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The integrability class of the sine tramsform
of a monotonic function

by

R. P. BOAS, Jr. (Evanston, IIL)

Abstract. This note introduces a method for discussing the weighted Lebesgue
class of the Fourier transform of a monotonic funetion, a method that is rather more
direct than those that have been used for similar problems about Fourier series. The
method depends on Steffensen’s version of Jensen’s inequality (see [6], p. 109 ff.).
and a theorem of S. M. Edmonds [4] on Parseval’s theorem for monotonic functions.

Two classical theorems of Hardy and Littlewood (see [8], vol. 2,
p. 129-130) state that if ¢ is an integrable function, 1, are its Fourier
sine or cosine coefficients, and 1 < p < oo, then

(1) If 2,00, then geL® if and only if n'=>P ), lP.

(2) If p(x) =0 and ¢ decreases on (0, n), then A,¢l® if and only if
2P () e IP,

These theorems have been extended (see [1], p. 35) to weighted L
and 17 spaces. Here and subsequently, p" = p/(p—1).

(3) (Generalization of (1) by Y.-M. Chen) If 1,0, then =7 ¢(2)eL?,
—~1/p’ <y < 1/p, if and only if n**'2P) IP. Alternatively (replace y by
(2/p) —1—%) if 2,40, then n~72,¢lP if and only if o'~ Pp(z)e I?, —1/p’
<y <1/p.

The corresponding generalization (4) of (2) has the same conclusions
but the hypothesis 1,0 is replaced by ¢(z) =0, decreasing, and ¢
integrable (all on (0, «)). :

Theorems (3) and (4) reduce to (1) and (2) if in each we take y =0
in the first statement or y = (2/p)—1 in the second statement.

Theorems of this kind naturally have analogues for Fourier transforms.
A partial analogue of (1) is given by Titchmarsh ([7], p. 113). This is:

(8) If p(x)|0 on (0, co), ® is its cosine transform, and @(x)a* P IP
1<p<?2), then Dell.

Disregarding the distinction between a funection’s having a Fourier
transform and its being a Fourier transform, we may loosely formulate
a hypothetical integral analogue of (3) and (4) as follows:
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(6) If @ and ¢ are a pair of Fourier sine or cosine transforms, and
one of them is positive and decreasing on (0, oo), then ¥~V (x)el” if and

only if TP D(w)IP provided that —1[p" <y <1/p.

Of course p and @ can be interchanged in (6).

As far as T know, nobody has written out a proof of any version of (6).
Here I shall establish a partial result for sine transforms.

TasoreM. If ¢(#)40, #"P¢(x)eL?(0,1), and @ is the sine transform
of @, then o' @ (w)eIP provided that »~"p(x)eL”, where p > 1 and
=1fp <y <1/p.

Note that the range for y is not the same as in (6); it is wider when
P <2 but narrower when p > 2. -

We need the following version of the Jensen—Steffensen inequality
([2]; see also [3]).

Levwa. Let A be a function of bounded variation on every fiwite sub-

“interval of (0, c0); A(0)< A(w) for all > 0; and A(0) < A = supi(z).
Let f(w) decrease and f(z) > 0. If v is continuous and convex over (0, f(0)),

(0)< 0, and [ du(w) > A —A(0), then
[

Fr@am | [ vlf @) ai@)
pl? _ <0 _ )
[ duto) ] duta)

‘We use this when y(u) = «®, p > 1; in this case it says in particular
that

o

) {[f@ar@) | < 477 [ foydr).

0

We take A(z) = 1—cosz, A = 2, and apply (7) to f(@)a*", where
—1 < a<1and f(z)z""! decreases. We then have

®) {[ for—teniat)’ < 2o [ fypee sinta,
0 0

where the right-hand side is positive, and finite if f(£)i*~ "+ <L?(0, 1).

Now replace f(t) by f(at), multiply (8) by #~%2, and integrate over (0, co).
‘We obtain :

00

© m“’pdm{f f(xt)t““sintdt}pg21"1focwf’51’dw [ flatypereDsintdr.
[} 0 0 0

icm
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Put 2 =1Jy, t = yu; (9) now reads

oo

(10) _;?:l/"p“”"?dy{ff(u)u““sinyudu}”
o

0
Lo oo
< 971 f PP 1eE=D gy J’ FluyPure D gingu du.
0 0

We now want to change the order of integration on the right-hand side
of (10). The following argument lets us do this under less restrictive
conditions than would be required for applying Fubini’s theorem.

The integral on the right of (10) is of the form

(=2)} [ B(y)b(y)dy,

where B(y) = y?®+°~"~1and b is the sine transform of g(u) = f(u)Pu?@,
It is a theorem of Edmonds ([4]; see also [1], p. 58) that if g and B decrease
(hence if p(§+a—1) < 1) and ug(u), yB(y) are integrable on (0, 1) (hence
if p(6+a—1)> —1), then g(u)@(u) is integrable (where G is the sine
transform of B), and Parseval’s theorem holds, i.e. the right-hand side of
(10) is equal to

277 (x[2)} [ @ (w)g(w)du
0
= 2”‘1f FwPure Ny [ yPereD=lsinyudy
[} 0
=277 [ fu)Pu=Pdu [ PO+ sin @t
0 0

= 22-'0(p(84a—1))sing mp (8 +a—1)) fm FluyPu=® du.

We have therefore justified the change in the order of integration on the
right of (10) under the conditions —1 < p(d+a—1) < 1. Under these
conditions, then, we have

oo

(11) fy”(‘”“)'zdy{f f(-u)u”“sinyudu}pg C,,Y‘,,pff(u)pu“’”du,
0 0

0
where
(12) Cosp = 277 T'(p(6+a—1))((sin}np (6 +a—1))

(when 6+ = 1, the right-hand side of (12) is to be interpréted as 2771 [2).
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Now take f(u) = p(u)u'~" where ¢(u)|0, and write 6 = 1 —a+y. Then

4]

[y ray{[ pwsingudu]” < 227 I(wy) (singnpy) [ o(wPu " du,
0 0 [

with |p| < 1/p. This is the conclusion of the theorem.

The analogy with trigonometric series suggests that the condition
y > —1/p may be an artifact of the proof. The condition y < 1/p, on the
other hand, is essential, since when limg(z) > 0 we cannot have T o ()

>0+

eLP(0,1) with y > 1/p. It is less obvious that we also cannot have
"2 B (5) e IP when y > 1p, at least as long as y < 1+1/p, To see
this, suppose that yp > 1 and 2**'"**@(z)eL?. Then we would have,
since @(z) = 0,

[ o p@rde = @) [ o dof[ (1) sin atilt]”

0 0 0

1z

<2r1(2 /Tc)*{ f& o dy ( [ ow mtdz)‘”+

+ fwm””pdm( fw di(t)dt)p
[} ifz
v

— 2?—1(2/7.:)'}{]?0 yvpﬂﬂ-zdy (f @(t)tdt)p'F

0

+ fm y”’zdy( fw gb(t)dt}l’}
0 v

P o0
<212 /n)i{(L) D(1)PPrr—2 gy 1
p+1l-py Of

+( » )pftﬁv+p—2¢(t)ﬂ(h}
py=1)] ’
by a variant of Hardy’s inequality ([5], Theorem 330), provided that
l<yp < p—{-l: We have assumed the right-hand side to be finite; then
t%le Ieﬂ';-ha,nd side would be finite also, but this is impossible when yp > 1
since lime(z) > 0.

>0+
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