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Abstract. An analog of the classical renewal theorem is proved for a ran-
dom walk in two dimensional time. The renewal sequence %, is shown to be of the
form wy, = p~llogn+1y, where p is the mean of the underlying random variables,
and rp, is a remainder sequence whose behavior depends on the restrictions imposed on
these variables. This contrasts with the result %, > #~! in the one dimensional case,

1. Introductionr. The purpose of this paper is to examine an analog
of the renewal theorem for two dimensional time. The classical renewal
theorem of Erdos, Feller, and Pollard [2], considers the partial sums

n
8, = > X; of independent, identically distributed, integer valued,
t=1

aperiodic(!) random variables X;, X,, ..., with finite mean x> 0; and
asserts that the expected number of #’s for which §, =k converges to
1/p as k— +oo. )

For the two dimensional setting we consider a family {X,;;¢>1,
j=1} of random variables, and let )

mn n
(1) Sm,n = ZZ-XM? E-X-i,j =4> 0
=1 j=1
and
(2) N, = the number of pairs (m,n) for which §,, =5%.

Geometrically, one may think of {8,,,} as defining'a discrete (random)
surface on the positive quadrant of lattice points in the plane E®, and
N, as being the number of points of this surface which lie in a plane EP
parallel to B®, and a distance % above it. .
We call u, = BNy, k> 1, the renewal sequence associated with {X, ;},
and want to study u, as k— co. We assume throughout this paper ihat
(%) A random vaiiable X is called aperiodic if Ee®X s 1 for 8 = 0, it is strongly

aperiodic if |Be®X| 3£ 1 for 6 # 0.
* Supported by N. I. H. and N. 8. F.
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the X, ; are independent, identically distributed, integer-valued, and strongly
aperiodic.

In the one-dimensional case one can very effectively make use of
a difference equation satisfied by w;. (It is a linear integral equation,
called the renewal equation, in the general non-lattice case.) There doeg

not appear to be a natural analog of this equation in dimension two, .

mainly because the lattice points of the plane are not linearly ordered
under the natural order. Fortunately, however, a direct Fourier analysis
yields some results. i

Using standard Tauberian methods one can easily prove the weak
(global) result (Theorem 1) that

n
E nlogn
(3) Up ~ as n-—> oo, .
k=1 'u

Our main concern in this paper is to examine when the strong. (local)
result '

) ", ~ logn .

]
is valid. With sufficient moment assumptiong we can. prove (4) by using
a sharp local central limit theorem (see Theorem 2). The problem becomes
much more difficult if one limits oneself to the existence of a first moment;
and we do not yet have the complete solution for this case. The main

result so far is a somewhat weaker statement than (4), namely that

(8) : Uy, = ——lojﬂ +o(logn) —}—ﬁm

where an average of |8,* goes to zero. This is done in Theorem: 3, where
we actually do a little better than (5), in that we express u, as a funetion
of the ordinary renewal sequence, plus a remainder like g,,.

We have only considered non-negative random variables in this

paper; except for Theorem 2, where the methods apply equally to the
two-sided case.

2. The global theorem.

THEOREM 1. Let {uy; k> 1} be the renewal sequemce associated with
{Z32 05420, > 0}, and assume that p =HX,; ;< co. Then

1) Z'u,c ~ utnlogn, as m— oo,
k=1
) Proof. Define 8, , and N, ag in (1.1) and (1.2) and define Apn(k) =1
B Spn =k, Ay (k) =0 it 8p,n # k. Then N, = 23 4, k), and
m n

@ w=3 e, -n,
1

m=1 n=
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Let P(k) = P{X,; = k} and P,(+) = tﬁe n-fold convolution of P,(-) with
itself. Then from (2) we see thatb
3) wy = D AP (k),
n=1
where d;, = the number of divisors of %.

Let D, = _)Zj‘d,c. Then (see Hardy and Wright [7])
=1
(4) D, ~Fklogk as k—> co.

