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Abstract. The main result is Theorem 4.1 stating that, for every separable
metric space X having more than one point, the space My, of measurable functions
from the interval [0; 1] into X, is homeomorphic to the Hilbert space I3. One of the
corollaries is that every separable complete mefrie group is algebraically and fopolo-
gically isomorphic to a closed subgroup of a group homeomorphic to Iy.

The present paper deals with the spaces M x of all Lebesgue measurable
functions from the interval [0; 1] into a metric space X. The topology
of My is that of convergence in measure. The main result is Theorem
4.1 which asserts that My is homeomorphic to the separable infinite-
dimensional Hilbert space I, if and only if X is a separable complete-
metrizable space with more than one point. Particular cases of this
theorem related to the following specifieations of X:

(a) X = R, the real line,

(b) X =[—1;1], the closed unit interval, and

(¢) X =2, the two-point space,
have been obtained in [9]. Let us mention that Mp is the linear metric
space denoted in Banach’s book [6] by §; the space M;_,y is isometric
to the unit ball of the space L, (of bounded measurable functions) re-
garded in the L, metric, and M, can be identified with the measure algebra
of all Lebesgue measurable subsets of [0; 1]. Our theorem is also a strength-
enining of a result of [13] stating that M, is universal for separable
metric spaces.

If @ is a metric group, then My is also a group under point-wise
multiplication; the elements of G can be identified with constant func-
tions in M. Hence if G is non-trivial and separable, then it can be iso-
morphically embedded into the group Mz (G = the completion of &),
which is homeomorphie to I,. In particular every separable metric group
admits a free transformation group action in I,. These results answer

" a question of E. Michael [19].

The proof of Theorem 4.1 combines the technique of R. D. Ander-

son’s Z-sets (¢f. [1]-[4] and [7]-[9]) with convexity argaments. The
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latter appear in §2 — a generalization of Keller’s [15] theorem on ho-
meomorphism of compact convex sets, and related criteria of recognizing
spaces hemeomorphic to 7,, and in §4 — proof of Lemma 4.8 which
concerns the weak approximation of measurable functions from [0;1]
to a simplex by functions with values in the vertices of the simplex
(ef. & similar result of Dvoretzky, Wald and Wolfowitz [12]). We also
employ a theorem on the existence of closed linearly independent homeo-
morphie embeddings of metric spaces into the spheres of Hilbert spaces
(cf. Arens and Eells [5]) which is established in § 3.

§ 1. Notation and preliminaries. By ¥ we shall denote the set of posi-
tive integers; by R, the real line, I = [—1;1], the closed interval;
R* ={teR: i>>0}; O denotes the empty set, while 0 stands for the
number zero and the zero veetor of any linear space. If a,¢ Rt for Aed,

then Yo = supa, the supremum taken over all finite subsets S c A.
Jed AeS

For any topological space X, we denote by X~ the Cartesian product
of ¥, copies of X labelled by positive integers, i.e. the elements of XV are
sequences ¢ = (2(n)) and the topology of X¥ is the product one.

The symbols U, N, \ denote the set-theoretical operations, and ,

+; —,- are symbols of algebraic operations on numbers, vectors of
a linear space F and on sets of numbers and vectors. For instance: 4 —z
={6—2: ac A}, R*-A = {i-a: te R*, ac 4}, otc.

The symbol = denotes the relation of being homeomorphie for to-
pological spaces and also for pairs consisting of topological spaces and
their subsets, i.e. (X, A) ~ (¥, B) if and only if there is a homeomorphism
f of X onto Y which caries 4 onto B.

The closure, the interior and the boundary of a set 4 in a topological
space are denoted by cl 4, Int 4 and 9A. ’

Let X be a metric space. A funetion f: [0;1] - X ig said to be
measurable if f~2(T) is a Borel subset of [0; 1] for every open set U < X.
Measurable functions f, g: [0;1] - X are said to be equivalent if
I{ee[0; 17: (%) = g(1)}] = 0. Here |4| denotes the Lebesgue measure of the
set 4 = [0;1]. By M x we denote the topological space of equivalence classes
of measurable functions f: [0;1] — X. The topology of My is that of
convergence in measure, otherwords it is defined by the metric

1

(1) e, ) = ([ (a(s, g)par)™,

where d is any bounded metric for X. If we replace d by an equivalent
metric, say d’, then the corresponding metric o' for My is equivalent
b? the metric p. For this observe thas if (f,) is a sequence in M x, then
h’ltllg(f,,,fl) =0 if and only if the sequence of real-valued functions
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oa*) = A(fu(*) f1(~)) tends to zero in measure or, equivalently, every
subsequence of the sequence (p,) contains a subsequence which converges
to zero almost everywhere (cf. Halmos [14], § 22). The last property is

obviously independent on the particular choice of the metrie for X.

L.1. PROPOSITION. The space My is complete-metrizable and separable
if and only if X is so.

