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(the integral is understood in the semse of the Cauchy principal value).
The Plemelj-Privalov theorem (see [2]) asserts that 8¢ B(H*(L)). Moreover
it is an involution on H*(L) ([2]). Therefore from Proposition 1.1 and
from Corollary 1.1 we conclude

ProrosrrIoN 4.1. If AeB(H"(L)), then SA—A8 =0 if and only if »

A = 84,+4,8, where A,e B(H(L)).

PrOPOSITION 4.2. If Ae B(H*(L)) then SA—AS is compact if and
only if A = SA,+A,8+1T, where dye B(H*(L)), Te T (H*(L)).

The list of similar results can be easily prolongated.
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Hardy’s inequality with weights .
by '

BENJAMIN MUCKENHOUPT* (New Brunswick, N.J.; Albany, N.Y.)

Abstract. This paper is concerned with conditions on measures z and » that

. are both necessary and- sufficient for the existence of a finite ¢ such that

(i Jwal al'? < o J If@)ra],

where p is a fixed number satisfying 1 < p < co. For absolutely continuous meagures
a new proof is given for a known condition, and a new condition is given that arises

from an interpolation with change of measures. The case when f f@)dt is replaced
by f f{t)dt is sketched. For Borel measures a condition like the hrst one for abso-

lutely continuous measures is proved. Estimates for ¢ in terms of the constants of
the condifions are also given. .

1. Introduction. Hardy’s inequality, [5], p. 20, states that if p and b
satisfy 1< 9 < o and bp < —1, then )

(1.1) [., ’ dw]llp < ﬁ L{ 1@® 1 f ()| A ]llp y

and the indicated constant is the best possible. Several authors, Toma-
selli [4], Talenti [3], and Artola [1], have recently investigated the problem
of for what functions, U(z) and V (#), there is a finite constant, C, such
that -

(1.2) [ f | U(z) f Ft) dt] )" <

2P f f@ya

f [V (@)f (@) do]";

this is, of course, just the inequality (1.1) with @® and 2**! repiaeed by the
weight functions U(z) and V(). Their principal result is the following
theorem.

* Suﬁported in part by N.S.F. grants GP 11403 and GP 20147.
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THEEOREM 1. If 1< p < oo, there is a finite C for which (1.2) is true
if and only if ’
oo r
(1.3) B = sup[ [ [U@)pPdx ™[ [ 1V (@) ds]™ < o,
>0 ", 0
where 1/p+1/p' = L. Furthermore, if C is the least constant for which (1.2)
dolds, then B O pP(p' )" B for L<p< oo and B=C if p=1
0F 0.

In this theorem and throughout this paper 0-co is fo. be taken ag 0
and the usual convention is uged for the integrals if p or p’ is oco.

The result about the constants is best possible since ¢ = p¥?(p')¥*'B
in the case of the original Hardy inequality and B = C =1 if U is taken
to be characteristic function of [1,2] and V is taken to be 1 on [0, 1]
and oo elsewhere.

Although not explicitly stated by the cited authors, Theorem 1 also
has the following dual.

THEOREM 2. If 1< p < o, there is o finite C such that

(1.4) [ﬂ U(w)fm fwaf d]"< 0 [fmnz (@)f (@) dw]"™”
if and only if ’ ’
B =sup| f |U(w)_|pdm]"ﬂ[fW(m)[“f"dw]”"' < co.

Furthermore, if C is the least constant for which (1.4) is true, then B <O
< pllp (p')llp’B.

This paper consists of the proofs of four theorems about Hardy's
inequality with weights. First in § 2 a new and simpler proof is given for
Theorem 1 and the proof of Theorem 2 is sketched: In § 3 another necessary
and sufficient condition is given for (1.2) to hold with a finite C. The
result obtained is the following.