Sinee Zo’oy"P,,(k) < oo for any y < (P,(0))™" whenever {P,(k)} has its
n=1

support on the non-negative integers; the series (3) always converges.
Let

) ol L L
(5) f(s)=grlgk)sk; Uls) =h§1uksk; D(s)=gdks,

where |s|<1. By (4) and the Hardy-TLittlewood Tauberian theorem
(see e.g. Theorem 5, p. 423 of Feller, Vol. IT [4])

——1 1 ——~1 as s 71
() D(s) ~ g log T :

But from (3) and (5)
(1) U(s) = D[f(s)],

and hence, since f(s) 71 as s 1

1 1
» (8) U(s) ~ Ty %) log——-——l_f(s) , 8sal.

But 1—f(s) = p(1—s)-+o(l—s), and thus

(9) U(s) ~ _1 log s 1.

1
pil—s) “1—s’
The Hardy-Littlewood theorem applied in the converse direction
jmplies (1).
3. The local theorem. If f(s) = s then 4, = dy, which iz known to
oscillate wildly. Clearly

1) limintd, = 2,
and on the other hand (see [7]) the statement
@) d, = O([lognT)
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is false for every 6 > 0. The key question is thus whether in replacing s by
a generating funection f(s) #s, we sufficiently smooth out the renews]
sequence.

In the next theorem we show rather easily that under a fourth mo-
ment assumption, the answer is affirmative. (Here the X, ; are not restricted
to be non-negative random variables.) Let o? = variance (Xy5), and
recall that g = BX, ;. ‘

. THEOREM 2. Let {uy; % >1} be the renewal sequence associated with
{Xi}y and assume that BX},; < oo, u >0, and o% > 0. Then

(3) : U, ~ utlogn
Proof. Recall that

4) ‘ C = ) d,P,(k),

n=1

as 1 -—> oo,

where Py(-) and P,(-) are ag in Section 2. The fourth moment agsumption
assures us that the series in (4) converges. (To see this just apply the
Cebyéefﬁ inequality to P,(-), and the bound in (7) below to dy.) We
will use the local central limit estimate

,n,3 2

(5) Po(k) = gk u,aZ)+0[—]—;~ onll; i ﬁﬁ)l +0(—5—L—),
| o

where g, (k; i, o%) =

1 (% — my)
Vorno . {~ 20%n
and variance of X;, and B is some positive number. The remainder
terms in (5) are uniform in %. One can deduce (8) from Theorem 1 of § 51
of Gnedenko and Kolmogorov [5]. We also nge two more facts about d,
(see [6]), namely that ’

} , 4 and o? are the mean

(6) D)4 =D, = nlogn+(2y —1)n+0(n'),

=1

where y = Euler’s constant, and

(7 dy = 0(n’) for any §>0.
From (7) we see that
(8) Dan0m < oo,

n=1

We will show that when 0 < 4 < 00, 0 <02 < oo

(9) i Zdnzpn(k; By 0%~ utlogh  as k> ool
n=1

o)
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One then easily seeg from (7) that
D pulks w, B = o(logh).
& Vn .

Combining (4), (5), (8), (9) and (10) we obtain Theorem 2.
Tt henee remains only to prove (9). To this end we sum (9) by parts,

obtaining .
(11) Z dn'pfi = ZDn(q’n—(pn—H):
n=1 n=1

where the boundary term for the summation by parts is LmD,¢, = 0.
From now on, write ¢,(k; u, o?) = @,(k) for short. el '

Let 4, =logn-+(2y—1).

Summing back by parts

(12) . ZAn(‘pn_‘pn+1) = Zan¢n—hm‘pnAn7
n=1 . =1 .
where @, = 4,,,—4, =logn+0,,
limg,4, =0, and C, = O0(1).
Thus
(13) Y Aulpn—gasn) = D, logn)ga(B)+ D) Capn(R)-
n=1

But by the renewal density theorem (see [4])

. R 1
k — k
(14) PXAGE s koo,

n=1
and hence

(15) D) Cugall) = O(1)
Let § = {n>0: [k—nu] >¥"} and § = compl. of S. Then

as k— oo.

(16) D (logn)p, (k) < oo.
nes
Note that
17) llogn —logk/u| < (const.)k™®  for ne .