Proof. The “only if” statement follows from the fact that the set
of constant functions is closed in My and isometric to X. Conversely, if
d, is any complete metric fo X, then d = d,/(1+d,) is a bounded complete
metric for X and the metric (1) for My is complete. Finally, if {z,: ne N}
is & dense set in X, then the set of all linear combinations 2 6:24,, Where

7.4, are characteristic functions of Borel subsets of [0;1], are dense in M. x-

All linear spaces appearing in this paper are over the field R. If 4
is a subset of a linear space B, then span 4 denotes the linear subspace
of B generated by 4 and conv.d4 denotes the convex hull of A.

For every mnormed linear space E = (E,|-|), we denote By
={zel: |z]| <1} and Sz = {r<E: |g| =1} the closed unit ball and
the unit gphere of .

By a pre-Hilbert space we mean a normed linear space B whose
norm is induced by a scalar product: |z|| = 1/<o:, 2y. The completion of
a pre-Hilbert space is a Hilbert space.

We shall use the following special Hilbert spaces.

The Euclidean n-space B*; <z, y) = 3} #(4)-y (i) for @,y « R™
i=1

The space I,(A) consisting of all real functions z = (m(l)) defined
on A such that [lof] = (3 w(A)P)"2 < 00,1, = ().
Aed

IL,[l,] the Hilbert space of equivalence classes of meagurable fune-
tions f = f(-): [0;1] -1, such that

1/2
< o0;

(2) = i I (2 )

1
the scalar produet in IL,[l,] is defined by {f, ¢ =Of {f(B), g(t) > dt.

The space L,[R"™] of measurable functions f: [0;1] - R satisfying
the condition (2). ‘

The weak topology of a Hilbert space H is determined by the basis
of open sets: U(y; fi, ..., fr) = {e H: Kz—y,fpl< 1for +<< &}, for all
possible finite systems of vectors 4, fy, ..., fre H-

For any subset A of a Hilbert space H, we shall use the same symbol
4 when regarding 4 as topological space equipped with the norm-to-
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pology; and we shall write A™ for denoting the set 4 equipped with the
topology induced by the weak topology of H.

In the next two propositions we recall some well-known properties
of weak topologies in Hilbert spaces. These properties will be used in
§§2,3,4.

1.2. PROPOSITION. If 4 is & bounded subset of a separable Hilbert space
H, then A~ is metrizable and pre-compact. The metric for A™ can be given
by the formula

d(my y) = 22“”(%——1/,]”%),

where {f,: ne N} is an arbitrary countable dense subset of Sg.
For the-proof see Dunford-Schwartz [11], Chapt. V, sect. 4 and 5.

1.3. PROPOSITION. Let H be an arbitrary Hilbert space and (f,),., an
orthonormal basis for H. Then the norm topology of the unit sphere Sy coin-
cides with the topology determined by the basis of neighbourhoods:

V@, nydyy oy lg) = {we 8z [Kw—y 7f11->|< 1/nfor i <k},
YeH, 2y, ..., 24e 4, kyne N, and coincides with the weak topology of Sg.

Proof. Given yeSy; and ¢> 0. We shall show that there are
Ay ooy e and ne N such that -

(3) V(ys%;}'u"-yﬂk) < {WESH: llz — 1l <5}'

To this end let A = {4,,..., 4;} be a finite subset of A such that
2K, folr =1— 3Ky, fD1? < e2/4. Pick an ne N with # > £2/8. For any
Zed Aed

@eV(n,y,2,..., %), we obviously have

Ke—y, £yl <1/n and |[o, f)[2— KKy, fo1] < 2/ for Aed,
whence

D Ko—w, i< s Ny, il Y Ko, fol < 24

Aed Aed Aed
Therefore

=it = YKoy, folr< e+ 3 Ko—y, fiyl*
Zed Asd
< 42 Dy 1+ Y Ko, ol — X 1Ky, £l
244 AgA Zed

<81 Y, P~ (L= 3 <y, £ l)
Aed Aed
<8 YKy, Sl — 3 e, ol < e,
Zed

Aed
This establishes (3). The remaining part of the proof is trivial.
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Let B = (E, |-ll) be a normed linear space, 4 ¢ E, ze E. We denote
d(z, A) = inf{Je—y]: ye 4},

We shall need the following version of Dugundji’s [10] result.

1.4. THEOREM OF DUGUDIL If 4 is o convex subsei of a normed linear
space E, then there is a retraction r: B — A such that ir(z) —2 < 2-d(z, 4)
for all xe X.

Finally we shall prsent some facts concerning Z-sets in the sense
of R. D. Anderson [2].

Let Q@ = I¥ be the Hilbert cube. Suppose that X = (X, d) is a metric
space homeomorphic to §. By a Z-set in X we shall mean any closed subset
4 of X satistying the following condition:

() For every &> 0, every integer m>=0 and every coniinuous map
f: I™ > Q, there exists a continuous map g: I™ - QN4 such thai
a(f(w), g(m)) < & for xe X.

The class of all Z-sets in X will be denoted by 2(X). It is easy to
see that the class of Z-sets is invariant under homemorphisms, i.e. if 4 is
& homeomorphism of X onto ¥, then {h(4): 42 (X)} = Z(Y). In par-
ticular the property of being a Z-set does not depend on the choice of
the metric on X, provided the metric induces the same topology.

