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Note our choice of 7 in (5),k and infer from (14) that

(15)

lo” (1) = B(0)| < ¥ for all ye dua™,

in Case (4). In like fashion, (12,) leads to

(155)

11" () =278 (x)] < %7 for all ye AUA™Y,

in Case (4,). From (15) it is evident that the measure » = i,u satisfies (3)
T

with d = }. From (15,) it is evident that » = ——y satisties (3) with
d=% = ?7:
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A divergent multiple Fourier series
of power series type
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over the pre- and post-doctoral years.

Abstract A continuous complex-valued function on the torus whose (double)
Tourier series diverges restrictedly rectangularly at every point has been constructed
by Charles Fefferman. The present paper presents a function Whi.(ﬂl has the above
properties and whose Fourier geries is of power series type (amp = 0if m<0orn < 0).

Charles Fefferman [2] has given an example of a continuous function
F(z, y) defined on the torus T% with the property that the double Fourier
series Za,,,exp(i(mz+ny)) of F is everywhere restrictedly rectangularly
divergent. This means that for each point (z, y) and E>1,

i(mz-tny)
S.MN(ws y) = 2 Ay € ¢
jmj< M
n|<N

fails to tend to 2 limit as M and N tend to infinity with B M|N < E.
In this paper we extend Fefferman’s result by proving the following.
TamorEM 1. There is @ continuous complex-valued function H(z,y)

on the torus whose double Fourier series is of power series type (Cp, = 0
if m<0 or n<0) and is restrictedly rectangularly divergent everywhere.

On [0, 2] X [0, 2] set go(® ¥) = 6o(@ Y5 4) = (@) p(y)e”™ where

. 1
@ is a C* function equal to 0 if 0 << 1/40 or if Zw—zz)—gtg?m and

to 1 4f 516 <t<on— % with 0 < ¢ <1 elsewhere on [0, 27]. The real

parameter 1 is greater then 1. Then clearly g, is & CO* function on the torus 7'*
obtained from [0, 2x] % [0, 2x] by identifications, and ||golle = SUp|go(®, ¥

=1
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We consider the three conjugate functions of g,,

JOS ’1
(@, y) = gu(2, 95 4) =_f : ds,
0 ’)t%n

2
1 gol,t)
gl ) = gala, 95 4) =;f e

o dt,
2tan‘l
and
27 2
1 g. (2, ) 1 9208, 9) -
9(Z,¥) = G, y;5 1) _':f '—1_—3;-:?(“ =;;f ﬂ;——_;ds
0 2tan 0 2tan 2

([5], vol. I, p. 51).

The equality of the two representations of g; follows from the facts
that as functions on the torus they both have the same double Fourier
series and both are continuous. Actually, all these integrals are 0= functions
on the torus. Consider

2m

0@, 9) = (97:)-1] 9ols, ¥) cot{(z —s) [2)ds — (2m) [ gyfw—
2 [t

Although, in principle, g, is defined only in the principal value sense,
it follows from the infinite differentiability of g, that the integrand
together with all its derivatives are continmous funetions on the torus.
It follows from Leibnitz’s rule for differentiation under the integral sign
that g,e C*(T?). Since g, and g, are €%, the two representations of g,
may be shown by the above argument also to be ¢,

Remark. We shall often differentiate under principal value integrals
without explicitly repeating this argument.

We form the function

s, y)cot(s/2)ds

=8, Y)—go(@ +s3, y)]coti(s/2) ds.

W@, y) = (2, 9) = go(@, 9) ~ ga(m, 9) +4 0., 1) + g2 (@, 9)]

Then % iz € and has a double Fourier series of power series type. We
shall devote the main body of the paper to proving that # has the following
four propetties:

;i - LieMya 1. The function h is continuous on T2 and bounded, independent
of A

icm°®
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Lemwa 2. If 2 s sufficiently large, |Syx(B)] <
LexMA 3. If > 400 min {3, N}, |8y (B)] < A.
Levmma 4. If (#,9)e@ =[.1,2r—. 1% [.1,2

greatest imteger in Ay = [ly]l, N = [ix],

for A sufficiently large.