Hence by decomposing > (logn)@,(k) into the sums over § and 8, and"

n=1
applying (14)-(17), a straight forward calculation shows that

' Ay palk)—gaa ()} ~ u 7 logh, 28 k> 0.

n=1

(18)
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Finally (due to (6)), it is sufficient to show thatb

(19) N 013, (B) — @ (B)] = O(1).

n=1

If we could remove fhe absolute value signs then we could sum by parts
and make the desired conclusion. To this end, let

b—tu)?
( M)}’ >0,

i 1
) h(t) =—t_—exp{—T

and observe that

d b —tu)?
—cﬁh(t) = g(t)t‘slzexp{—--( ét”) }

where ¢(-) is a quadratic. Hence there exists an integer 0 < N (k) < oo
such that @, (k) —@,,1(k) is monotone on each of the intervals (0 N k)],
(v (k), ) Then, for example, on (0, N] we have

Z nh lpn— 9711+1] = Z w (pn— ‘pn—i-,l) *
n=1 n=1

:}0{

‘The sum on (N, o0) is treated similarly. This proves the theorem.

N .
1720, ()} + O (N 2y (1) = 0(1).

=1

4. The main result. From now on we shall only assume existence of a
first moment. We also limit ourselves to non-negative random variables X ;.

The proof consists of two parts. One part treats the remainder term
by & method in which the principal tool is the Hardy-Littlewood maximal
theorem. The other part expresses the main term in the answer in terms
of the standard one-dimensional renewal function. It crucially uses the
Wiener-Levy theorem, somewhat along the same lines that Wiener’s
theorem was used by Karlin [8] in the proof of the one-dimensional cage.

THEOREM 3. Let uy, be the renewal sequence associated with {X,;> 0;
12 0,j> 0}, and assume that BX,;; < co, amd variance X; >0. Then

gy = K0+ (y — 1) v+ wy,+ By,

ZP k)

n=0

whére
= the one-dimensional renewal function,

Io
Wy—>—— as k— co,’

S —own,
j=1

and. * denotes convolution.

e ©
Im Renewal theorem for random walk in two-dimensional time b4

Without further moment assumptions we' can use the fact that
vy~ L to conclude '

2

COROLLARY. Under the hypotheses of Theorem 3

‘ w, = p logk ot f,
- _
where a, = o(logk) and 3 = 0 (k).
1

K is the tail of an absolutely convergent

Remark. Actually w;—

geries, that is :‘
@k— logp = 2“" ‘where 2 fa;} < 0.
s »j=]c

If one makes extra moment assumptions on P (k), then one can conclude

. 1. .
more about the a;, vy, and hence also % 0 For example if Zk“lP(k)

1 < oo

< oo, then (i) Z |a;|§° < oo, and (ll)

Proof of Theorem 3. Let 7y = 23‘1 hy = 0; H, th Then

H, = nlogn+yn-+o(logn), where y = Euler s constant, and accordmg
1o (2.6) v
D, = H,+(y—1)n+B, where B, = 0(47,1’3).

Thus, summing by parts in (2.3) we get

up = ) dnPu(k) = ZD,,[Pn(k Ppa(B)]
=0
= N E P~ P @]+ (p—1) 3 #lPall)=Prnn (B
n=0 n=0 .
+ 2 B, [P, (k) =Py (0)]
=t + i+ Bi (Ho = By = 0)
(For fixed %, P,(k) - 0 exponentially fast, and hence all the above series

converge.) ) )
The behavior of y; is trivially determined. Namely

= (y—1) Zn’ (n+1) [Pp(k) = Ppya(B)]— (¥ —1) ;: [Pn(k) —Ppya(R)]

n=0
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or :

1 ve = (y—1)oy,
where ‘

By = ZPn(k) = the one-dimensional renewal sequence.
n=0

The main term. Consider @ = > H,[P,(k)—P ; j
back by Pa’rts to get % Z n[ n ) n—l«l(h)] and sum