The results, wee need, can be summarized in the following proposition.

L1.5. ProPoSITION. Let X = (X, d) be a metric space homeomorphic
to Q. Then the following statements hold:

(i) If AeZ(X) and A ~X, then (X, 4) ~(Q, Qoaq), where Quza
={ze@Q: x(2n) =0 for n =1,9,...}.

(i) If dicdscdyc...c X are such that: (a) (A, 4y)
(@, Qoaa) and (b) for every ¢> 0, me N and A< Z(X), there is a con-
tinuous map f: A — A, such thai f() = @ for wed N A, and d{fiz), n) < e
for all x in A, then (X, ) A,) ~(Q, P), where P = (—1; 1)¥, the pseudo-

<

nNe,
interior of the Hilbert cube.

(i) If (X,B) =(Q,9\P),Bc A c X and A is a countable union
of Z-sels, then (X, A) ~(§,Q\P) and XA ~T,.

Proof. The assertion (i) follows from Anderson’s extension theorem
([2], Corollary 10.3) which states that homeomorphisms between Z-sets
in @ can be extended to autohomeomorphisms of ¢, whence any home-
omorphism from 4 onto @,y admits an extension which is a homeo-
morphism from X onto .

The conditions (a) and (b) are evidently equivalent to the conditions
(4.11) and (4.12) of [8]. (To derive (4.12) from (b) we use [8], Proposition
1.1). Therefore the sequence (4,) appearing in (ii) is a Z(X)-skeleton.
Hence, by [8], Propositions 4.3,6.2 and 6.5, (X, LEJ{;A")Q(Q’ Q\P).

n
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The general statement (ili) immediately reduces to the case where
X = . In this case the homeomorphism (X, 4) =~ (¢, @\P) have been
asserted by Anderson [3], whence, by [1], I, ~P ~ X\A.

§ 2. Keller spaces and their central points. The main lemma. A convex
subset K of a linear topological space & is said to be a Keller space if
there exists a homeomorphic embedding f: K -1, which is affine (ie.
flim+@—0)y) = @)+ L —f(y) for @, ye K, 0<i<1) a,.nd such that
f(K) is infinite-dimensional and compact. Keller Spaces will ‘be usually
regarded with the affine structure (= the operation of forming convex
linear combinations) and the topological one.

2.1. ExAwprgr. The Hilbert cube @ = [—1;11" is a Keller space;

an embedding f: @ -1, can be defined by f(z) =
v, = (0,...,1,0,...) is the ith unit vector in 7,. "~

2.2. Exampre. Let K be an infinite-dimensional, weakly closed and
bounded convex subset of a separable Hilbert space H, and let K~ be
the set K regarded as topological space under the topology induced by
the weak topology of H. Then K~ is a Keller space.

In faect, since H is separable, there is a countable set {f,: neN}
of linear functionals separating points of K and such that |f,|<1/n
for n =1,2,... Thus the required homeomorphic embedding _can b?
given by K s 5 5 (fa(®@)) el Notice that the continuity of f~*: f(K") +K
follows from the fact that K, being a bounded and weakly closed subset
of a Hilbert space, is compact in the weak topology, see Proposition 1.2.

n~'x(n) v,, where
1

2.3. THEOREM OF KELLER. Hvery Keller space is homeomorphic fo the

Hilbert cube Q.

For-the proof see [15].

Let K be a Keller space. A subset 4 of K is said to be a T-set, pro-
vided that there exists a sequence of continuous maps g,: K — K such
that g,(K) = A for all n, and limg, (¢) = » uniformly in K. The eclass
of all T-sets in K will be denoted by 7 (K). Evidently:

(*) If L is a closed subset of K and K\LeJ (K), then LeZ(K).

(In fact also the converse implication is true).
Let ye K. Denote

aur, K = { J{y+t-(y—a): 0<<i< 1},
xeK

The point ¥ is said to be central if KNaur,K <7 (K). The set of all central
points will be denoted by cent K.

2.4. GENERALIZED KErLoR THEOREM. If X and Y are Keller spaces,
Tye cenb X and yye cent Y, then (X, aur, X) ~ (¥, aury, Y) =(Q,@\P).

icm
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Proof. Consider the sequence of the Homotheths
X =20+ (1-27) (X — ).
Obviously, X, ~ X and, by Theorem 2.3,
(1) X, ~

P forn=1,2,...

Given e N. Since myec centX, we conclude that Zqe cent X, ;, ie.
Ko Nawry X, e 7 (X, ). But X, = aur, X, ., and therefore X, . \X,
€7 (X, ). Hence, by (*), X, «Z(X,,)). Now, by (1) and by Proposition
1.5, (i), we obtain

(2) ) ('Xn-’rl? -Xn) =~ (Q’ Qodd)'

Assume that Ae2Z(X), meN and s> 0. Regard X as a convex
subset of 7, and let d(z,z2) = lle —z2fl, the metric on X induced by the
norm of I,. By Theorem 1.2, there is an # > m and a retraction 7 of X
onto X, such that d(z, r(z)) < e for all ze X. Let f = rig: A = X. The
map f has the properties

(8) fA)eX,, fl@ ==
By (2), (3) and Proposition 1.5, (ii), we have (X, U X,) ~(Q,0\P).
neN

Since obviously {J X, = aur, X, we obtain the assertion of Theorem 2.4.
neN

for wed N X, d{f(2),2) < e forzed.