(Constamts will be independent of all paramelers unless otherwise indi-
cated.)

We temporarily postpone the proofs of these lemmas in order to
show how Theorem 1 follows from them.

Proof of Theorem 1. Arrange the countable set § = {(«, y [0, 27:) X
X [0, 2x)|z, y rational} into a sequence, § = {S;}r1, .. s
let T, be the translation of the torus with the property that T8 = (=

Then,

Alogi.

—.11 and M = the
then ;S‘,m(h)(m, y)l = Blogi

y khz(x)(TA(«T: 7I)$
',"=
with ¢, = 2~% and A(k) = exp(4¥), is the function of Theorem 1.

The choice of {¢;} and Lemma 1 assure that this series converges
uniformly to a continuous function on 7% Since the Fourier series of
each h;(k)(Tk(x, y)) is of power series type, so also is that of H. It remains
only to demonstrate the divergence of the Fourier series of H. Fix a point
(#,7)eT? and an B >1. Set Tplr,y) = (x(k), y(k)). Since S is dense
and A(k) tends rapidly to infinity, there are infinitely many k with the
following properties:

H(z,y) =

() 4=z2k) =1, 4= yk) =1
iy Bt PEEN g s i hold i S, is close to (z, %) and
= A2 (k)]

if A(k) is large relative to 1/(E—1)).

(ifi) A(k) is so large that Lemmas 2 and 4 are valid with 2 = i(k).
(iv) A(k) is so large that A(k+1)> 400-2(k) -+
For such a & we have .

!S[Z(h)u(k)],[z(k)z(k)](H) (z, Z{)[ = y l6; hm)T (&, )|+

J

8

o lohagy (Tel@, )1 — D) leghuy (Tt 9]l

j=k+1

k-1
¢;logA(j) A -+ Beloga(k) — 4 Z‘ ¢
J=1 i=k+1
by Lemmas 2, 4, and 3 respectively. Hence, .
v o
S, 9) = sup [Sun(@,y)| > B —4—4 32
min{ M, N} j=1

E-I<M|N<E
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for infinitely many k. Since the right side — co as k — oo, S3(®, 4) = oo,
<0 that the Fourier series of H diverges restrictedly at (z, ). Since (z, y)
and B were arbitrary, Theorem 1 iy proved.

Remark. A theorem of Plessner states that the everywhere con-
vergence of a trigonometric series of one variable forces the almost every-
where convergence of its conjugate ([5], vol. II, p. 216). If Plessner’s
theorem were extendable to the two variable case, one could easily deduce
from it and Fefferman’s result a slightly diluted version of Theorem 1.
However, such an extension is not possible, as the following counter-
example shows. Consider the series § = M () 8(y) = Za,, 6™ where
8(y) = Ze™ and M () (= Za,e™), the Fourier-Stieltjes series of a singular
measure, converges to zero al’_/most everywhere. Although § is convergent
almost everywhere, §; = M(z)8(y) = X (—1 sgnm)a, @+ diverges
almost everywhere. For details, see [1]. (Also see [3])

To prove Lemmas 1 through 4 we will need five technical lemmas.
Let

2n

Cyle,y) = Cila, g5 2) = ¢ly) [ 2 (s)- Jeot((@—s)[2)ds,
[}

27
Calz, y) = Cale, 95 1) = g(@) [ 7929 (0)-Feot((y —1)2) dt,
0

2n 2n

Cy(z,y) = COsla,y; 1) = [ [ "D g(s)p(t)- feot((w—s)/2) x

@ 0

X cot((y —1)/2) dt.