@) , 4= Zhnp,,,(k).
Detfine i .
B) ) = Zh P, (k) = i’i’ [P, (k) ]*[-]’m(k)]
' . ‘ . - (* = convolution w.r. to )
- [ ) T"Pn(k)]*[ :Tnpnuc)]
= [gmwc)] * [;w‘ —2— 0a() ]+

and denote the la.st two terms by =s;(r) +w,(r), (5

delta). (7‘7) = the Kronecker
Now let
f(6) = k;)'l’ (k6™ and p(r, 0) = Zwk(f)e’“-
Then - =0
@ Cplr, 6) = 208 [ —17(0)) ~log(1 —re")
But } —Tf(ﬂ

(L =ré")p(r, 0) = wy(r) + [0y (r) — rog,_, 767,

and hence fe=1

(B) . wlr) —rwy_ () =t fe—ika( 1 —re? )log(—i—aqﬂf

R 1—2f(0) 7 )df).

Now note that

1 1 1 Ve
[L—7f(8)] _O(F)’ and 1=767| EO(E);

©
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also gince 1 —rf(8) and 1—re® always have non—ﬁegative real parts. their
arguments are bounded; and hence

log +|log 1

1
1L—7f(6)

uniformly in 7. Furthermore, using the fact that f(8) = 1--iub--o(6),
a rather straight forward calculation which we omit shows that

1—re®
l is uniformly bounded.

1—7f(0)
Hence the integrand in (5) is uniforinly bounded by ah integrable function

and by Lebesgue’s theorem we may take the limit as 7 —1 inside the
integral. Thus ’

1 i 1f(6)

™

We will use a version of the Wiener—Levy theorem to show that
(7 Dl =) — w1 (1) < 0,
k=1

and thus w, = w;(1—) - constant. Bubt > w,r* ~logu/[u(1—r)], and
hence .

(8) | wy,— log -
Combining this with (2) and (3) we get
(9 4 = Limt (r) = Tim 8, () -+ ws.
- But . ! rj
(10) lims,(r) =1lim [g 'r"Pn(k)] * [Z: % am(k)]
- 1 1
ZZ‘““"P (h—m) — 2 " = (vk)*(%),
m=1 n=0

and hence we can conclude that

(11) 1, = k7 v+ Wy where w;,—> g logu.
Thus it remains to prove (7). To this end let
: 1—7(6)
(12) 910 =5
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)

PXE
5‘ Tpy = p < oo, g(@) hag an absolutely convergent Fo-

'LkB

Then we ean w1i’se g(6) = where g W_Zp,, and since by hy-

pothesis Z‘ o =

urier semes Now 1f w(+) ig a function which is analytic in a domain
containing the range of ¢(6), —= < 0 < =, and if ¢[g(#)] can be defined
as a single valued continuous function of 6, then by Theorem 6.8 of
Arens and Calderén [1] with 4 = the algebra of functions with abgo-
Iutely convergent Fourier series, we can conclude that (g(6)} has an
absolutely convergent Fourier series.

In the present case

(13) logg(6).

(9

From the fizst moment and aperiodicity hypotheses on f we can conclude
that there is a ¢ > 0 such that

lg(0) = 6,

and hence to prove (7) it suffices to show that logg(f) can be defined
a8 a continuous function such that logg (o) = logg(2x).
To this end let

10, 0) = D) purte™, T

Since Re (L —f(r, §)) >0 and Re(l—re“’) >0 we see that log(L—f(r, 0))
and log(L—re®) are single valued continuous functions; and hence also

1
0] = ——
vlg(0)] I
—n< i< m,

L—1(r, )

(14) and  g(r, 0) =

logg(r, 6) is continuous, and logg(r, 0) =logg(r, 2x). Hence, if we can
show that :
(15) logg(r, 0) ->logg(8) as r—>1

uniformly in 6, then we are done. But

9(6)—g(r, 0)_}1
g(r, 0) ’

Also g(r, 0)| > 6 >0 for some 4> 0, uniformly in 0 < »<
< 6 < = Hence ‘

hogg(0)~logg(r, 0] = og {1+

1 and —=

g(6)—g(r, 0 1
]“mg(yfl;) ) S5 190 —g(r, 0)]
1
Ry g0 | L 1.
Ik; o (L—1%) <5 EO or(l—1") =0 asr—1

This proves (15), and hence (7).
|

’

©

icm
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The remainder term. Finally we consider the term

(16) Br = ZBn[P (k) = Ppya(B)] = g by
fn=0

where B, = 0(#n'?), and b, = B,—B,_, when > 1, by = B, = 0.