2.5. TEEOREM. Bvery Keller space K admits a point y such thal
Ye cent K\Ext K.

In the statement above ExtK denotes the set of all extreme points
of K. Recall that ze K is extreme if u = 0 is the only vector » such that
?F+ueK and z—ue K.

Proof. Assume that K is an infinite dimensional compact convex
subset of I; ||| denotes the standard norm in 7, and ¢, -> the scalar prod-
uct. For every zel, define

diam K = sup{llv—ul: o, uc K, 2eR-(z—u)}.
Let reg K = {we K: infdiam, K = 0}.
zK

The following proposition is an obvious strengthening of the theorem.

2.6. PROPOSITION. reg KN\ExtK = @ and regK < cent K.

Proof. Pick #,¢e K, » =1,2,... so that
(4) . od{z,: neN} =K.

Let

oo
y = 22“”:0”, 2, = (B, —a,)2" for m=1,2,...

n=1
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Since the set K is closed and convex, we have ' t,, <K, whenever ¢, > 0,

n=1
i, =1 Hence in particular ye K, 4+ 2, e K and y —z, <K forn = 1,2, ...
i=1 ]

Therefore

(6) yeE\ExtE, {z, —#1,%, —2, ..y < (K—=y) N (K+y).

The set K, being a Keller space, is infinite-dimensional. Hence, by (4),
among the vectors z, there are infinitely many linearly independent.
Let (2;) be a linearly independent subsequence of the sequence (z,), and
let

Y, = Zcmz;, n=1,2,..
=1
be the orthonormal vectors obtained from the sequence (¢;) by the Schmidt

7
orthogonalization procedure. Finally let ¢, = 3 ¢,,. Obviously, by (6),
i=1

CpYp € CONV {2, — 21y %5y — %y ...} < CONV[(KE—y) N (K +y)]

= (E—9) 0 (E-+y).
Hence

n y+e,y,c K for n=1,2,...
By the Bessel inequality: ,21 Koy Yol < |z, we have
(8) im<x,y,y =0 for every wel,.
n
Let 4, < K be a finite set which is an %—net for K. Then
diam,,, K < SUD <2, 4> — ifg(w, Ya> < 2:5Up (2, Y|

1
<2 sup @, Yupl +2-—.
xed,, k2

Hence, by (8) Hmdia,mcnynK = 0. This, together with (6) and (7), gives

yereg KNExtK, the first statement of Proposition 2.6.
The proof of the second statement of the proposition is based on the
following lemma.

2.7. LEMMA. Suppose that B is a compact conver body in a finite-
dimensional Buclidean space B, 0¢B, L is a subspace of E such that
LnInt B # @, zis a point of Int B\L, and finally A is a compact subset of
L nIntB. For each e A, lot f(z) denote the (unique) point of intersection
of the ray @-+-R*-2 with the boundary 0B. Then the map f: A — B is
continuous and f(4) = B\aur,B.
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Proof. Let h: E — L be the parallel projection in the direction of
the veetor 2. Obviously % is continuous and f~'(y) = h{y) for yef(A).
Hence f': f(4) > 4 is continuous. We have f(4) = B n h7(4), and
therefore f(4) is compact. Thus we infer that f is continuous.

Finally, since zeInt B\L, we conclude that, for every zeA\{0}, the
interior of the tetragon with the vertices 0, x, f(z), z lies entirely in IntB.
Hence, for every wed, we have 9B N R*-f(z) = {f(x)}, i.e. flz)yeaur, B.

Let us return to the proof of Proposition 2.6. Given a point yereg K.
We have to show that K\aur,Ke .7 (K). Since the notions involved
are invariant under translations, we may without loss of generality assume
that y = 0. Leb {zy,..., @} « K he an e/8-net for K. Since 0¢ K, we

have infdiam,K = 0. Using the fact that K, = K n span{z, ..., x,} is
TeK

a finite-dimensional compact convex sét, we conclude that
inf{diam,K: e K,} > inf{diam K,: z< K,} > 0.

Therefore there is a point #,¢ K\span{w, ..., z,} such that diam, K
< ¢/8. We let

B = span{z,, ..., a,}, L =span{w,...,z,}, B=KnE.

Obviously diam,, B < diam, K < /8. Therefore there exists a point
zeInt B N L (the interior taken with respect to B) so close to @, that

(9) diam,B < /4.
Let A « L nIntB be a compact convex set such that
sup{d(», 4): ze L nInt B} < ¢/4.

Since I N IntB contains the s/8-net {x,...,x,}, we have

supd{z, 4) < /2.
zeK

Therefore, by the Theorem of Dugundji 1.4, there is a retraction r: K — 4
such that |r(2) —#l] < e. Define ¢ = for: K — K, where g is the map of
Lemma 2.6. Obviously g(K) c E\aur, K and, by (9), d{g(®), z) < e+ /4
for all ze¢ K.