From g,(z,y) = é*V0,(x, y)[z, ga(@,9) = *VCo(w, y)[m, and gy(a, )
= eV 0y (x, y)/=Y it follows that the C;e 0*([0, 2=] % [0, 2=]). (Differen-
tiation is one-sided on the boundary.) But the C;, like 6%, are not periodic
and hence not continuous on 7™ ’

LEMA. 5. For j =1,2,8, 0] < 4, |D,0;| < 4, |D,Cj| < 4, and for
all (2, y) satisfying d((z, y), 0T°) = distance from (z, y) to boundary ([0, 2] X
> [0, 2=]) > 1/160, {D,D,C;(z, y)| < 4.

Here Dy denotes partial differentiation with respect to the I-th variable.

Proof. We write

z 3-—i1ys
B Gl ) = o) [ Gpoespla—ids
T2

z o—is

=vWel) [t [ e“"”[fﬁ(w—f’ﬁﬁ%@]ds

T-2m z—2
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where &, 0 < |&] < |s| is determined by the mean value theorem. If d (=, 0T !
= distance from z to boundary ([0,2=])< 1/80, then ¢{(z—s) =0 in
a neighbourhood of the singularities of cot(s/2). Hence, it follows from
the first line of (1) that O, is bounded for such z. In the contrary case,
the boundedness of the last integral follows from the fact that [z —2x, 2] =
c [—2%+1/80, 2 —1/80]. For the first term we note that the integrand
is bounded if |s] > 1/80 so that one need only show that

1/80

—12y8
¢= [ f—as
8
—1/80
is bounded. The process which achieves this we shall call folding. This
e 180
involves writting & = [ + [ = A+B. Substitute s = —s in 4 and
—1s0 0

then combine. We have

1/80 )
G = "‘)if E‘E‘;ﬁd,gz

iy/so

sms
—21 ds = 0(1)
[

{[5]; vol. I, p. 37). This proves that (, is bounded on T°. The boundedness

of ¢, follows by symmetry.
We consider D,(,. Since the integrand vanishes identically near

the endpoints, we have

x

2) D,0,(z,9) = ply) [ e Leot(s/2)¢’ (@ —s)ds.
T2
This and all subsequent differentiations under the principal value integral
signs are justifiable by arguments similar to the one that showed g,(x, ¥)
to be . Since this expression differs from C, only in that ¢' (z — ) Teplaces
@(x—s), the same argument that showed €, to be bounded applies to
D,C,. By symmetry, D,(, is also bounded.
For D,C,, we have

F

3) D,0y(x,y) = ¢'ly) [ ™ heot(s2)ple—s)ds

x—2r

T
Hle@y) [ (—idge ™) {s deot(s/2) plo—8)}ds = A+B.
23
Clearly 4 is bounded. (See the argument following equation (1).) An
integration by parts yields

x

B — (p()ly){(s- 1 cot(s/2)) ¢ 50— | g‘“”s(s-%eot(s/Q)zp(m—s))’d@}.

-2
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The integrated texms vanish and the last integral is bounded. (If d(z, 0T*) >
> 1/80, s stays away from & A if d(z, 0TY) < 1/80, p(z—s) = ¢’ (@ —8)=0
whenever s is within 1/80 of 4-2w.) Since ¢ (y)Jy < 40, D,C, is bounded.
By symmetry, D;0, is bounded.
The discussion of (; will require the boundedness of D,D,C,, D,D,C,,
and D, D, D,C;. The investigation of the behavior of the higher derivatives
“of ¢, (and, symmetrically, C,) merely involves iterating the above tech-
nigues. We leave the details to the reader.

We now turn to ;. Since
¥
gl y) = @7 [ gl y—ticot(t/2)dr,
Y-

we may write

v

) Cyloyy) = [ o7 heob(t/2) Oy, y—1)db.

Y2
To show that C, is bounded, we essentially repeat the argument that
showed C,(x,%) to be bounded. One need only observe that the factor
C,(a, y—1) in equation (4) has the two properties that were required of
the corresponding factor; ¢(z—s) in equation (1); first Cy(w, 7) =0 if
d(t, 3T') < 1/40 and second that D,C, is bounded.