Let

B(&) = Db, = (1—2) > B,"
=0 n=0
Then
@n B(f(8)) Zb 10 = DB -
n=0
and )
(18) = Db, f"(r; 0) S’ﬂ e,
N=0 fL-—O
Define
Az) =1—p+pz O0<p<l.

We will use the following lemma:

LEMMA. There exists a p (0 < p < 1) such that as r -1

T g 1 —p 2

f|B[f(r, 6)1Pd0 =‘0{ f [ (Xp{——£2~1—0 D 0})] d0]+0(1).

Proof. We write the inverse function of 2 as
AN w) = L—t(L—w),
Then we have B[f] = B[A(A7'[f])] and
20) BIf(r, )] = B[a{1—t[1—f(r, O)])].
Lét u(r, 0) — Ref(r, 6) and o(r, 6) = Imj(r, ). We note that

where ¢ =1[p.

(21) ufr, 0) =u(r,0)+0(8) o(r,8) = m0+o0(6)

where ﬁ, 2"’ p,, and where the terms o(f) above and in the rest
of this dmcuss_lon are uniform for 0 <r <1 (due to the mean value theorem
and the fact that ﬂ and @— are uniformly continuous in r» and 0);
also that o9 a0

(22) 1—u(r,0) = g(l—7)+o(l—7).

We algo cldim that there is a ¢, >1 and an 7, <1 such that for r >,
(28) w(r, 0)—u(r, 0) > 3tips 02 +0(62).”

6 — Studia Mathematica XLIV
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To gee this write (for € small)

. o0 013
(24)  w(r,0)—u(r, ) = Zp,cw’“(l——coskﬂ) > Zpkv’“(l—-cosk(?)
fom k=0
0—13 013
=1 Do PR O+ 0y(1)] = [0 o(6°)] 3 D mrte.
k=0 «Je=0

Now if > kzjak = @i, < oo then u* < u,, and hence we can find an ) < 1
k=0
and 6, >0 such that

013

/Sp,,k%k >ul > for ro<r<1 and 9<0,.
k=0 ' E

(25)

613

It 3 kp, = oo then Z "

gufficiently small and r close to 1, and hence (25) is trivially true. Since
the variance of {p;} is assumed >0 the inequality u? < u, is strict, and
henee we can insert the #; required in (23).

Thus sinee A~*[f(r, #)] 0 for » near 1 and 6 near 0 we can write

can be made arbitrarily large by taking 6

(26)  =@(r, 8) =logi™'[f(r, 6)] =log{l—t[L—f(r, )T}

= log{L—t{L—u(r, 0)) —t(u(r, 0)—u(r, 0)) +dtv(r, 0)}.
Using the estimates (21), and (22), and expanding the log ahout 1, a
somewhat lengthy calculation (which we spare the reader) shows that
Ren(r, 0) = —ip(l—r)—t[u(r, 0)—ulr, 6)]+
+38 400+ o(L—1)+0(6%) + 0 (L—7)o(0),
Imz(r, ) = to(r, ) [L+iu(l—r)+o(1—7)]+
+o(0)+0(L—r+[0)),
where all remainder terms are real and uniform in the variables not dis-

played. Applying (23) in (27), and taking ¢ so that 1 < ¢ < t,, we can in
turn conclude that

@&n

Rea(r, 0) = —Hu(L—r)—u(r, 0), Ima(r,0) =to(r, 0)+d(r, 0),

where @ and 9 are real % iy positive, and
(28) [2(r, 8) )< éi(r, 6)

for L —# and 6 sufficiently small; and where ¢ is a positive constant and
W(r, 0)—>0 ag r—1, §-50.

icm°

and it is to the right side of (3

Hence
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‘We may now write

(29)

