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Interpolation in L” with boundary conditions
by
R. SEELEY* (Waltham, Mass.)

Dedicated to Professor Antoni Zygmund

Abstract. This paper characterizes the complex interpolation. spaces between
I? and L%,m, where Lf;,,,, denotes all those k-tuples of functions on a compact mani-
fold @ with boundary 8@ which have derivatives of order < w in L?, and which satisfy
homogeneous boundary conditions Bu = 0 on 8¢. The system Bu = 0 must be “nor-
mal” in a certain natural sense; the space [z, LJZD;, o] then consists of those functions

in Lj, which satisfy the boundary conditions involving normal derivatives of order
< 6w—1/p. When fw—1/p is an integer, the boundary conditions may be satisfied
in a weak sense. This generalizes results of Grisvard [Arch. Rat. Mech. Anal. 25 (1967),
pp. 40-63], and gives the domains of fractional powers of clliptic operators whose
domains are determined by the condition Bu = 0 on the boundary of G. It tells which
boundary eonditions must be satisfied by a function w in order to guarantee conver-

gence of eigenfunctions in I%,. It shows that regularity theorems for fractional powers
are necessarily more complicated than for integer powers.

A theorem of Grisvard [9] characterizes the interpolation spaces
between L*(@) and H%(G), where G is an open compact subset in B™ with
C* boundary 04, and H%(G) is the space of functions u in H® (@) satisfying
Bu =0 on 9G. This paper obtains corresponding results for systems of
funetions in I?,1 < p < oco. Whereas Grisvard interpolates by the trace
method, we use the complex method, outlined brifly in § 1. This is natural
in view of the applications to domains of fractional powers; if Ag is an
elliptic operator with domain defined by Bw = 0, and the fractional
powers (A)® can be defined as in-{14], then the domain of (4 z)’ is precisely
the complex interpolation space we are considering here. Thus, we obtain
the general version of some results of Fujiwara [6], [7]. § 2 reviews the
basic properties of Bessel potential spaces L and their restriction spaces
BE_,jp, due to Calder6n, Stein, Taibleson, and Strichartz. § 3 gives a reas-
onable generalization of the concept of “normal boundary system” from
the case g = 1 to general ¢. Our definition of normal system is more

* The author was partially supported by Battelle Research Center, and NSF
Grant GP 23117.
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natural and slightly more general than Geymonat’s [8], which in turn
is more general than the one in [5]. Moreover, it is automatically satisfied
when fractional powers can be defined as in [14]. § 4 proves the main
result, which says roughly that the space [L*, L% ,], consists of thoge
functions in L}, satisfying that part of the boundary conditions B which
makes gsense in. L}, . When 6 = 1, all conditions apply, and as @ decreases
to ¢ they drop out one by one until none are left for wf < 1/p. § 5 gives
a corollary on the convergence of eigenfunction expansions in various
norms. These results seem to be new even for ordinary differential equa-
tions.

It is of course a great pleasure and honor to join in honoring Professor
Antoni Zygmund in this special volume. The outline above suggests how
much the results in this article depend on the large body of mathematics
generated by Professor Zygmund and his mathematical descendants.

The author is also grateful to Professor B. Magenes for bringing
Grisvard’s paper to his attention.

§ 1. Complex interpolation. Let X; = X, be a continnous dense injec-
1;1011 'of Banach spaces. Let 8 = {2: 0 < Re(2) <1}, and 8° denote the
interior of 8. Let H(X,, X,) denote all continuous bounded functions
F: 8 - X, which are holomorphic in 8°, and such that the following norm
iy finite:

7] = maxsup |7 (j + i)l
2 Y

WheI:ej =00rl; —oco<y < cojand| |;is the normin X;. For 0 < 6 < 1,
the interpolation space X, is defined by

Xy =[Xo, Xu] = {F(0): F in H(X,, X,)},

with norm |[|fll, = inf{{F||: F(6) =f} (In [4], it is not required that
X, o X.l; hov‘vrever, this simplifying assumption is satistied in the case
we are investigating.) The following facts are proved by Oalderén in [4]:
(1) X, is densely and.continuously injected in. Xy, and X, in X,.
(L2) I 0,< <0, then [Xy, X,) = [X,,X,],, where 0 = 6,+
+8(0,— 6y). v

Let ¥, = ¥, be a continuous dense injection of Banach spaces,

and leb A: Xy~ ¥, be a linear map such that [|dal|, < C, o,

and [[4a], < Cyflalls. Then [Aally < Cyllalla, 0y = €301,
Property (1.2) is the iteration property, and (1.3) is the interpolation
properyy.