As in equation (2), we have

Yo il
) DyCy(w, y) = f’f‘“‘t—ﬂacﬂ-f”’y't)m-
”"‘"21}31]1*‘2‘

This is bounded exactly as was C; itself since D,Cy(x, 7) again has the
properties required of ¢{x—s) in equation (1).
We may rewrite

&
Cala, y) = =2 ™ gy(e,y) = | 6™ feot(s/2)Ca(x—s, y)ds
-2
by using the second integral representation of g,. From this representation

it is clear by symmetry that D,C;(z, y) is bounded.
Finally, restrict » to [1/160, 2=] and differentiate (5) to obtain

]
Dl'DZCs(‘Z‘7 .?/) = —D]_Dzol(iﬂ, y-—t)dt
¥=2= Jtan =
1 F e
T f(—'lm"e : )l 7 DEOI(m,‘y—t)} dt.
y=im 2tan —
2
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1
The factor s is bounded by 160. The boundedness of the second

term now follows from integration by parts. (The factor in curly brackets
plays the role of the factor in curly brackets in equation (3).) The first
integral is bounded since

D,D.C(@,7) = DyDyCy(m, 7) (zecall C, is C*)
=g¢'(v) [ e Leob(s/2)e’ (@—s)ds+

=2

o) [ (677 s beot(s/2)¢’ (@ —s)ds

-2
again has the properties required of ¢(r—s) in equation (1).
TmyA 6. (LocatizaTioxN) Let Oz, y) satisfly the smoothness properties

specified in Lemma 5. Then for any 8,8 and (x,y) with |6/ <1, [ <1
and d((,y), 0T?) = 1[160, we have

(6) Say (9iw0(41“; ?/)) = TJI+6,N+5—TM+6,—(Z\'+:)"T—(JI+6),N+E+

"%'T—(JI+§),»(N+2)+E(‘T7 y; M, N; 6,5 A)
where Sy (f(, ¥)) denotes the M, N-th partial sum of the double Fourier
series of f,

T,y = To(f2,9) = 05 T—9—1

z~-1]160 y—1/160

2+1160  y-+1/160 —ilas+Bt)
8, 1)e
f&, 9 dsdi,

and E is bounded independently of all ils parameters.

Remark. Since localization is not true for continuous functions of
two variables in general ([5], Vol 11, p. 304), the conclusions of this lemma
do not follow from general considerations.

Proof. We have ([5], vol. II, p. 302 and vol. I, p. 49)