Il

JIBIfr, 6)Fas = [ (BLA{9}]P a0

f |B[A{g™ ¥ra-n—in0+ilivtr.6) +8n, 002 g

I

—8

We now make the change of variable
=t(r, 0),, 6= v‘l(r,%),

and note that

1 4o
40 = — —dax,
t dv

is bounded since 0 < g < oo. Then

tv{r,8)
(30) f BU(r, P40 <E [ |BLA{pmi0-n-seabiertnal 2y
—e - iv(r, —8)

where %(r, %) = !L"&(r, vt (r,::i)), B(r,») = 6(7*, o1 (r,f;i)), and where &

can be chosen independent of 7 for » > r, close to 1. Finally, let

(31) 7(ry2) = B{eH0] = n (2" pl<1
n=0

and
(32) C(T &l‘) —_ —u(r,:r)+i‘p(r,:c)<
Note that (due to (21) if |u| < @, for z, suﬂlelently small, we still have
(33) Blr, )] <eulr,z), 727
for some positive €.

We thus have

& iv(r,8) .

(34) [IBLftr, 0IPd0<E [ Inlr, L(r, 9)¢)de
. —z to(r, —¢)

2) that we apply the Hardy-Littlewood
maximal theorem.

Let Q,(x) denote the “Hardy-Littlewood domain” with vertex at
¢, as defined in Zygmund [10], chapter IV, Section 7, formula (7.9}
and the paragraph preceedings (7.9). From the geometry of the construction
of £,, and from (34), it is clear that one, can choose ¢ sufficiently small
and then ¢ sufficiently close to 1 so that

(33) t(r, m)ee Q,()
for tw(r, —e) <o << to(r,e), r=1,.

lqlr, E(r, ®)6%] < sgl?)ln(r, 2)| = N,(r,z) (say),
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and }
to(r, <) ) ™ ‘ N
(36) [ Inlrs Sy @)e®)Pan < [N o) dr < A [Intr, )2 da
tw(r, —5) -7 -
where the constant A dependends on o but not on 7. The last inequality
is a consequence of the Hardy-Littlewood theorem (see e.g. Theorem 7.10,
chapter IV of [10]).
For 6] = ¢, |f(r, 0)] <1—6(s), d(¢) >0, and hence

(87) f IBLf(r, 0)]d6 < constant.
syb|<T

Combining (34), (35) and (37) we obtain the lemma.
Returning to the proof of the theorem, applying the lemma and
Bessel’s equality, and recalling the definitions (18) and (31), we see that

(38) D<o D)
for r > some 7, (r, <1) and ¢ = constant.
Write = -
BIM)| = D 02"
Then o
LT A i
nalr) = wn(f 7} [\ ‘i‘)n = %P (logl/r) ,

and by taking r, close enough to 1

(39) () < ol for =1y,
Thus s
(40) Z B g GZ @i, =,
We will show below that ‘ '
(41) w, = 0(n~1%
and hence -
(==} o
(42) Zﬁir" = 0(201"1/3(9“”’2)”) as r - 1.
n=1 n=1
This in turn implies that ‘
- (43) DB = 0™
i=0

(see section XTIT.5 of Feller [4]).
Putting together (1), (11), and (43) implies the theorem.
It thus remains only to prove (41). To this end we note that

o, = coef. of & in B[A(2)] = D by (k),

n=0
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R o .
where 1,(k) = (k) P*(1—p)*% and b, =B,—B,,, B, =0n"); or

(44) o, < constant.  Y'w|1, (k) —4,_, (k).

n=0
Now 4, (k)—2,_,(k) changes sign only once; namely when # = k/p and

hence we may break the sum in (44) into two ranges: # < — and # > E;
and sum these by parts. One gets 2 P

klp kjp
D 0 (00 = Ty ()] = 00 (k) 4 By (R,
=0 n=>0

The sum in this expression is Ok *)m and A, (k)E" ~ const. kY.
Similarly

X W)~ A s ()] ~ eonst. .

n=—1

LTS

This proves (41) and completes the proof of Theorem 3.
Proof of Remark. To prove (i) we repeat the argument using the

Banach Algebra of sequences a;, such that Y |a| k]’ < oo, (See Essen [3]
© 00

for details.) For a proof of (ii) see Essen [3] or Stone and Wainger [9].
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