Since the map g with the above properties can be constructed for
every ¢ > 0, we conclude that K \aur,K .7 (K). This completes the proof
of Proposition 2.6 and the proof of Theorem 2.5.

2.8. COROLLARY. If K is a Keller space, A is a subset of K of type @5 such
that Ae7 (K) and A < BxtK, then A ~1,.

Proof. Pick a point z,ecent KNExtK. It is clear that the points
of aur, K cannot be extreme for K. Therefore K\4 o aur, K. Since
AeT(K) and 4 is of type G5, we conlude that K\ 4 is a countable union
of Z-sets (cf. property (*)). Applying Theorem 4.2 and Proposition 1.5,

(iii), we obtain 4 ~1,.
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2.9. TEE MAIN LEMMA. Suppose that H is a separable Hilbert space,
D is an infinite-dimensional convex and weakly closed subset of the umit
ball By, M is a closed subset of D N Sy suchthat M~ e T (D). Then M ~1,.

Proof. Since M = Sy, we obtain, by Proposition 1.3,
(10) M ~M.

Thus M is complete-metrizable, and by the Lavrentiev-Sierpiniski
theorem ([16], § 31, III), M is a Gy-subset of D. Since M < Sy, we also
conclude that M~ < BxtD". The D is a Keller space (Example 2.2)
Hence, by Corollary 2.8, M~ ~1, and, by (10), M ~1,.

We shall conclude this section with some examples concerning central points
in Keller spaces.

2.10. ExamprE. We have cent @ = reg Q = Q.

2.11. Exawpre. If K = sz', then cent K = regK = K.

2.12. ExampriE. Let K = {(#,1)e @ x [0; 1]: sup | (n)| < £}. Then cent K= reg K
= E\{(0, 0)}. "

In [8] and [9] we have used the notion of a radial interior of a Keller space,
which can be defined as follows

rntK = {yeE: Bt-[(K~y)n (y—K)]> K—y}.

It is easy to see that rint K < cent K and aury K = rint K for every y erint K. Hence,
by Theorem 2.4, (K,rintK) ~(Q,Q\P), provided that rintK is non-empty. Let
us mention here that there exist Keller spaces whose radial interior is empty.

2.13. ExampLE. Let C(I) be the Bamach space of continuous funetions defined
on I ={—1;1], and let K be the subset of the conjugate (0(I))* eonsisting of fune-
tionals represented as probabilistic measures on I, and let the topology of K be that
induced by the weak-star topology of (0(D))*. Then rintK = @.

The proofs of the statements in the above examples are of a routine fype;
therefore we leave them to the reader.

§ 3. An embedding theorem.

3.1. TEROREM. Every [complete] metric space X is homeomorphic to
a closed linearly independent subset of the umit sphere of a [complete] pre-
Hilbert space H such that

(1) dimH = wghtX.
By dimH we mean the cardinality of an orthogonal basis for H;

Wght X = inf{eardA: el4 — X}, the topological weight of X.
Proof. First assume that

(2) X is a complete metric space.

Using the fact that metric Spaces are paracompact, we construct,
for each ne N, a partion of unity {(p;}lmn such that

() 2@ @) =0 #  dw,y) =2
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Let ¢gi(z) = 27"py(w) for Ae A,. Assume that the indexing sets .1, are
pair-wise disjoint and let 4 = () 4,,.
neN

We define h: X —1,(4) by the formula

hiz) = (]/g—l(;i)l&{'

‘We have
I = Sote) = 30 S = Fae =,
Aed n=1 Aedy, n=1
ie.
(4) h(w)e By Tor every me X.

Furthermore the coordinates Vg, of the map % are continuous, and since
on the unit sphere 8y, the coordinate-wise convergence topology and
the norm topology coincide (Proposition 1.3), we conclude that & is con-
tinuous.

Assume that z, ye X, # =y and, say, 27"< d(z, y) < 27"*.. Then,
by (3),

Z Vg () - VMIE = 2(91(“)"‘!]1(1/)) = 2_"2(971(1’)'}‘%(?/)) =27,

dedy, dedy ledy

whenece i (z)—E(y)l| = (27" 2 » 27" > d(x, y). Thus

(5) R is a homeomorphism.

. Moreover h~': h(X) X satisfies the Lipschitz condition; therefore

17! takes Caunchy sequences in % (X) into Cauchy sequences in X. Hence,
under the assumption (2), we have
(6) h(X) is closed in I,(A4). ‘

Finally assume that #, ..., , are distinet points of X. I.’ick ke N
with 27% < inf{d(z;, ®,): ¢ # j}. By (3), for every 4 < u, there is a ie 4,
such that g,(z;) # 0 and g,(z;) = 0 for j = 4, j <« Thus
() h(xy), ..., h(x,) are linearly independent.

Letting H = clspank(X), we obtain the statement (1).‘ This com-
pletes the proof of the statement concerning complete metric spaces of

‘Theorem 3.1.