TuworEM 3. If 1 < P < oo, there is a finite C for which (1.2) és true
with p replaced by P if and only if there ewist functions U, (@), Uy(x), Vo(m)
and V(@) such that |U(@)] = |Uy(@)]"" U (@), |V (@) = |V,(@)"F x
X|Vy(@)|'F, Uy(@) and V(o) satisfy (1.2) with p = 1 and U, (®) and V(@)
satisfy (1.2) with p = co. Furthermore, if Oy, Oy and O are the minimum
constants in (1.2) for the pairs (U, Vo), (U, Vy) and (U, V) respeciively
with the appropriate values of p, then € < CYPOVF and there is a choice
of the UYs and Vs such that CiF CUF" < PYE(pyIF ¢,

Theorem 3 is of interest since it shows that the strongest weighted
form of Hardy’s inequality can be obtained by using the interpolation
with change of measures theorem proved in [2], p. 485. It also suggests

©
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an approach to the n dimensional problem where the result is much less

clear.
Finally, in § 4 the question of general measures is considered. The

result is the following.
THEOREM 4. If u and v are Borel measures and 1< p < oo, there is
a finite C for which

(1.5) [[|[toaf aw@]” < o[ [ 1f@Pa@)]”
if and only if

B = fg})[ﬂ([r, o0)) [ [f(%’;})"m” dm]llm'< .

where ! denotes the absolutely continuous part of ». Furthermore, if C is the
Teast constamt for which (1.5) is true, then B < C < p'P(p Y/ B for p >1
and B =C for p = 1.

The case when p = oo is not included in Theorem 4 gince it is cumber-

some to state and trivial to prove; the condition is that B, the least upper
1

bound of all r such that u([r, o)) > 0, is finite and—%v—« >0 for almost
every z in [0, B]. v

2. Proof of Theorems 1 and 2. For Theorem 1 it is sufficient to prove
the asserted inequalities between B and (. The hew proof is the proof
that € < Bp'®(p"). The proof given here that B< ¢ is standard;
it is included for completeness and as a model for the proofs of the corre-
sponding ‘parts of Theorems 2 and 4.

To prove that ¢ < Bp*P(p" )" for 1 < p < oo, it will be shown that

en [ ] U) [f@a ‘i” da]"" < Bp (') [ [ |V (@)f @)Pda]" .
0 0 0

To do this let h(x) = [ [{V (0)"¥ @&]'"*”. By Holder’s inequality the pth
0
power of the left side of (2.1) is bounded by

] x z

f1o@P[[irmvorara]l [V whw el do;

0 0

simple special arguments justify this even if V(£)h(f) is 0 or co on a set
of positive measure provided the right side of (2.1) is finite. Fubini’s
-theorem. shows that this equals

(2.2) f]f(t)V(t)h(t)]p(f 1U(m);p[f;V(u)h(u)|—ﬂ'dt]1”“‘dw)dt.
. [1] £ 0

3 — Studia Mathematica XLIV
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Now by performing the inner integration it is apparent that

2.3) [1o@e][17@b@] awf™
i 0
equals

o0 @
@y [ 1@r]f |V () @] o
t 0
By the definition of B this is bounded above by

(2.4) @y | 0P [ Twpa] ™ .
t z

Performing the outer integmtion shows that this equals

(2.5) pBpP ] [ U ()P da]™
i

By the definition of B, this is bounded by
(2.6) - PBY @RI,

Now in (2.2) use the fact that (2.3) is bounded above by (2.6); this shows
that (2.2) is bounded above by the pth power of the right side of (2.1)
. and completes the proof of (2.1) for L < p < co. '
For p =1 and p = oo, the fact that ¢ < B is proved by showing
that '
oo x =)
(2.7) [f j Ux) [ f(t)dt||pdm]”p< B[ [V (@)f(@)Pde]™.
0 . 0 0
For p =1 (2.7) follows just by interchanging the order of integration
on the left side of the inequality. If p = oo,

|T@) [10@ < lessuplf ) VOLIT @) [ 170)|7d
0 <<z 0
agd (2.7) follows immediately.

