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Convolution with odd kernels*
by
RICHARD O°NEIL {Albany, N.Y.)

Dedicated to A. Zygmund

Abstract. Let % (z) be an odd kernel which is positive and m;)notone decreasing
for # > 0. Let g(z) be the convolution of f(x) with k(x). Then under certain conditions
we have the inequality,

2 i
- ~ (B k(tysinh—1 {—) dt.
@<t [ - ohoan (1)

where f~ denotes the Hardy-Littlewood maximal function of 7%, the rearrangement
of f onto (0, o). This inequality may be used to derive a number of results particularly
in the theory of Orlicz spaces.

The Hilbert transform, g, of a function, f, is given by convolution
on (—oo, co) with the odd singular kernel, H(z) = 1/na.

1 —i
g(®) = —lim f—f—gi——)dt.
T 0 i
[ti>e
If given a function f on (—oo, o) we let f* denote the non-increasing
rearrangement; of |f] onto (0, co) and let f~ be the Hardy-Littlewood
maximal funetion of f*; for ¢ > 0,

1 z
o == [ rroa

(see [2], particularly Theorem 1 on p. 191 for the result below), then if
g is the Hilbert transform of f, then f~ and g~ are related by the following
inequality: for s > 0,

2 W
1 <— | == dt.
o q (s)< ﬂ:of 82412 d

Our object is to derive a similar inequality in case we replace the
Hilbert transform by convolution with an odd kernel whose singularity
at 0 is milder than the singularity of 1/nx.

* Partially supported by National Science Foundation Grants GP 19185 and
GU 38171,
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The principal result is:

THEEOREM 1. Let K (1) be an odd kernel and let L(t) = —iK’ (t). Supposé’

that ,

(i) For i > 0, both K (1) and L(t) are positive and monotone decreasing
tending 10 0 as T — oo.

(ii) For t> 0, both tK (f) and tL(t) are monotone increasing and both
tend to 0 as ¢ — 0.

2 E(

(i) ( ) ——di< o

Thzm K (t) is the Hilbert tramsform of (), an even kermel which is
positive, locally integrable and decreasing for > 0. Moreover if

glo) =lim | fle—t)E()d

=0 f]5e

then for s > 0, S
g(s) <4 f (f O~ @) Ew smh*l( )dt.
We make two remarks. First, if in the above formula, we formally

let K(f) =1/nt and then replace sinh~'(f/s) Dby f l/ , change

e
tain a formula which is essentially (1). Seeondly we remark that for most
applications the following formula suffices,

. 1
orders of integration and obseWe that f‘ (y) = f ( ) — =" dt, we ob-

- ;e ot
<] FOE@ s 1(?)‘“'

We shall state and prove a series of lemmas which will lead us to
the proof of Theorem 1 and -another similar theorem. We will then
diseuss some applications to certain special Orlicz spaces.

The principal idea of the ploof is contained in the following easy
lemma.

Levwa 2. If k(z) is even, non-negative and for > 0, non-increasing,
and. if

K(m):%fk(m @t — mnf

e~>0
. H>s
then, for @ > 0,

9K (2) > k™ () — K (2) > 0
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B (@) =k (g)

E (2) =§ f B () s

where

and

Proof. For z > 0,

_ [ k@—t)— (241
=K (2) = i
@ =i [ HeO2Heth g

k(t—o) —k(
¢

t+m)

_ fz k(m—t)—t-k(m—i—t) dH—f
0

z

Both' integrals are non-negative so that K (®)>0

k(@ —1)—k(z-1)
i

2nK (z) > 2

x/2

it > 207" f (k(z—1)— k(2 +) s

zj2
z x/2

> 207! f(k(m—t k(m/z)dt—zx-lf () dt— 207 (/2) o (@/2)
x/2
xf2

fk*(‘)t)dt—k*(m) *w‘lfk*(t)dt—k (@) =k~ (2) — k* ()

LeMMA 3. Let h be the Hilbert tra

. msform of the comvolution of two func-
tions f and k. Then for s> 0, d 7

o0

2
= ] ro=-ropo-x e () a

Proof. If g = fx% then for > 0,

)<

() <t () ( t)+ff () y.