Now suppose that X is not complete. Let X~ be the e,om.pletion of .X .
By the statement already proved, there exists a homeopnfmphm emb:eddmg
£ of the space X~ into a Hilbert space H,such that f(X ") is a closed linearly

independent subset of the unit sphere of H,. We let H = span f(X).

Obviously dimH = wghtX. Since f(X") is a linearly ind.ependent set,
we have f(X) = H n f(X"). Therefore f(X) is closed relative H.
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. § 4. Spaces 1y homeomorphic to the Hilbert space I,. This section
is devoted to the proof of the following theorem.

4.1. TurorEM. Let X be a metric space. Then My ~1, if and only
if X is complete-melrizable, separable, and X has more than one point.

Proof. The “only if” statement is a direet consequence of Prop-
osition 1.1.

We shall establish the “if” statement. Denote by 8§, S and B the
unit sphere of the Hilbert space 7,, the unit sphere of the Hilbert space
L,[1,] and the closed unit ball of the space L,[l,]. Suppose that X is
a separable complete metric space with card X > 2. By Theorem 2.1,
we may assume that

(1) X is a closed linearly independent subset of 8.
Hence, for each f = f(-)e My, we have

1 1
([ ipwpa)” - ([ 1a)” =1,

ie. f may be regarded as an element of the sphere S. Moreover, by the
definition of the metric p on My, the distance o(f, g) is the same as the
distance between f and g measured by the norm of the space L,[l,].
Hence, we may and shall assume that

(2) MycS.

For any set A < L,[l,], we shall denote by A~ the same set equipped with
the topology induced by the weak topology of L,(I,]. Let

Dy = cleonv My,

the closure in the weak topology of the space L,[l,].

According to Proposition 1.2, the proof of Theorem 4.1 is reduced
to the following result.

4.2. PROPOSITION. With the notation above we have Mze T (Dy).

‘We shall begin with the particular ease, where X is a finite set.

4.3. LEMMA. Let X,={2,,...,%,} be a linearly independent finite
subset of 8. Then Mx «T(Dy ).

Proof. Observe that Dy, = {fe Ly[L]: f([0;1]) = convX,}. We shall
identify the Buclidean n-space B™ with the subspace {yely: y(4) =0 for
i>n} of I, and we shall regard I, [R"] as the corresponding subspace
of the Hilbert space L,[l,]. By taking a suitable orthogonal basis in 7,
and rega;rding it as the unit vector basis, we may assume that

X, < R*

and My, Dy = L,[R".
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Since obviously, for any subset 4 of L,[R™], the weak topology of A
induced from the space I,[E"] coincides with the weak topology in-
duced from I,[l,], we may assume that M3 and Dy are equippedmwith
the weak topology of the space I, [R™]. " "

For any k N N, denote by ¥, the #-2% — dimensional linear subspace
of L,[R"] consisting of the funetions which are constant on each interval
Ak, 3) = [i-27F (E+1)-27%, §=0,...,2%_1.

Since the set of all linear combinations of the characteristic functions

Koy ke N, ©=0,...,2" is dense in I,, we conclude that UYx, is
. keN
dense in L,[R"], and therefore there exists a countable set {g;: ke N}

such that

) cl{gi: ke N} = Spmm;  9xe YD Sppe for h=1,2,...

Sinee the set {gz: ke N} is dense in the unit sphere of the space L,[R"],
the metric

a(f, 9) = X' 27*Ki~9, 9, I, g Dx,.

k=1

(8)

Let Py:

L,[RE"] 5z~ X5, be the orthogonal projection, i.e.
2k—1
(6) Pif) =D 2 [ f@@gupe for feL, (R
i=0 A(key5)

(the integral of R"-valued functions is understood coordinatewise),
Observe that

() Py(D,) < D, for

and  (Py(f), ¢ =< 9

Suppose that, for each ke N, we have constructed a continuouns map
Fy: Dx N ¥~ M, such that

(8) <Felf)s 9 =<1 @

Let g Dy, — Mk De the map ¢y(f) = F Py(f) for fe Dy, Since the
DProjection operators with finite dimensional range are weakly continuous,
we conclude that @, are continuous. By (4), (5), (7) and (8), we have

ngk.

for any feDy N Yy, ge¥.

Upulh)s 1) = X 27 Kol =1, 9 D1 = ) 27 gl 1, gdl < 2

i i=k+1
for fe Dy, , i.e. limg,(f) = f uniformly on Dy . This gives My 7 (Dk ).
3

To complete the proof of the lemma we have to construct the maps
I, with the property (8). For every ye convX,, let by(y), ..., b,(y) denote
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the barycentric coordinates of the point y, ie Dy(y)=0fors =1,...

n
Zb Yy=1,9 :Z‘b (4)-ys- Sinee @y, ...,
bfu"ycentrm coordma,tes are continuous affine funetions on convX,,. Hence
there is a ¢ > 0 sueh that

x,, are linearly independent, the

9) N ibsy)—bs(y N < o ly—y'll for ¥, 9’ econv.X,,.
8=1 )

Tt us put a,(y) =0, a;(y) = Z b;(y) for ¢ = 1,...,n. Now for agiven
. i<s
ke N and for
ok
(10) f =2 Yo' Zagne Dx, O Yy
=0
we define ’
! k. [ %
(11) A,(f) = U+ a0 @) 2755 (4 00(v2) 27
i=0
and
n
(12) = Zws'x;ts(f)'
s=1 .