LT g, SBAER @D D g
Sun = ¢ (s, 1) ¢
L s =8 Y

o 0 28in ——— -28ID—5
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where The integmls over the regions 4,, 4;, and 4, behave symmetrically so
’ :([x— 1;0’ ot 120] [ Y+ 707 2 ]) U([‘l - I}S%’ JI+1(1)‘—0:| X that 2 f f may be absorbed by E. Several additions and subtractions
i=1 4,
1 1 1 1 , give
. — g4+ ——— 2| x|y— - U
X [0: y 160]) v ([ *+ 160" ﬂ] [y w60° YT 160]) (8)
o[ore-53 | [ 555+ v ([m L ] if *f’ ”7’"’“ esin (3 4 8) (e —s) SN + )y —1)-Cle, ) 5 o
g L= —_ , f—* = —_ g —
160 1 160 16 AS x—1/160 y~—1/160 (m 8)(y t)
1 5
X y — J + _]) U z+1/160 1 1.
[ 160° 160 i=1 + sh(M+6)(m~s)‘—%~:— e 8 5
— 95in — .
is a cross neighbourhood of (x, ¥). The integrand is bounded off X so s-1j160 ~sin 5
=2 [[ may be absorbed by E. Now W i ‘ A
iy x( el X b0, y'r)vdt) ds -+
(7) ~1]160 i
o P s py—t) (e s 4 s Clw—s ) v 1 L P
1= = ; s\ at, + [ @ | e
47 y+1/160 2sin & —1;i60 28in Ky y—i/160 2gin y2 )
1 1 ’ V60 g o (.
50 (since —2mt Syt _ﬁ) to bound the contribution from 4, % [ (M +0)s-Cle—8, 1) g gy g
. o §
it suffices to bound the inner integral, call it I, of equation (7). Since e 2sin— )
L ow—s,n—2 B SN D =) S A1) )
s § o )
i T y—1i
2sin 3 y—1/160 2sin Y 5
Cx, 1) ¢ '
=—§s_+s{( p C'< oy ) +— —D,Ca—o, t)l N ‘ N % g elin (M 8)s- Cx—3, £) ds\ at+
25in— 2in - ” / .8 '
2 2 o=0(x,1,5)s —1/160 2 sm;
h th in ¢ s is 7 1 . .
:;aire e term in curly brackets is bounded, we need only fold to get . = i (A1) (ﬁ_g)_ﬂ—sm(ﬂtf 8) (x —#) 08 5
U160 g M1 z—1/160 l 2Siux—8
1+0(1) = s s ?
~1fi60 s e e sin(FN+HtC(s, y—1) dt\ ds
1/160 X _,__.____.4——————-——-—— .
— t
_ f sin(M 4% —at)s+sin(M 43+ M)s s (_1,150 25in—
] s 2
Myi-2 Mybid

7 sine P Buler's formula, sin@ = (¢* —e~*)[2i, shows that the first ter;n on tthe
sinu sin
- f du f = dv = 0(1). : right side of (8) is equal to the first four terms on the rlghf;f suieto equaf 1{08n)
¥ (6), so Lemma 6 will be proved if each of the remaining four terms o
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are bounded. All the inner integrals are bounded by arguments analogous
to the one following equation (7). Furthermore, the first two terms in
curly brackets are clearly bounded. The remaining two terms in curly

brackets are bounded since the mean value theorem implies

S+ )T —sin(¥ + )7 | _ [F—elz

|
I
i o ain T o cin F
l 2sin— .,sm-?T
which is bounded since |z} < 1/160 and |e| < 1.
Leyya 7. If d{(z, y), aTz) <1/80, [Sux{g)m )< 4,j =0,1,2,3.
Proof. Each Syy(g;) may be written as

| =

(9)

¢

where Ep(z) represents either the Dirichlet kernel D, (= sin (L+4%)z/2 %
1 cos(L+§)=

sin(z/2)) or the conjugate Dirichlet kernel D, (=

depending on the value of j([5], vol. I, p. 49).
Assume, without loss of generality, that d(x, 0T") < 1/80. Then

Ey(x—8)¢(s) is bounded. If d(y, 87" < 1/80 also, the integrand of (9)

and hence also (9), is bounded. If d(y, T%) > 1/80, then write (9) as

b

u

”"‘EIHE*“‘“’“sm(s)e"’*"”( J e“"”’m—t)EN(t)dt) ds.

y-2in

Again it suffices to show the inner integral bounded. Since (p'(y —1) = ply)+
+0() and Ey(f) is bounded for d(z, T%) > 1/80, we need only bound

1480

f B (1)t
—1/80
We fold obtaining
1,;80 . 80 | " - 1/80
s sin ist g r sinisteos (N <+ 3)¢ cosAstsin (N -+ 1)t
J tan(z/2) " J T smip % or f ey @
p 2 s sin(/2) sin(4/2)

gepending on whether Ey = D" or Dy. All three of the integrals are
ounded. (See t13e argument following equation (1) for the first and the
argument following equation (7) for the other two.)
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1/160  1/160 ei(m—"s‘m