It is easy to check that for Fe H (Xy, X,) and y real,

(1.4) 17 (2 + i)l < |75
simply replace F(z) by F(s+iy).

(L.3)

icm

. (2.3)
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§2. The basic spaces. Two examples of interpolation spaces are
based on the operators A° and A, defined by

VAN ~
AF(8) = L+ EPPF(E),
A\ e

(2.2) _ A5f(E) = (r+VI+1EPYF(E),
where & = (7, &gy ..., &,) and & = (&, ..., &,). Lt

IP(RY) = {f in I*(B"): f(») = 0 i 2, < 0}.
We define for o real and 1 <p < o (see [31),
L2 (R™) = A~°(LP(EY)
LE(RY) = A7°(LP (BY))
IZ(R™) = restrictions to R} of members of IZ(R"™.

By a strong version of Mihlin’s theorem ([11] Theorem 6, or [12] Theorem
4.B), A24% is bounded on I, 1 < p < ooj since IP(R}) is a closed comple-
mented subspace of L?(R"), it follows that L%, (R}) is & closed comple-
mented subspace of L? (R"). Further, since (s7 +V1+ £ extends analyt-
ically to Im(7) < 0, it follows easily that

IZ(BY) = {fe LE: f(l, @z, ..., @) = 0 for 1 < 0}.

When a < 0, the condition “f(f,...) =0 for ¢ < 0” is taken in the sense

of digtributions.
A further appeal to Mihlin’s theorem shows easily that if a = (1—#6)a,

+6a;, then .

(2.1)

(2.4) L2(R") = [L (B"), LZ, (R,
(2.5) L3, (BY) = (L, (BY), I, (BY) Do
(2.6) LZ(BY) = [Lg (RY), I, (RY) s

In taking boundary values we encounter the Besov spaces B2(R™Y),
also denoted W2 in [15], and 4(a, p, p) in [17]. Let R, denote the restric-

tion map

Byf(@ay -0y @) = (T @25 05 T0)-
Stein [15] has proved that the map
2.1)  (f,f)—> R is continuous: B! x I2,,,(R") - BE(R"")
for a > 0. Further, there is a continuous linear extension map &: B2(R™)
— L2, 1,(R"), independent: of a, such that for any real a, &g is O¥ for
t £ 0 when g is in BZ(R™Y), and
(2.8) g = lLimR,&g in the B norm.

[

Thus, for o >0, BZ(R™") could be defined ag Ro(L2 sy (B™)-

4 — Studia Mathematica XLIV
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The result (2.8) extends easily to Cauchy data of any order (see [13]).

Let
Vil (®Bay o5 3,) = (Bof, RoDyf, ... By DEF).

Then there is a continuous map
(2.82) €% BX® .. BE_,— I2,,, (R,

defined for all real a, such that for a >k, y,&" is the identity operator.
For a < k this relation continues to hold in the limit sense of (2.8). (In [13],
equation (3), p. 786, should read

4y ay = by, E=1,...,0.
To satisfy this equation it suffices that v have compact silpport and
Jp@)dy' =1, since [A* 1y = [ (_qu‘l)j(ij))"“ldy’ is antomatically zero
for k =2,..., o, by the fundame]rzzl theorem of calculus.)