Olearly Fy(f)e Mx . Furthermore, if ze R,

(13) g = z'XA(k,i)Ska ’
and a, = (i+ag(y;))-27" for s = 1,...,n, then, by (10), (11) and (12),
we have

Elf g = [ ElDO), D@t =D [ <oy 2>
A(k,1)

s=lag y

=2Ak'<yi,z> = f <f(t)’z>dt = <f7 g>'

A(K,1)

= X'b,(y)- 27"y, 2
§=1

Since the space Y, is linearly gemerated by functions of the form (13),
we obtain (8).
It remains to check the continuity of #. Suppose that

PLASY ok_1
~ ~ r N1 ../
I f’e-Dxn NYy, f =Z Yi* Xaw,» = 21 Yi* XA,y
=1 =

Then
2k

# () i)
=0

=11 =(J 1@~ @nay” = 2-

©

icm
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Remembering that ||z, = 1 for s = 1,

h -» % and employing the Schwartz
inequality, estimation (9)

and again the Schwartz inequality, we obtain

'Fk(f)—FL(fl)lz = I‘I"s'(/":As(f)'xAs(f‘))Iz
s=1
n 1
=2 ([ s = ragryy )
8=1 ¢
n 1
[Z U (gt = 241) ()] di) 1/2]2
s=1 0
n 1
sne Zf 120y () — g (8)]
§=10
2k1 n ok
= 327 3y (5) bl < e ﬂrZ 27% -y — gl
=0 - s=1 =
ok_y
< omea (37 fy—gige).
i=0
Thus

)~ Fufl < (onff— £ I, f'«Dx, 0 Y.

Therefore F is continuous in the norm topology. TUsing the facts that
Y is a finite dimensional space, M. x, i8 a subset of the unit sphere of
the Hilbert space L,[R"], we conclude that Dx, N Y ~Dx Nn¥X;,
My, =~ My x,,- Hence DX NY, - Mz x, I8 continuous. This completes
the proof of Lemma 4.3.

Let us return to Proposition 4.2. Recall that X is a linearly inde-
pendent subset of the umit sphere § of the space 1,, My is the subset
of L,[l,] consisting of X-valued functions, Dy is the weak closure of
conv M.

Let {z;:
Obviously

for

te N} be a countable dense subset of X, X, = {x,, ..., #,}.

My < My for each ne N, . and Dy = Dg, < Dy.
neN

We shall first prove the following lemma.
4.4. Lmmma. D, is dense in Dx and therefore D, is denss in Dx.
Proof. By the definition, the set My is dense in D%. Hence, by the
theorem of Mazur ([11], V. 3. Theorem 10), conv My is norm-dense in Dy .
Thus it is enough to show that D,, is dense in conv Mx. To this end take
2 countable dense subset {y;: je N} of the seb LIJV conv{wy, ..., &,}. For
ne.
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a given fe Dy and &> 0, define
Ay(f, &) = [ (E (11, ¢/2))
and, for j > 1,

Ay(f &) = (E W, s/z»\g FHE @ <),

i
B;(f, &) = [0; 11N _L;JlAi(f: &),
where K(y, a) is the open ball in I, of radius a centred at y. Clearly
Af,8) 0 Aj(f, 6) =@ for i #j, and Um|B;(f, &) = 0. Thus there is
J
an n = n(f, ¢) such that |B,(f, &) < /8. Let us putb
n—1

g = 2 Xag(r.0) Y5+ AByhe) Yo
=t

Clearly ge D,, and

If—y|=(§ [ wo-gra+ [ 17o-yra)”

i=1 4;(fe) By(f,e)
n—1 .
&2 112
<[ DT B, ) < ey <
j=1

This completes the proof of the lemma.

Proof of Proposition 4.2. Let d” be a metric for Dy induced
by an affine homeomorphic embedding of D% into I,. Let ke N. Since
Dy is compaet, it follows from Lemma. 4.4 that there is an # = n(e) such
that Dy 1is an 1/k-net for Dy with respect to the metric d”. Therefore,
by the Theorem of Dugundji 1.4, there is a retraction 7, of D% onto the
(convex) set Dy such that

(14)

a(f,r(f))<2/k for all feD3.

By Lemma 4.3, there is a map y,: Dy, - My which is continuous and
such that :

(15) a (f, v(H) <1/k
We have yyr: Dy — My < My, and by (14) and (15), limy,ry(z) = o

un'.ﬁ.ornﬂy on Dy. Hence MyeT(D3). This completes the proof of Prop-
osition 4.2 and the proof of Theorem 4.4.

for all fe D;;n
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.

§ 5. Applications.