Lemuma 8. (Cf. [2].) Set Fy(u, ») = i dsdt. Then F

—1i60 —1/160
satisfies
(10.1) | By, v)] < A logi,
(10.2) B, v)| <4 A< 100 max {{ul, pi},
(10.3) 1F5(0, 0) —2milog | < A.
Proof. Let

/160 sinu
= —d
10 f —

so that |g(f) <4, lg'()]<min {1/160, 1/}. We may write

(11)
160 g, U160 . 4160 gy
: o sin{Af — u)s R
i_Fl(p,v)= 6—~—( —-—(——;—m—d&)dt = ‘ 7 - g (At —p)dt.
2 —ui6o ¢ o $ —1/i60

Since the last integrand is bounded by Ajt, we may replace the limits
of integration by —1/i and 1/4 while making an error on the order of
logi. Then an application of the mean value theorem yields

12 it

1 L ) e
—;ilv’,.(/,;,v)=0(log/.)—j—g(—ﬂ) | ——at+ | =g (0n wydt

Yr _int

t

—1 i
= 0(logd),
since the first integral folds and the second integral is bounded by

2 !
— - A-suplg'l.
Z . N
For the proof of (10.2) we may assume (since F;(p, 1:) =~F;_(v', w)
that |x] > 1/100. Expanding g by the mean value theorem in (11) yields

UI60 gy

g Y ’ A_
Falp,») = g(—p) det+ fﬂt—/ig(f)nt p)di.

—1/i60 —~1160

1

24

The first integral is again bounded by folding and the second integ;'al is
A :

pounded sinee the integrand is<C4i: g (07 — p)| < W—TAS mw

< 800/3.
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For the proof of (10.3) seb 4 =» =0 in (11) and interchange the
order of integration, obtaining

1160 | 160 Hs0)? | 1/160
1 7 L sinu 7 ginw dt
sF0 0 =2 = —a [zz=2j f_ i
21 1 u % i
o o 0 1604/2
60 . 3(160)

) .

s Sm

=910glf du—!—ﬁj 7 log ((160)2u) du
; [ 0 U

= nlogl+0(1).
LeMma 9. Uniformly for (@, y)eQ, we have

. i i 1
Lml+ —0Cy(x, y; A)+ ;Cz(w,y; N— =0z, y; 1) =4.

o0 k3 ki

u
Proof. We have Cy(v,y) = [ ™ n(t)i'dt = [ + =A4+B
y—2m E1>1/40  }¢]<<1/40

where k() = k(t, 4, 2, y) = t-}cob(2/2)Cy(x, y = 1). We integrate 4 by
parts:

~12xt

1y 1
A = O (7224 ) + 5

ofg)-ofy -

f (1) Y

lt1>1/40

as 1 tends to infinity.

We write
180 1/40
B = 1(0) f L u+ f el (t)dt = B, + B,
—1/40 —1/40

W}}ere E(t) = [h(t)—1(0)]t~%. Because & has a continuous second i-deriv-
ative which is uniformly bounded (in ¢, 2, x, and y), &' (¢) = [th' (1) —h(t)+
—{—h(f))}t“2 (t # 0) is seen to be bounded by expanding 7 and A’ by Mac
Laurin’s formula with remainder. (If t =0, first note that %(0) = 4’ (0).
Then an easy caleulation shows %' (0)= $177(0).) Thus, an integration by
parts yields B, = O(1/x1) = o(1) as A tends to infinity. We note that
B(0) = (0, 4, 2, 9) = Ci(%, z,y) and that

1/40 —iizt
lim

oo
—1j4p

dt = —ix  uniformly
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(since || >1/10) ([5], vol. I, p. 57). An argument exactly analogous to
the preceding yields J]im(}l(z, 2,¥) = —iz and LmC,(4,a,9) = —ix

uniformly for (z, ¥)e Q. Hence,

limCy(2, 2, y) = lmB, (4, 2, ¥) = (—izx){—ix) = —n?
00

2>

uniformly for (z, ¥)e Q. This completes Lemma 9.