(See [1], Thecuem 1.7 p. 134 and for the following inequality see [2],
Theorem 1, p. 191.) Thus if & 1s the Hilbert transform of g,
g ()

s <2 #< ~ )k (1) 2 a
st? 2 Wof Vsite o+ nof Vseiga

In the first integral we integrate by parts observing that the integral
of (Vsi+e)~'dp is sinh~'t/s and that the derivative of Yok (t) is

f PR (@) ds.
i
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-V () F~ (OE @)+ () % (1) and in the second integral we change
(;;ger(st) Z;f (ig{;ggraf;i)oljl.( éﬁx{lb(ixzing( integrals gives tht.s desire_d result.-
The basic contents of the next lemma is that if %(x) is the Hﬂlbert
transform of — K (») then zk'(z) is the Hilbert transfcfrm ojf.——zuK ().
LeyMA 4. If K (t) is an odd kernel which fqr 1> 0is positive, conves
and decreasing with K(3) -0 as t — oo and if L(t) = —tK (t) and if
for &> 0 define k(3, e w) by
—8

—ﬂk(a,s:m)=(f +T+ f)K—(mt_—t)dt
]

— z4-e

d -
then the derivative k'(d; ¢: @) =Em—k(6 , &: ) satisfies

nak' (8, &1 @)

-5 Z—5

(e [

+(E(0+6)— K (5 8))fz.

—00 3

Proof.
=k (8, &: @)
-8 z—8 o ,
K (v—1) K(e) | E(—¢)
=,(f+f+f) t dt_—m—e_l_m—}—e'
© - 8 f ]
T—F =] .
Observe that E(¢) = — [ K (z—1t)dt = mz{aK (x—1t)dt.

Thus for example

o0

f—-——K'(i—t) dt+E(e)fw = fK'(w—i)B-wﬂdt

z+a z+e
X " — 1 OoLaa—t)
=if(m HE (= t)dt:__f ( i,
& t x+e ¢
zte

We leave the completion of the proof to the reader.

LewmaA 5. If K(t) is an odd function which for t > 0 is monotone non-
increasing tending to O as t > oo and if there exists b> 0 such that for
0 <t<b, tK(t) 18 monotone non-decreasing and 1K (1)—~0 as t -0 and
if K(t) 48 not identically zero then

k(@) = — f

~00

K(x—1) P

tends 0 oo as z — 0.
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Proof. Given B> 1 and ¢ > 0, choose ¢ 8o thai; logh/2¢ > R. Choose
4> 0, 6 < ¢ so that 8K (3)/c < & Given any , 0 < 2 < J choose 1 = A(x)
by the equation Ajz = x/2¢c. Observe A < @[2. Break (—oo, co) into the
subintervals (— oo, —(e—2/2)), (—(c—=/2), ~ (=1, 4, (,z—2),
(x—2,24-2), (+2,22—2), (22—1, c+2/2), (e+2(2, b+ax), (b+az, oo).

—E(@—9)[t> 0if te(— oo, —(e—/2)) so that the integral over that
interval is non-negative. Similarly the integral over (24, o) is non-
negative. The principal value of the integral over (—4, ) equals

2
_fK(m t)tK(a: 1 t)dt

L]

and sinee (#—1) K (z—1) < (z+1) K (w+-t) the absolute value of the above
integral is dominated by

A i
f K(z—t)2t P =f @—t) K(x—1)2¢ it
p @41 ; (1) (z—1)

2
2t
< 2wK(m)°f m at

2/xK(x) 8 A 8 =z 4
< -—K(z) =§—2~0K(m)<—3—.

<
= g2 3z

Similarly the absolute value of the principal value of the integral over
(r—21, 2+ 1) equals

i
1 1 8 4
uf}:{(t)(w_t - x+t)dt<2m1{(m)/(mz~zz) <3 K@) < def3.

The integral over (—(¢—u/2), —1) equals

c—zf2 c—zf2
E(z+1) at
f ——t—ﬁdt>(m+}.)1{(w—|—l)jf sy
> (m—Z)K(m—Z)I e—x/2 x+A
= P ct+zf2 )
(2~ E(x—2) r—2
B z log A

(observe (¢c—=/2)/(c+z/2) = (@ —A)(z+ ).
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The sum of the integrals over (A,x—1) and (#+ 2, 22—1) equals

@t+i

1 1
o - @
J K(t)(m——t m+t)
which in absolute value is dominated by
=& @—WE@=1) 2Ww—10-]
2(%“((”"”[ @—t)(@+1) @ S et

i

The integral over (2z—1, o+u /2) equals

ctal2 ctzf2
K(t—x) _ dt
_t__dt>(w—A)K(m_ A) =)
2x—4 : 2z~
’ (—NE(x—2) 25— 2
= = log PR

Combining terms we see that the sum of the integrals over ( - (e=x/2), —2),
(A, 2—1), (&+2,20—2) and (22—, ¢-+2/2) is non-negative.
The integral over (¢+%/2, b-+a) equals

btz btz X
— dt :
Mdt>K(b) f T,:K(b)log(b+m)/(c+w/2)
ctziz - i - ctufz -

S E(b)logh/2¢> E(b)R.
Thus for |z] < 4, .
k(%) > RE (b) — 8¢/3.