The map
(2.9) A% BY(R") — BE_poy(B™Y)

?s ann _islo-morphism ([18]), where A* now denotes the operator (2.1) with &
in B instead of E". Using this, (2.4), (2.7), and (2.8), it is easy to show
that for a = (1—6)a,+ 8a,,

210 - BZ=[B2,B2],
0 %1
(see also [18] and [4]).
The space & (R") of smooth funetions of rapid decay is dense in L?(R™)
and the pairing o
(Fr9) = [f7.
extends from & x& to L2 x I¥,, where £ +-1~ =1, 1<p < co; and
2 9

’Fhe Pairing realizes each space as the (anti-) dual of the other ([3]). This
Induces a pairing between L?(R") and 8. (RY).

From the density of & in L (R"), it follows that the space & (R")
oﬁ smooth functions in the closed half space R is dense in L? (R ). Furtht;;'
smce.tramslation is eontinuous in L2, the sufaspace 5’0(3?,” )+of smooﬂ;
tunctions vanishing in a neighborhood of B™! is dense in I}Jr{,"z (B™).

Many operations on & (B™) induce bounded. operators on, the+various

Spaces considered here. Let X, denote any of L7 (R"), LZ(RY), L (B"),

BZ(B"). Then the following are bounded.:

@11) D X, > X, p, where D = (—)¥ (—?—)ﬁ"... 0
0, /. 0z,

Pn
;

©
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(2.12) M,: X,—~X,, where pe P (E") and M, f = of;
(2.13) FIM F: X,~X,,
where ¥ is the Fourier transform and ¢ is & multiplier on L?;
(2.14) M, X, X, ,

where y is & C* map of a neighborhood of supp(gp) into R", and y*f(z)
= f(x(#)). In the case of B%, y is a map of the closed half space R} into -
RY, and ¢ is in Z(RY). i

For LP(R") this is well known, and it follows easily for IZ (RY) and
I (R}). For BY with a > 0, the results can be deduced by using the exten-
sion & into IZ. For a << 0, they follow by duality, as in [18]; and for
a = 0, by interpolation. ’

There is an obvious injection of L, (B%) into L7 (R} ); however, when
a—% is an integer, the image iz nol closed, as [10], shows for p = 2.

This explains the “exceptional values” a = k-+1/p in the following
characterization of Lf,.
For f in & (RY), let

flt, 2y .0ym,) =0
Bof(ty @ay ooy @) = T ’

0 ifi<0.

Levwma 2.1, Let k =0,1,2,..., and fe IZ(RY).

i) For —1— —l<a< l, thé map H, evtends by cominuity‘ to a map

r ? :

from IZ(R%) to L%, (RY).

i) If k+i —l<a< k+£, then

p »
(2.15) EBofe L5, (RY) < ypuf = 0.
1
iii) If a = k-(—;, then

(2.16) ByfeI?, < y o f =0 and B, Dife IZ,,(RY).
Proof. Strichartz [16] proves the following: If y, denotes the char-
acteristic function of R%, then the map f— y,f is continuous on LZ(E"),
1 . 1 .
0< a<—. This same map is thus continuous for ) —l<a<0, in
P

view of the duality between I? and L?,, and the faet that (y.f,9)
= (f, x+.9)- Part (i) follows easily: if fe #(R%), let fe LE(R™) with f = f
in R} and ||f]. <2[fll., the latter norm being in L7 (R%). Then

1Bofla = 74Tl < Ollf s
which proves (i). C
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In parbs (ii) and (iii) the direet implication (=) follows from (2. )
by letting ¢ — 0 —. The reverse implication can be reduced to (i) by indue-
tion, using

Levma 2.2. If fe L2 (R%), a > 1/p, and y,f = 0, then

(2.17) . DEf = B,Df
for any first derivative D. .
Proof. Let fe #(RY) and fp,—f in LL(EY). Then for ¢ in (B,

~ [Bf) Dy = [ Gofmo+ | BoDfp.
RP RP—1 RM .
As m > 00, pfp~>yof =0 in B MP(R" 1) and (1.16) follows.
Now when k& = 0, (ii) and (iii) reduce to (i), since the condition y,_,f
= 0 drops out. Suppose then that & > 0, and the right hand side of (2.15)
or (2.16) holds. Then by the indmction assumption, B,fe LZ_;(R™), and
by the induection assumption and (2.17), DH,fe LZ_, (R"); hence (see [3])
E,fe LZ(R™). Since E,f vanishes in R’l, Lemma 2.1 is proved.
Lemma 2.3 gives another source of functions in the “exceptional”
space Lf .

