pseudonorm on ¥ there exists a continuous pseudonorm on X such that ¥

. induces a mapping between suitable quotient spaces satisfying the first

order Lipschitz condition (with respect to the norms).

The other difficulty is the following. There are known examples
in which a mapping satisfying the first order Lipschitz condition from
the interval [0, 1] into a Fréchet space ¥ does not possess a differential
at any point of the interval [0, 1]. For example the mapping F from the
interval [0, 1] into L, ([0, 1]) defined by the formula

F(t) = a0 for 1[0, 1],

where y,, denotes the characteristic function of the interval [0, ¢].
(A similar example can be given for the space ¢,).

On the other hand Gelfand proved in [7] (see also [6]) that for every
mapping F from the interval [0, 1] into a separable conjugate Banach
space X satisfying the first order Lipschitz condition, the derivative F’(¢)
exists for almost all ¢ in [0, 1] with respect to one-dimensional Lebesgue
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