A modification and simplification of the above proof yields the
following lemma.

Lesua 6. If K(t) is an odd function which is monotone non-increasing
tending o zero as t— oo and if tK(f) i3 monotone non-decreasing amd
tK (1) -0 as i — 0 and if K (1) is-not identically zero then

[

1 f E(@—1)

k(z) = —=— dat
T 1

—0a
18 non-negative and tends to oo as x — 0.

We now prove Theorem 1. Let K, (f) < K(f) for > 0 be a kernel
which coincides with K (#) if 1/n < ¢< » and which is modified in such
a way on (Q, 1/n) and (n, oo) that hypotheses (i) and (ii) of the theorem
hold for K, (#) but in such a way that K, (t)eI* Then K,(t) is the Hilbert
transform of k,(f)eI*. By Lemma 4 and Lemma 6 (with L, (f) = —tK.({)
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replacing K, (4)), k,(t) is positive and decreasing for £> 0 (its derivative
is negative). It is clear that if

then k,(x) - k(z) except possibly at # = 0. We shall show that the
k, are uniformly absolutely continuous. Integrating by parts

z z/2 zl2
ok (@) = [ Ki(t)dt =2 JRROL (2. (e/2)0f2)+2 [ (—tE, )@

°
zf2

= okl (@) -2 f (—thy (8)) @t

so that
zf2

2[ (—th, @)@ = ok (2) ~ ok’ (2) < 27wk, (x).

If we invent new odd kernels for z > 0,

F Kt F Kt
B, (x) = f ——’;( ) @< f ‘T( Lt — R(x)
it is easily verified that R and R, are odd monotone decreasing kernels;
zR,(2) and zR(x) are inereasing and 2R (x) — 0 as = — 0. But %, (x) bears
the same relationship to R, () as — wk, (x) bears to K, () so that
zf2

iy (@) =2 [ ky(t)dt < 22R,() < 20R (z).
o

Since the k,(z) are monotone for x> 0, this inequality is sufficient to
show the uniform absolute continuity. But the uniform absolute con-
tinuity of ,(») implies %(z) is locally integrable and

K(z) = imE,(z) — lim* [ @1 4 =if ko—1) .

n->0 T i ki 1

To prove the inequality of the theorem let H (f) denote the Hilbert
transform of f. Then,

g = Kxf = H(E)*f = H(kxf).

Apply Lemma 2 and Lemma 3.

THEOREM 7. If K () is an odd kernel on (—m, ), monotone decreasing
on (0, ) such that there exists ¢ > 0 such that for 0 <it< e K(t) and —tK' (1)
are monotone decreasing and 1K (1) and —*K'(t) are monotone increasing
and tE () 0 and —*K'(t) — 0 as t — 0 then K (1) is the conjugate function
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of k(t) which is even and in L' Moreover there exisis a comstant A such
that if f is periodic and .
o) = [ E@f@-
e
then for 0 <5< 2m,

an . t
g™ (8) < Alflh (L +(log2x/s)y) + A of (f~ =7 (@) E(¢/2)sinh ™" (;) at.

Proof. Extend the domain of K () to (—oo, oo) by setting K () = 0

for [t|> =. Let K(t) = K,(t)+ K,(t) where K () = K () for 0 <t < s/g

and K,(i) satisfies the hypotheses of Theorem 1 and where K,(t) is
uniformly bounded. Let

@ it

1) =

f(®) 0 it

[t] < 2,

[t} > 27,

then g, = K xf; coincides with g on (— =, =) so that fors > 0, g7 (s) < g7 {s),
g1 = Kxfy = Kyxfi+ Ko fi.

My #filloe < sl If1lh = 211 sllo 11l -
If g, = K,*f; then by Theorem 1,

o0 . _ t
i 6 <4 [ (70— F 0) Kulsian™ () .
0
It we observe that fi (f) =7 (1/2) and fi(t) =f*(¢/2), that #~(f) < If 1ty
that K,(f) < K()+K(s/2) and that sinh~'(¢/s) is the order of magnitude
of t/s if $/s is small and logt/s if ¢/s is large then we see that

fm[f_(t) —fk(t)]Kl(t)sinh‘lt/sdtg e lifllog2w/s 4 e, lIfll; f 17 K, (¢)logtdt,
i ; arn

2 2

f(f'(t)—f*(t))sinh“(%) dt<|1f111(1-|— f smh—'l(i)ﬂ)

s/ i
< [Iflly(1+ (log2n /s)3).