Lemna 2.3. Suppose that fe LI, .1, (RY), m = 1,2, ..., and that
(2.18) VYm—1f = 0.
Let Dy be any tangentiol derivative (i.e. involving derivatives only along
B") with 0 < |o| < m. Then Dife L¥,, (BL)

Proof. Let FyeH(IZ,IZ,,) with Fy(1/p) =f Let F —F,—

_;@'"“ ly‘in‘ 1Fy. Then Fe H(ILL, If.,), and by (2.18), F(1/p) = Fi(1/p)
=f; an

(2.19) Ym—1F (@) =0 for all z.

Since m > 1, (2.19) implies that hmR,F(l +iy) =0 in Bm r1-ip (B,
Hence ’

limR,D;F(lJrz'y) =0 " in B ,.

Hsnce by Lemma 2.1, DeF(1+iy)e L, so DiFeH(L?,I?,), and
D F(l/jp). Dife Ly m ’
In view of (2.12) and (2.14), all the results in this section can be

carried over (by a partition of unity) to a compact (% manifold with

boundary.

§ 3. Normal houndary systems. Let & be a bounded domain in E™
with smooth boundary 9. (More generally, let @ be a compact 0 manifold
with boundary 3G.) Let ¢ denote a “normal variable” such that >0
inside @, and ¢ = 0 on 8@; thus, a neighborhood U of #G in G hag the
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form 8@ x {0 << 1}. Congsider operators B; from g-tuples of functions
on U to r;-tuples of functions on U, having the form

. J
(3.1) B; = YDy, where D, = —id[di,
»=0
and b} is a differential operator on 8¢ of order < ». In particular, b} is an
7; X ¢ matnx of functions on U. (More generally, B; can map sections
of a ¢g-dimensional vector bundle over @ into sections of an 'r,-—dimensional
vector bundle over U.)

DEFINTTION 3.1. A system of boundary operators By, ..., B;’is called
normal iff

(i) the orders w; of the B; satisfy w; < ws < ... < oy, and

(ii) the coefficient b} of Dy7 in B; is an v; X ¢ matrix of rank r; ab
every point of 0G.

Remark. Generally, one considers a system of boundary operators
with arbitrary indexing. However, for convenience in stating our results,
we have lumped together all operators of a given order w; into one system
B;, and indexed the resulting systems monotonically according to their
orders. This can be done with any system; the crucial part of Definition 1
is the rank condition (ii). This implies that r; < ¢. In particular, when
g = 1 each B; maps into functions on U (since r; = 1), all the By’s have
different orders, and each B; is noncharacteristic on 4¢. This is the usual
definition of a normal system for ¢ = 1. -

Definition 3.1 arises naturally from Agmon’s condition [1] for mini-
mum growth of the resolvent. Let A be a gx ¢ system of differential
operators defined in G. In analogy with (3.1), write

@

4 =DaD;,

where @, is a differential operator on 9@ or order < », with coefficients
depending on i3> 0 and we 8G. Let 4,(»,t, £ be the characteristic poly-
nomial of ,, homogeneous in & of degree »; similarly for the b} in (3.1).
Let —n < 6 < = Then the ray B = {4;argl = 6} in the complex plane
is called a ray of minimal growth for (4; By, Bs, ..., By) iff

(3.2) the characteristic polynomial of 4 has no eigenvalues on E, and
(3.3) the problem

2«3 (@, 0, &)DP"u(t) = ), t>0,
ym B DF~u)(0) =g;  §=1,2,.-0yk
u(+oo) =0

has a unique solution for each g; in €% & in 9G, and (&,1) # 0 with
A on the ray E.
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If the boundary problem for A defined by B;u = 0, for ¢t = 0, ang
allj =1,..., k, is self-adjoint, then every ray, except those with 6 =
and 0 =, is a ray of minimal growth.