The proofs of Lemmas 1 through 4 now follow easily. For Lemma 1:
the boundedness of b, is immediate from Lemma 5 and the definitions of
the C;; while the continuity follows from g;e C%, j =1, 2, 3. Lemma 2
is a consequence of Lemma 7 if d({z,y), 97%) < 1/80, and of Lemma 6
and (10.1) of Lemma 8 if d((x, ¥), 9T%) > 1/80.

Proof of Lemma 3. Lemma 3 is immediate from Lemma 7 if
d((z, y), 07%) < 1/80. Assume now that d((x, y), 0T%) > 1/80. Because of
Lemma 6 (with 6 = ¢ = 0) we need only bound

z+1/160  y+1/160 -
P (2ot Mok N7) C( o, 1)

A fanan = = oy

dodr
Z-1/160  y~1/160
A [ 1 .
where O =1+ —0;+—C,——0C,. Setting s =z—0, ¢t =y—7 and
T ™ ki

taking absolute values produces

Clx—s,y—tdsdt| = |I],

t 1160 1/160 gilist—su—t9)

st
—~1/160 —1/160

where u = Ay = M, » = lw+ N. If we could replace I by

1/160  1/160 ist—su~0) () (-
z5 Y
J = e_______(_,i) dsdt,

st
~1/160 ~1/160

, , PR
we would be done by (10.2) since if p = min{M, N}, |u| > 50 " 100

= % To see that we may, write Clz—s,y—t)—C(z, y) = {C(z—)s,

y—1)— Oz, 9 —1)—C(z—89)+C(@ P} +{0(z,y—1) - Clz, y)} +{0{z—5,
) —C(@, 9)} = D, D;C(w— 03,y — ¢i)st+ Do O (2, y — pu8) i+ Dy O~ 0,8, 9)s
by the mean value theorem [4].

We have a corresponding decomposition of the difference between I
and the desired integral into three integrals. The first integral has bounded
integrand by Lemma 5 since d((x— bs,y — ¢t), 8T%) >1/160. The second
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is equal to
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and D, is bounded by Lemma 5. The third integral is bounded in a similar Sokharth, g SB Meon. Aked Moambz. Y, (‘i’gﬁ;)""l’)’;{"g‘; _e%’ igonomeiric serie
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Proof of Lemma 4. Pick a point (z,%)e@ and a A > 10. Define Series, New York 1963, p. 114, problem 13.
positive integers M, ¥ and fractions 4, ¢ by M+6 =2y, N+e=Iin [5]1 A. Zygmund, Trigonometric series: Vols. I, II. 2nd rev. ed., New York 1868.

By Lemma 6, it suffices to study the four integrals

T.; Am(eihyo(x; ’!/))

DEPAUL UNIVERRITY
CHICAGO, TLL.

ot
% i 1 . P, Received September 29, 1971 (405)
where € =1+—C+—0,—— 0y is a function satisfying the con-
™ T T
clusions of Lemma 5. We have ‘ B
-1 gt~ wFy)as—(@Fa)it]
. a2 B
e HVT, (€O (2, ) = ot ffl —g X

Ish <o

xC(z—s,y—t)dsdt.

As above, we may replace C(z—s,y—1) by C(z, y) with bounded error,

obtaining
—1 " st~ WFv)is— @Fa)i]
Ty, zanlla(@, 9) = = Cloy y, D f f e dsdt.
toh <y
2 A
Unless the (+, +) sign combination occurs, either x4 = 2y1> Teo > 00

ory =2yl > 1—30— 50 from (10.2) we see that the corresponding three T's

are bounded.
Thus, uniformly for (z,9)e @

By g (a3, 9)) = Ty ae(bal, 9)}+ O(1)

=%C’(m,yyl)e“zv(27rﬂogﬂ.)+0(1) (by (10.3))

2 .
= ?log}.e"“"%— o(log?) (by Lemma 9)
from which Lemma 4 is immediate.
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