To prove that B < 0, obgerve that for & non negative f, a reduction
of the intervals of integration in (1.2) shows that for > 0

(2.8) 1y [‘U(w)‘[”dm]”pl f fya| < of f IV (@) (@) da]"”

It is sufficient to show that

(2.9) [}O[U(m)]”dm]”p[ f |V(m)|*7"dw]”1"< c.

©
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It p#1 and 0< [|V(®) Pde < oo, (2.9) follows immediately from
[
. . 1
(2.8) by taking f(w) =|V(z)|™. If p=1 and 0 <esssup ——— < 0,
w<zer |V (@)
(2.9) follows from (2.8) by letting f be the characteristic function of the
set Where 1/|V(2)] > —1/n+esssupl/|V(z)l and then lettmg 7 ~> 0.

[ f |V () dm]”” =0, (2.9) :szf;amedxa,te If [ f i dm]llp _

0,

V()
there exists an f(») such that | f |f (=) V () lpdm]”” < oo and f fla)de =

Then if ¢ < oo, (2.8) with th_lsf shows that [f IU(m)l”clm]”" =0 so (2.9)
holds; if € = oo, (2.9) is obviously true. "

To prove Theorem 2, assume first that 0 < U(#) < oo and 0 < V(x)
< oo almost everywhere on [0, o). Let g be a function in L?. By Fubini’s
theorem

o0,

(2.10) [v@ [ f(i)dt]g(m)dw

M vaso] -2 [ g0 D@ds|
0 V(t) 0

By Holder’s inequality this is bounded above by

[f 1) V(t)l”dt]l/p [f i T,Lm fg 0 T dm[lp’ dt]up’.

By Theorem 1 this is bounded by

equals

P ()" B| f FOROI | f lg (@)} a]"” .

and the converse of Holder’s inequality shows that O < p'P(p’ )"”B
Simple limiting arguments take care of the cases where U and V are 0 or oo
on a set of positive measure. The proof that B < C is most easily done
by imitating the corresponding proof in Theorem 1.

3. Proof of Theorem 3. If U and V can be written in the indicated
form, then an interpolation with change of measure [2], p. 485 proves
that (1.2) holds and € < C¥F(OYF. To prove the rest of the theorem, assume
that U and V satisfy (1.2) with p replaced by P and let U,(w)

UlU(t)IPdi]”P Vole = [flVU5 )| 7F @], Uy (@) = |U @) | Uy (@)

and Vi(z) = [V (@) | V() II‘F Tt is then sufficient by use of Theorem 1
to prove that U, and V, satisfy (1.3) with p =1, to prove that U,
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and V, satisfy (1.3)with p = oo, and to egtimate the resulting B’s

in terms of C.
To prove that U, and V, satisfy (1.3), start with the fact that

P
" .

(31 [ t@)a0 = [ |U@F] [ 106"
& 8 z
Performing the integration shows that the right side of (3.1) is hounded
above by

?|f |U(t)|Pdt]”P.
8
Theorem 1 then shows that this is bounded above by
Ts
r|f [V @)I7F @t < 0PV (s).
g

Therefore, f Uo(z)dz < CPV(s).

proves that (1.8) is true for U, and V, for p =1 with constant CP.

A similar set of inequalities proves (1.3) is true for U, and V, for
p = oo with constant OP’. Using Theorem 1 again, (1.2) is true for U,
and V, for p =1 with minimum constant, ¢, << OP, and (1.2) is true
for U, and V, for p = oo with minimum constant, ¢, < CP’. Combining
these two inequalities proves that OLF Y < OPYF(P')'E",

). Since V,(») decreases as s increases, this

4. Proof of Theorem 4. To prove Theorem 4 observe that (1.5) is
equivalent to the inequality

FIf (t)dtr d,u(a:)]up< [ f If ()] ——dw]up

since changing the values of f to 0 on the support of the singular part
of » does not affect the left side of (1.4) and the inequality must still hold
for the modified function.