Suppose that A, By, ..., By has a ray of minimal growth, and B, ..., B,
has been arranged as in (ii); then this is a normal system. To prove thig,
take £ =0, 1 0 in (3.3). Since b}(», £) is homogeneous of degres »,
it follows that B}(z,0) = 0 for » >0, and bj(s, £) = b}(»). Hence, from
(8.8), b} is surjective, and this is the condition (ii) in Definition 3.1. (This
argument was suggested by T. Burak, in the case of functions, i.e. ¢ =1.)

‘We are interested only in the null spaces of the B;; hence they can
be replaced by any other operators with the same null spaces. Since the
coefficient b} in Definition 3.1 is a surjective matrix, the adjoint )" is
1—1; hence multiplying B, by )" does not affect the null space. Multi-
plying further by a positive definite g X ¢ matrix, we can replace B; by
a g X q matriz operator such that the coefficient b} of Dii is @ projection-
-valued matriz function, and

(3.4) bib; =8}  for all ».

§ 4. Interpolation between L} , and L. Our main result concerns
interpolation between the following spaces.

DerinITIiOoN 4.1, Let B = (By,..., B;) be a normal system on 0@.
‘We define the space L2 (G) as follows, for s> 0:

(@) If s—1/p < wy, then Lf, = LY(G):
(i) If for some I, w; < s —1/p < @y, then
Lf = {ue IZ(@): yoBju =0 for j <1}

(iii) If s—1/p = w;, then

Ly, = {ue IF(@): yoByu =0 for j <1, and ByBjue LY, (G}
Here y, denotes restriction to 0@, and B B,u =0 outside G.
» 'R.emark. In parts (i) and (ii), we apply precisely those boundary

cpndlthns which are well-defined, in view of Stein’s result (2.7) on restric-

jcmn‘s. Since the map u — y,B;wv is continnous for j < I, the spaces defined
in (i) and (i) are closed subspaces of L?. Part (iii) covers the situation
at the special values of s where some boundary operator B, is dropping
out; the condition in (iii) requires that B, vanish on the boundary in
a weak sense. For these values of s, I3, (&) is mot a closed subspace. of
L2 (G). (See [10], p. 67).

TEEOREM 4.1. Let B = (B, ..., B,) be a normal system (§ 3), and let
wpt+l<o, 0 <0<l Then .

L2 (&), L5 o (D]s = L% 0, (&),

where [, ], denotes the complew interpolation method of § 1.
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Proof. Let X, = IL?(&), X, = I} (@), and X, =[X,, X ];; we
have to prove that X, = I} ,,(G). Let fe X;, and Fe H(X,, X;) with
F(6) = f. Since X, = LZ(®), it follows from (1.4) and (2.5) that the
restriction of F to 6 << Re(2) <1 is & continuous map into L2,(@), and
is holomorphic for # < Re(2) <1. Thus if w;< wf—1/p, the map z-—
— y,B; F(2) is continuous into Bﬁﬂ_l,p_m’. (0@) for § < Re(z) < 1, holomorphie
for 0 < Re(?) <1, and vanighes identically for Re(z) = 1. Hence F(2)
eL8(@) and y,B;F(z) =0 for w;< wf—1/p and Re(z)>6, which
proves that f = F(0)e LE ,o(@), emcept in case (iil) of Definition 4.1, where

(4.0) " w0—1/p = w; for some I.

In particular, when 6w is an integer, X, = L%} ,,(@), with continuous
inclusion. Now suppose that (4.0) holds, and fe X,. By the iteration prop-
erty (1.2), and the cases already proved, we have
ff [—Xols Xﬂ,]s = [L.Il;‘,wp L%,mﬁl]s:

where 6,0 = o;and 0 =0, +1,and & = 6, +5(0,—0,). Let Fe H(LE .,
LY, ., with F(s) = f. Then y,B,F () vanishes identically for Re(z) =1,
so by Lemma 2.1, the map z— B, F(z) lies in H(I*, L,). Hence B;f
= B, F(s)e [I?, I} 11y = I 14, DY (2.5), since LP = If,. This concludes:
the proof that X; = Lf .-