We may combine these facts to obtain the inequality of the theorem.

We may apply Theorem 7 to obtain a theorem on Orlicz spaces
over (‘—m, ).

TeroREM 8. Let A be a Young’s function such that both A and its
complement A~ satisfy the Ay-condition of Orlicz (see [3]). Let b(t) = (log*t),
o> 0. Let B(i) be & Young’s function which for large values of t 48 the order
of maguitude of A(th(1)). It 4s easily seen that B and its complement both

cm
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salisfy the Ay-condition. Let K (t) be an odd monctone kernel which equals
1/th(1;8) for small positive t. Then if feL, then

90) = [flo—nE@a

is i Ly.

The following remarks should enable the reader to complete the
proof. Recall that 4, A=, B and B~ all satisfy the 4,-condition.

1. The integral operator which transforms feLj; by

- ¢\ dt
= #)sinh ™ {—) —
ot = [ s (1)
is & bounded operator from Ly to Lj.
2. feLp it and only if f*eLy if and only if f~eLy.
3. If feLy then there exists «> 0 such that <t
4. For f~(t) big enough,

Bl pm) = 4L 000 ) <4 (o) < Ao

Thus if feL, then f~(2)/b(L}) e Ly.

EXAMPLE 9. As a special case of Theorem 8 we see that if K (2) =
=1f{(log1/t)%, a>0 for small positive ¢ and feIP(—x, ) then g =K+ F
is in LP(log* L)*.

Examere 10. Tf K () =1/i(log1/t), 0 < a <1, for small positive ¢ and
if feL(logT L), > 1—a then geL(logt L)*+F-1,

Exawerr 11. Zygmund [4] has shown that of the Orlicz spaces
close to I*, Llog* L is the most interesting. Thus it is no surprise that
in the present theory perhaps the most interesting singular 0dd monotone
kernel is K () equal to 1/i(log1/t) for small positive z. For this choice of
K (1) our theorems show thas if feL{logt L)%, > 0 then Kx*f eL(log* L)%
This is not true if § = 0, however we have the substitute result that if
feL(log*log* L) then K*felL. ’

‘We remark that we may choose b(f) in Theorem 8 more generally
than a power of a logarithm. Indeed the only facts needed about b(t)
is that K (f) = 1/tb(1/f) satisties the hypotheses of Theorem 7, that
b(f) increases to oo, that b(f) is slowly varying and that there exists
& constant ¢ such that (%) < ¢b(2) for ¢ sufficiently large. This last con-
dition is a strong constraint, indeed exp(l/logt) is a slowly varying
function which fails to satisfy it and which indeed would not work in
Theorem 7.
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Distribution function inequalities for the area integral*
D.L. BURKHOLDER (Urbana Ill.) and R. F. GUNDY (New Brunswick N. J.)

Dedicated to Anioni Zygmund

Abstract. Let 4 be the area integral of a function w harmonic in the Euclidean
half-space R™x (0, co). Information about the distribution function of a localized
version of 4 is obtained that leads to a general infegral inequality between 4 and
the nontangential maximal function of  and provides a convenient approach to the
study of the pointwise behavior of u near the boundary. In addition, the general
integral inequality of [2] between the nontangential maximal function of w and that
of a properly chosen conjugate is shown to hold also in the case n > 1.

Our object here is to prove some partial distribution funection ine-
qualities for the area integral and to show how these inequalities can
be used to study both the local and the global behavior of harmonie
functions. Before describing our approach in detail, we consider a few
of its applications. '

Let « be harmonic in the Euclidean half-space

R = {(w,9): <R, y > 0}.
The area integral of » is the nonnegative function A = A4,(u) defined
on R* by
Ax) = Ai(u, 2) = [[y""|Vu(s, y)Pdsdy
()
where a i3 a positive real number,

I'(@) = Ilw;a) = {(s,9): lo—s] < ay},

and Vu = (0u[dy, Ou[dm,, ..., du]dz,). The nontangential maximal fune-
tion N = N,(u) is defined by

@ N(z) = sup lu(s,y)l.

(&:1)el'(z)

* This research was supported in part by the National Science Foundation
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Leffler and our celleagues there during the summer of 1971 for the excellent. envi-
ronment in which this work was carried out. In particular, we thank Charles Fef-
ferman for many conversations on questions related to those discussed here.
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