The proof that 0 < Bp'F (p")*?" could be done in the same way as
in Theorem 1, but one difficulty arises. The analogue of the passage from
(2.4) to (2.5) requires the inequality

(4.1) [

L lulto, <l o) <o u(ts, )

Thig is true but the proof is not particularly simple.
Consequently, to prove that ¢ < Bp'?(p")¥*" it is easier to proceed
as follows. Let g, () be a sequence of monotone decreasing functions such

©

©
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that Osgn(m)gy([w, oo)), g,(x) is absolutely continuous on [0, co),
0 (@) < gnyi (@) and lim g, (2) = ,u([m, oo)) almost everywhere. Now
A—>00

(4.2) [ |Froaf? aut) = [ alta, )| f QLI

0

if j{f(t |dt < oo and u([0, o)) < oo, this is a well known fact about

Rlelnann—StleltJes integrals, and the other cases are easily obtained
from this. By the monotone econvergence theorem the right side of (4.2)
equals

(4.3) sup [ g (@) [ £0) ",

L] 0
and by the reasoning used to obtain (4.2), (4.3) equals
(4.4) sup — f Uf(t)dt]p gn(@)d.
: n [

The conditions on the g,’s and the definition of B show that

[ fw — g (@) m]lm [ f ( ‘Z’m )_mp dw]wg B.

Consequently, Theorem 1 shows that (4.4) is bounded above by

(4.5) Bp' (17')1’1’ lf (@) —— du.

Therefore, (4.5) is an upper bound for the left side of (_4.2);
the proof that ¢ < Bp#(p")'¥".
To show that B < C, a reduction of the intervals of integration in

(4.1) shows that for r >0
~ , @ i 1p
o| [ o Z |

The proof then is exactly the same as the cmrebpondmg part of the proof

this completes

(4.6) w7 oo))]‘““i f f(t)dt{ <

antt \1P
of Theorem 1 with V (z) replaced by ( 4 ) andf |U (@)[Pds  replaced
by u(lr, co)).
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Received February 6, 1971 (297) Abstract. A cardinal series K is constructed with coefficients taken as the values
of a singular integral kernel K, (of the Calderén-Zygrmund type) at the non-zero
lattice points of Eunclidean space. It is shown that K is the kernel of an operator from
I? into L?, and that when K is subjected to similarity transformations, the resulting
operator K; approaches X, in a weak sense. Special formulas are derived for the case
when K, is the Weierstrass kernel, ‘and from this pointwise convergence follows.

1. Introduction. In the approach of E.C. Titchmarsh [4] to the
M. Riesz theory of the Hilbert transform, the theory is formulated first
for discrete transforms and then extended by a limiting process to the Hil-
bert: transform. Implicit in this work is the use of cardinal series.

In the present paper, we take a similar approach to the theory of
singular integrals due to Calderén and Zygmund [1]. Our aim is more
modest than that of [4] in that we shall accept their whole theory and not
attempt to create an entirely new approach to singular integrals. In
particular, we shall use their extension of the theory to discrete transforms
(cf. [1]). From the discrete transform, a cardinal series is constructed as
the kernel of a translation-invariant operator on L”(R,) into itself. The
operator is then subjected to similarity-transformations, which, in a weak
limit sense, reproduces the original singular integral operator.

In the last section, the operator associated with the Weierstrass kernel
is treated in some detail. In particular, a rather explicit formula for-the
associated cardinal series is obtained. From this, it is shown that pointwise
convergence of the cardinal series to the original kernel follows.

2. Preliminaries. Let K, be a Calderén—Zygimmd kernel on Ry
(cf. [1]); L.e., Ko(2) = Q&) ]|w/Y with o’ the radial projection of » onto
the unit sphere about the origin, where the integral of £ over the unit
sphere is 0, and 2 is continuous with modulus of continuity o such that
1 .
f m dr < co. The singular convolution integral operator T, with

o r
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