The converse uses the simple idea of “extending the- Cauchy data”.
Suppose that
(4.1) (05 +-+> g) e BY(06) ® ... @ BY_;(06),

is given. Referring to (3.1), define for o; <k

F
(4.2) By (gos 1 9) = ), Yifus-

v=0
Thus y,B;f = B; 7if. ,
Levwva 4.1, Given (4.1) with 8 = (1 — 6)s, - 08, suppose that B; (gq, - .-
cves 0x) = 0 for w;< k. Then one can define functions

(4.3) G H(BL_(06), BL,_,,(06), O0<m<o
such that

(4.4) B (Goy -y Guy) =0 for all j,

(4.5) Go(8) =g, for 0<m<k, }
(4.6) Gos - -5 o)l < Cllgoy -5 G-

Proof. We can (and do) assume that the boundary operators By, ...
have the special form deduced at the end of § 3. If & < 0 we can take
G, = 0, 50 agsume & > 0. If o; > 0, take G, in H (B} , B} ) with G,(8) = go;
such a @, exists, by (2.10). If w; = 0, replace G, by G, = (I—b)Go;
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sinee B is a projection, and big, = Bygo = 0, we have Gy(6) = g, and
@, = 0, as desired. Proceeding by induction, suppose that G, ..., G, ,
are defined satisfying (4.4) for w; <m, (4.5), and (4.6). The definition of
@, now depends on. m.

(i). If m = o, for no'j and m >k, take &, = 0.

(i) X m = w; for no j and m < k, take any G, in H(B{ .., By )
such that Gy (6) = g , :

(iii) If m = w; and m >k, take Gy, = — Z‘b‘,’Gwr,.

y=1

Since b, = b}, (4.4) will now hold for w; < m, while (4.5) and (4.6) are
trivial.

(iv) If m = o, and m < &, take any G, in H(BS_,,, B},_,) such that

89—Mm
I —b)Gr(6) = (I =) fm
and set

@7

G = ([—B))G— D Wiy,
r=]1

Then (4.4) holds for v, < m as in (iil) above, and (4.5) holds since

“7 @y
B (0) = — 3 560 (0) = — D Viguy = Bigm,
y=1 =1
and :
(I~ B0)Gy (8) = (I—B9) G, (0) = (I—B]) g

Again, (4.6) is trivial, so Lemma 4.1 is proved.

Now, given fe I% ,, (&), we must find Fe H(L?, 1} ,) with F(6) =f.
Suppose at first that 6w —1/p is not an integer. This excludes Case (iii)
of Definition 4.1; suppose we are in Case (ii). (Case (i) is similar, and will
* be left to the reader.) Thus

(4.7) fe Ly, (@)

(4.8) o< Bo—1/p<ay,

(4.9) voB;f - 0 for j<1.

From (4.7) and the restriction theorem (2.7),

(4.10) (Gos o5 91) = VS e Bou_1p® .. @ Bl _yjpis

where § 0 —1/p—1 < k < 0 o —1/p. Further, from (4.8) and (4.9), B; (¢,
-y g%) = 0 for w; <k Hence by Lemma 4.1 we have G, in H (B4 _m,
_Bﬁ’,_l,,,_m), 0 < m < w, satisfying (4.4)—(4.6). Using the extension &°'
in, (2.83;2, le‘t P, = &Gy, ..., G_y). Then F,ecH(L? IP), and since
Vo1 6771 = identity, we get from (4.10) and (4.5) that y,F(8) = nf-
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Since wf —1/p is not an integer, Lemma 2.1 shows that f—T1(6) e If 0o (@)
hence by (2.4) there is an F, in H(L", I} ,) such that F,(6) = f—F,(0).
Let F = Fy+F,. Then yoB; F,(1+14y) =0 for all j, and Va1 Fa(1+2y)
=0, 50 yoB;F(1-+iy) =0 for all j, and Fe H(IF (&), I},. (&), as was
to be proved.

