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An estimate of the conjugate function

by
Richard A, HUNT* (Lafayette, Ind.)

Abstract. It is shown that the conjugate function of a function fe I (—m, )
is of exponential type off any set where the Hardy-Littlewood maximal function
of f is uniformly bounded. Thus, there is eonsiderable overlap between the set where
the conjugate funetion is large and the set where the Hardy-Littlewood maximal
function is large. This general principle is used to show that Sy (f, z) = o (loglogng)
a.e., where Sy, (¢, ) is the nyth partial sum of the Fourier series of feLl'(—m, =) and
{n;} is any lacunary sequence.

We will show that the conjugate function of a function feI'(—m, =)
is of exponential type off any set where the Hardy—Littlewood maximal
function of f is uniformly bounded. Thus, there is considerable overlap
between the set where the conjugate function is large and the set where
the Hardy-Littlewood maximal funetion is large. This general principle
will be used to obtain a result on the rate of growth of certain partial
sums of the Fourier series of f.

for = =1 [10 gyt

2tan i (t—a)
will denote the conjugate function of fe L' (—=, w),

- 1
F(#) = sup {m f If(8)]@: I an interval with center m}
I

will denote the Hardy-Littlewood maximal function of f, and

1 F sin(n -+ §)({t—2)
Sfra) =L [ g DU
n(f: 50) TC_n f( ) 28]]1%‘(7:—%) dat
will denote the nth partial sum of the Fourier series of f. m¥Z will denote
the Lebesgue measure of the set F and C will denote an absolute constant,
_ although not always the same constant.
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The idea of the proof of our main result is to take a double look at
the Calderén—Zygmund proof that f satisfies a weak type (1, 1) estimate.
For fel' we use the Calderén-Zygmund decomposition f = g-+b, where
g is bounded and b is supported on a set of small Imeasure, (See Calderén
and Zygmund [1]). The weak type (1, 1) estimate for f is~ obtained by
applying the strong type (2, 2) result to § and noting that b is integrable
off a set of small measure. The weak type (1, 1) estimate for ]; when feIt
‘leads to an exponential type estimate for f when feL®. With ~t;his in mind
we take a second look at the I* proof. Since ¢ is bounded, g is of expo-
nential type. Using a lemma of L. Carleson (see Carleson [2, p. 140])
we show that b is also of exponential type when restricted to a set where
f is bounded. This yields

THEOREM 1. m{ze(—r, 7): f(2) <7, |f(@)] > Ay} < 0=, where y> 0,
A>0 and feL'(—m, w). . _

The application of our main result to Fourier series is based on the
fact that S,(f, -) is essentially fﬂ, where f, (%) = ¢"*f(z). Hence, Su(fy )
is of exponential type if we avoid the set where fn is large. Since f_n :f,
we see there is considerable overlap of the sets where S,(f,-) is large
as n varies. This leads easily to

THEOREM 2. Given {ny}ys; and a > 1 with n,,, > any, we have 8y, (f, @)
= o(loglogn,) a.e. and

18, (1, @)1 }

— . <02
m{me( T, ) Sl;p Toglogn, >y <0 p’

Y

fell{—=x, m).

Theorem 2 is best possible in the sense there are functions
feL® with 8,,(f, *) growing a.e. at a rate arbitrarily close to loglogn,. (See
Chen [3]).

Note Theorem 2 shows that in order to find a function feI* with
8,(f, *) growing on the order of logn, it would be necessary to consider
more than a lacunary subsequence of partial sums. (See Zygmund [5; I,
p. 3081)

The proofs of Theorems 1 a.1~1d 2 are based on a collection of intervals
which is related to the size of f.

Given

1 ) 1 -
fel(=mm) and  y>o— f \F ()

-7

icm
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we define # to be the collection of all dyadic subintervals I; of (—m, )
such that

1 1
= Oldt> 4y, but —— [ [f(5)di< 4
7 ijm N> 4y, bu mlflf()l <4y

for every dyadic subinterval T 2 I;. (Dyadic subintervals.are those obtained
by dividing (—, 7) into 2" intervals each of length 27+27", n = 0,1,...)
Note that the intervals I;e.# are pairwise digjoint and

1
1y <17,-;‘1jf [F@)dt < 8y.

Also, if z¢{J I;, then

1
= [rwia <y
Il
for every dyadic subinterval T which contains #. This implies |f(2)] < 4y
for a.e. # not in J I;.
For each I;¢.#, consider I; as a seb on the unit circle, and let I} denote
the interval on the unit circle which has the same center as I; and [Ij]
=3 |L;]. Bet §* = | I] and let P denote the complement of §*. Note

m§* < iz =3lejl<4% fff(t)ldt.

Also, if we8* say welj, let I be the smallest interval with center ¢ and -
I > 1I;. Then |I|< 4|I;|. Hence -

- 1 1
(@) >"|ITIf 1f(t)1dt>mljf @) d > y.