Transformation group actions. Suppose that G is a topological
group, X is a topological space, and to each geG a homeomorphism
F, of the space X is assigned in such a way that:

(j) the map G'xX> (g,2)— Fy(x)e X is eontinuous,

(ji) Fu = F,oF, for every ¢, he X.

The assignement g — F, with the above properties is called a trans-
formation group action (briefly: an aetion) of the group @ in the space X.
The action g ~ ¥, is said o be free, if g e, the unity of the group G,
implies that F (x) 7« for all zeX.

The following is a consequence of Theorem 4.1.

5.1. THEOREM. Every separable (complete) metric group G is algebraically
and topologicaly isomorphic to a (closed) subgroup of a group I' = I'y ho-
meomorphic to the Hilbert space 1,.

Proof. Since, for the trivial group & = {¢} the asertion is evident, we
may assume that card G>>2. Let @ be the completion of G and let I = Mg
with the point-wise group operation. By Theorem 4.1, I ~1,. Obviously
G is isomorphic to the subgroup of I’ consisting of constant functions.

5.2. COROLLARY. Every separable metric group admits a free action in
the Hilbert space 1. :

Proof. Regard ¢ as a subgroup of I' ~1, and define F (z) = 2-g
for eI

It has been known before that every compact metric group admits
a free action in I, see West [19].

Topological classification of separable normalized mea-
sure algebras. Assume that (K, #,m) is a normalized measure space,
ie. K i a set, o is a sigma field of subsets of K and m is a non-negative,
o-additive measure on # with the property m(K) = 1. The normalized
measure algebra R = (R, m) associated with the measure space (K, A", m)
is the Bollean algebra of equivalence classes

[A] = {Bet': m(B\4)+m(4\B) = 0},

equipped with the measure induced by m and with the topology induced
by the metric
@) a([A], [B]) = m(A\B)+m(B\A).

A clags [A]e R (and also a set A e o) is said to be an m-atom if m(A) > 0
and, for any Be o with B c A, either m(B) = m(4) or m{B) = 0 holds.
Let a(m) denote the cardinality of the set of atoms in the algebra R.
Since the measure  is normalized, we have a(m) < R8,. The measure
m is said to be atomless if a(m) = 0 and m is said to be purely atomic
it every A e is a countable union of atoms.

where Ae .,

7 — Studia Mathematica XLIV.6
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Tor more detailed informations on measure algebras the veader is
rveferred to Halmos [14], Sections 40 and 41.

Let € denote the measure algebra of equivalence classes (with respect
to the Lebesgue measure) of Lebesgue measurable subsets of the interval
[0;1]. We have

5.3. COROLLARY. The topological space of the measure algebra 8 is
homeomorphic to the Hilbert space ly.

Proof. Let 2 = {0, 1} be the two-point discrete space. By Theorem
41, M, ~1,. Define F: M, - & by F(f) = f71(0) for fe M,. Assuming
a(0,1) =1, we get o(f,9) = (If (ONg™(O)+ lg™ (O)\F*(0))}" for
f, g€ M,. Thus F is one-to-one and both F and F~' are continuous. Since
every Lebesgue measurable set is equivalent to a Borel set (e.g. to a set
of type F,), we infer that F(M,) = &

For every non-negative integer #, let 2" = {0,...,2"—1}, the
2™-point discrete space; let 2% = the Cantor discontinuum.

The next theorem gives the complete description of all topological
types of separable normalized measure algebras.

5.4. THEOREM. Let R = (R, m) be a separable normalized measure
algebra. Then R ~22°0™ if m is purely atomic, and R =T, % 2°C" if m 45
not purely atomic.

Proof. The result is an immediate consequence of Corollary 5.2 and
the following facts (which hold under the assumption of the theorem).

(a) If the measure m is purely atomic and {4,;: 1ed} is the set of all
atoms in R (recall that card A < §,), then the map

{0,150 = (2(2) = [ U 44
= H1)
is a homeomorphism from the product space {0, 1}*, which is evidently
homeomorphic to 2%™, onto R.

(b) If the measure m is atomless then the measure algebra (R, m)
ig isomorphic (as topological Boolean c-algebra) to the algebra g, cf.
Halmos [14], § 41.

(c) Let R; and R, denote the o-subalgebras of R generated by the
atoms of R, and consisting of those elements of R which do not contain
atoms, respectively. Then R is isomorphic (as a topological Boolean
o-algebra) to the product R, x R,.

Spaces of measurable transformations. Let (K,#,m) be
a normalized measure space and let X be a metric space. By My (K, A, m)
we shall denote the space of equivalent classes of measurable transfor-
mations f: K - X (measurability of f means that f='(4)e # for every
Borel subset A < X). The metrie for My (K, &, m) is defined by ;

elf,9) = [a(f(k), g(m)m(ak) for f,ge My (K, 5, m),
2 .
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where d is a fixed bounded metric for ¥. Using Theorem 4.1 and the facts
(a) — (¢) stated above one easily gets

5.5. THEOREM. If X is a separable complete meiric space which has
more than one point and the algebra R associated with (K , Ay m) 18 sep-
arable, then the space My (K, %, m) is homeomorphic to the Hilberi space I,.
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