The case wf—1/p = m = integer remains. In view of the case already
proved (w6—1/p = integer) and the iteration property (1.2), it suffices
to prove that .

(4'11) fE I’%,‘ms = fE [L%,ml}%,m_)-l]s

where s = 1/p. Let Fye H(LE, L},,,) with F,(s) =f, and let yy, ¥
= (Gyy ++-y Gm—1). Proceeding inductively as in Lemma 4.1, we can then
define Gy, 0 <1< m, such that

(4.12) B (Ga+Gpy ooy Gy +Gp) =0, oy<m
and ' :
(4.13) Gs) =0, Oo<l<m.

Set Fy = Fyt 6™(@y .oy Gyy 0). By (413), Fy(s) =f. Further, if
m = w; for no j, then yoB;F; =0 for w; << m, s0 Fye H(T% s LB mar):
and (4.11) is proved.

1
In the remaining case where w@ ——17 = m = w,;for some I, the con-

struction is more complicated. First, as in Lemma 4.1, we construct G; in
H(B?_yp_is Bhii-up-gh 0 ST My such that B (Gy, ..., Gp) =0 for 0 <j
<1 and ppf = {Go(8)s - -s Gy1(8))- Let By = ™(Gy; -- -, Gn)- Then
(4.14) Vi = Pm-1F1(8)

(4.15)  yoB;F1liy) = Bj (Go(iy), ey G i) =0 for 0] <1,
(4.16) y,B;F1(1+iy) = B; (Gu(1+1y), ey G+ =0 for 0T,
50 Fye H(LE s L% me1)- We now have to modify F; into an F such that
F(s) =f From (4.16) and Lemma 2.1, B F,(1+iy)eLy,, so BF,

eH(I?, L?,) and by (2.4), BiF.(s)e Ly, hence B{f—F.(8)) ¢ Lf yp-
Since B} is a tangential differential operator of order < v, it follows from

m
(4.14) and Lemma 2.3 that Y 007" (f—F, (s)) is in Z2 3 hence b} D* (f —
y=1 )

—Fy(s))e L yp. By (414) and Lemma 2.1, then, b2(f—Fa(s))e Lf oo
Hence there is

4.17) Fy in H(IE I8 myy) With Fa(s) = by (f—F(s))
and
(4.18) F, in H(LE, Ih,,) with Fy(s) = b)) (f —Fa(s))-
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Let
Fy = BT+ (I—5) (Fy— €™ (7,01 (T, 0)))
Then
(4.19) Y1 Fy =0,
80

(4.20) yoBF,(1+1y) = yoby DY Fy(L+iy) = p,b] D" Fy(1+iy) = 0,

in view of (4.17). Further, from (4.14) and (418), €™ (y_,(Fs(s), 0)) =0,
so F,(s) = f—Fy(s). Hence, setting F = F,+F,, we have

() =1,
VoB B = 9B Fy+yB;F, = 0+0, 0<j<I,
Yo B F (1+1y) = 0,

by (4.16) and (4.20). Thus Fe H (I3, L2 1), 50 f = F() €[5,y I,

= [I? I )5, and Theorem 4.1 iy proved. mil

§ 5. Eigenfunction expansions. Agmon [1] hag given conditions for
completeness of eigenfunctions in LP. Here, assuming completeness in
I7, we characterize the functions f which have an eigenfunction expansion
converging in ILf,, when 6 is not one of the exceptional values in Defi-
nition 4.1. .

Let 4 be an elliptic system of order w on @, and let A and B satisty
the conditions in [14], so that the realization 45 of A under the boundary
condition By = 0 is a Fredholm operator, and the complex powers (4p)°
can be defined for Re(s) < 0. Since the eigenfunctions of 45 are the same
as T.hose of dp+cl, we can assume that Ay is invertible; hence A% is
defined .for all 2, and 4% =TI (see [13]). Let 4y, ..., be the eigenvalues
of Ap, in any order, and ¢, be the eigenfunctions, Az, = A,¢,; then
A% = gy From [12], A% is an isomorphism of D(4%) = [I?, 15 ,]
onto I*. Hence from Theorem 4.1, we have | e

(8.1) D @y ~>f in IB,, < D Mg, A%f in I7.