Tt follows that 8* < {f(#)> y} or {f(z) <y} < P.
In order to prove Theorem 1 we set

zel;,

1
o) = mzjff(t)dt’

f(@), w¢lUL,


GUEST


374 R. A. Hunt Im

and b(x) = f(z) (fﬂ) Note that [glle < 8%, gl < Ifllz, beLl?, b(z) =0
for ¢iJI;, fb t = 0, and f |b(t)|dt < Oy |;]. We have

"“2 f ztan—z— 2tan}(i—w) Swangi—a) "
1
“_Z f [2mnl i—o) zmn%(tf—m)]dt
inj(t—1)
—_Zf [251111 )j'n;(tj—w)]dt’

where ¢; denotes the center of I;. Note that » ¢I;" implies
Cp—tfl> L) and  2B)e—t< o—t] < (3/2)[w—1t]  for tel;.

5(9:)

Il

Il

It follows that zeP implies

ba<o ) f‘b [ lI;LuF]dt
1;
<0 Z JI!LIIJZ\O Zf (t ml J]rlzﬁdt‘

At this point we could complete the proof of Theorem 1 by applying
the exponential result to ¢ and using Carleson’s exponential estimate of the

function
L
A(x) = e TR
@ = 2 G mr

Instead, we assume the strong type (2, 2) result for the conjugate function
(see Zygmund [5;I, p. 2533]) and recall how the Calderén-Zygmund
decomposition is used to obtain the weak type (1, 1) result. This allows
an interesting comparison between the weak type (1,1) proof and the
proof of Theorem 1. Also, it is interesting that the weak type (1, 1) result
implies the exponential result. This illustrates a double use of the Cal-
derén-Zygmund decomposition in the proof of Theorem 1.
We wish to prove the weak type (1,1) result,

m{ze(—m,m): |f(@) > y}< 00
- Applying the strong type (2, 2) result to g we have

—f|g;2< [wi< —-f|f|.

m{|g (« l>y}<—f
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Note mS*s—g—f 1f] and

. 1 -
m{zeP: rb<m>|>y}<%f b (2)|da

<03 [ vl
<02|Ijx<?fm.

The weak type (1,1) result follows.
We will need the exponential result,

mize(—m,m): |f(@)> 9} < Coxp(—OY/Ifle)y feLl®(—m,m)

(see Zygmund [5; I, p. 254]). To obtain this from the weak type (1,1)
and the I* results, we first apply the Marcinkiewicz Interpolation Theorem
to obtain ufn,,g Oplflpy 1 <p <2, where 0, = O(Lj(p—1)) (p —1).
A duality argument and an extrapolation theorem then yield the expo-
nential result (see Zygmund [5; II, p. 112 and p. 119]).

We now return to the proof of Theorem 1.

‘We have f = g+b. Since |lgfl, < 8y we can use the exponential result

in place of the L2 result to obtain

mize(—m, 7): 1§(y)| > Ay} < Cexp(—Ciy/lgl) < Ce~.
Since {f(w) <y} < P, it is now enough to show

m{zeP: |b(z) > Ay} < O~

. . L 17
(Note there is nothing to prove if o f |f(#)|dt > y, since this implies

f(#) > y for all .) For z¢P, we have

Ib ()] < Cy 6(w),

_ H;1
= 2 e

Hence, it is sufficient to show

where

m{we(—mw, n): 6(x) > A} < O™,
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Following Carleson, we let B = {ze(—m,m): 8(x)> 4} and set
#(2) = (o) [[mB-log (C/m)). Then

kd

[ #@ o)z

f"’ [Zf —t[ILmZ dt]d”
<2 f[f«p = t]Ij-lHIjIZ dm]dt
o(@)ds+

1
<lef[[—f]—1_ le—tI<I%;l
* ‘kz E‘%}IF f qﬂ(M)dm]dt

L) ARG RS L b

Alog (O/mE)) ™ <

<0 [Fwa<o [elogtpna+0<0

(see Zygmund [5; I, p. 33]). Hence, mE < Ce~® and this completes the

proof of Theorem 1. _
Given a lacunary sequence {f;};»; we Will show that

18, (5 )]
&
loglogny

a.e. for all feL!(—=, x). A theorem of E. M. Stein then yields the weak
type (1, 1) estimate of Theorem 2 (see Stein [4]) and the “o” result foll‘ows.

Set f, () = f(z)cosna, fr.(2) = f(z)sinne, and let f,, denote either
Fuec OF fnq. Since

8a(f, x) = }n’ﬁ(w) sinnw —f,,,s(m)cosm—}— —21; f ft)cosn (t—x)di

we see that it is sufficient to show that

g ()]

—_— a.e.
1}}) loglogny
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Using the intervals I; and the sets 8* and P as previously defined,
we set

WEI:,',

1
—_ 1) dt,
7 ij Falt)

Julm), z¢U L,

and b, = f,—g,. g, and b, enjoy the properties of the prewously defined
functions ¢ and b. It follows that

In ({U) =

m{weP: |f,(7)) > y*loglogn} < Ce~C¥°F' 8™ — (logn)~C:
Hence,
lﬂk(w)[
- —_— 2
m{we( ™ T loglogn Y }

< mS*+ y{msP- lfnk(m)l > y2loglogn,}

OHfHI +GZ(10gn -y,

‘We are done if the above sum approaches zero as y approaches mﬁmty
In particular, if 73, > any, ¢ > 1, and logn, > 1, we have Ngyr > ¥y, 50

D) (logm;)™% < (logn,) =¥ + 2 (kloga+logn,)~,
k=1

k=1
which approaches zero as y approaches infinity.
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