Thus the.eigenfunctions are complete in If,, if and only if they are
complete in L7, Mor‘eover,‘ if linear combinations of eigenfunctions are to
converge to a function f in If, (where 6w is not one of the exceptional

exponents in Definition 4.1), then f must satisty those b i-
tions of order < 6w —1/p. ’ Y © bomndary cont

§ 6. Regularity problems. The question of domains answered above
grew qut of a regularity question posed by Agmon. He proposed to reduce
the ell%zenvalue problem Agu = A0u to v = A(A5Y2CA5"%)v, where
v = AF*u. To carry thig through easily would require regula;rit;r results

©
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for AY* analogous to those for Az. Unfortunately, the fractional powers
are not go well-behaved in this respect. '

Suppose, for example, that Agu =f is a second order Dirichlet
problem, that is A is second order, and Bu = w. Thus Dom (4%) requires
By = 0 for 6 >1/2p, but not for 6 <1/2p. To answer the regularity
problem, we congider » in L%, and ask where Az"w lies. We find:

(i) If s <1/p, then Az"*u does indeed lie in I%,,,. For in this
case, % i§ in the domain of (45)™, 50 4 = Az**w for some w in L7, and
APy = AgVPPwe I, .

1 .
(ii) If > <s, then Az™u is in I% 1,y for all & > 0; this follows

from (i).

1 1 .
(i) ¥ - <s< .1_}"?_’ then the full regularity conclusion Az"*u

e I2,, will hold if and only if w satisfies the boundary condition Bu = 0.
In fact, A5 ue L¥, 1. for any ¢ > 0 implies that Bu = 0 on the boundary.
For, any function » in the range of 43" automatically satisties Bu = 0,
so it A5"w is in L%, .., then actually it is in I% 1 ype., hence Ay
= Ag'-1r—ey for a w in I7, and it follows that w = AP g in
I3 1p4es 50 Bu = 0 on the boundary.

By contrast, the integer power Az' maps Lf into L, , for every s > 0.
Tet ue L?, and set v = Az u. Then By = 0 on the boundary, and Ao
= ue I?, so the standard regularity theorem for elliptic equations says »

lies in LZ,,.
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On the localization property of square partial
sums for multiple Fourier series

by
CASPER GOFFMAN* (Lafayette, Ind,) and FON-CHE LIU (Detroit, Mich.)

To A. Zygmund on the 50th anniversary
of his first mathematical publication

Abstraet. It seems that localization and convergence of multiple Fourier series
are related to the Sobalev spaces Wj. This paper establishes the existence of such
a relation regarding the square partial sums. It is shown that for f eW%,, p=n—1,
this sort of localization holds for the n-torus. For each p < n—1 there is an feWp
for which localization fails. Examples are given of an everywhere differentiable periodic
funetion of 2 variables for which localization by square partial sums fails and of a func-
tion in W3 for which localization by rectangular partial sums fails. ’

1. In the study of Fourier series, a primary feature is the localization
property, which has been known to hold in the ecase of functions of one
variable since Riemann. That localization. does not generally hold for
functions of several variables hag also been known for a long time. Our
purpose is to obtain precise information regarding the funetions of =
variables which have this property.

Tonelli, [2], observed that, for # = 2, localization holds for thoge
functions now known as the functions whose partial derivatives (in the
distribution sense) are measures; this includes the Sobolev space Wi.
An example by Torrigiani, [3], shows that a condition given by Tonelli,
which guarantees convergence at a point, and holds almost everywhere
for » = 2 for functions in W%, may hold nowhere for n = 3.

Tn a recent paper, Igari [1], settles the localization problem for the
square (¢, 1) partial sums of a multiple Fourier geries. He shows that
this sort of localization holds for fe I, p > n—1, and fails to hold for
p < n—1. For the square partial sums themgelves — not the averages —
e points out that there are continuous functions for which localization
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