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In particular we are able to prove the theorem for series which do
not converge uniformly, and so for which the function F(z) need not be
continuous. ‘

In addition somewhat weaker conditions than spherical convergence
of (1.1) are sufficient to prove Shapiro’s Theorem. These will be the subject
of a later note.
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Boundary values of hounded holomeorphic functions

by

Harold 8. SHAPIRO (Ann Arbor, Mich.)

Abstract. Suppose [ is a bounded measurable function on the n-torus T which
is the (distinguished-) boundary value function of a bounded holomorphie function
in the polydise. If, for some point a?eT™, f(z) — 4 as x tends to 2? through points
of a set E which, in a specified measure-theoretic sense, is “thick> at a0, then f(z) - 1
“on the average” as z — 20; here, the “average” can be any one of a very broad class
of summability methods applied to the Fourier series of f.

1. Let .U denote the open upper half-plane, R its boundary. By
H*(U") we denote the bounded holomorphic functions in U", and by
H*(R" the Fatou boundary values of these functions on the disting-
uished boundary R™ of TU”-H™(R") is naturally identified as that sub-
space of L*(R") consisting of the functions whose (distributional)
Fourier transforms are supported in the “first quadrant”, i.e. the set
{£, >0, ..., £ = 0}. For an elaboration of these matters (in the slightly
dﬁferent contett where U is the open unit disc) see [1].

The purpose of this note is the proof of the following theorem, a refi-
nement of Theorem 1 of [2]. By B(z, @) we denote the closed ball in E®
with center # and radius a, and ky (z) denotes the “dilated” function

™" k(o z); dv denotes Haar measure in R", and |E| denotes the measure
of B < R"

THROREM. Let peH™(RY,a"eR", and suppose there ewist b> 0,
a complex number 1, and a function s(a) tending to zero as a — 0-F, with
the following properties. For each sufficiently small a, B(a°, a) contains
a set K, of measure at least b|B(2°, a)| such that

{ess sup |p(®) —A|, ze K} < s(a)
Then, for every keL' (R”)
(1) (9 ki) (2°
as a — 0.

Let us say that a point 2° is a point of density = b (where 0 < b < 1)
relative to B < R", it |B NB(2°, a)| = b|B(2°, a)] for all sufficiently small a.
Then the above theorem may be reformulated as follows:

= [¢(a*—az) k(@) dz >sz
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Suppose B < R, and «° is a point of density =b > 0 relative to E.
If e H®(R"), and ¢(x) -1 as x iends to 2 through points in E,
then, for every keL'(R™), (1) holds. )

For the proof, we shall require some notation. If o is a probability
measure on & measure space X, the geometric mean (relative to o) of a non-
negative measurable function ¥ on X is

G(F; o) = exp [ (logF)de.

For a point 2 = (v, +1y,, ..., %+ %,)c U" we denote Ly P, the Poisson

kernel,
n

P,(&) = [ [ wf(@—&)+93 7,

r=1

Thus, P, d£ is a “representing measure” for evaluation at 2:

O(z) = [@(HP,(£dE, all peH™(R")
whereby & is that element of H*(U") whose Fatou boundary function is
¢. For 2° = (0+1,...,0+1), the measure P, df is denoted by o, ie.
do = ﬁ(n(1+§3))“d§.

y=1

£ =(&1ye; £n)eB™

Lemma. For ke L'(R"), and a > 0, let
A(k; a) = sup] fk(pdwl,
B

where
peH™(R"),
Then, Lim A (k; a) = 0.
a0 .

lele =1, G(lpl;0) <a.

Proof of lemma. Let § denote the set of ke for which 4(k; a) —0.
It is easy to check that § is a closed subspace of L'. We claim that, for
every zeU", P,eS. This will prove the lemma, since the closed linear
span of {P,,ze U™ is L.

Let now pe H*(R™), |lpllo = 1, G(lg]; 0) < a. Then, if & is the element
of H*(U") with boundary function @, We have by subharmonicity,

| [oP.as] = 106) < 6Upl; P.a8) < G(igl; 0 < o),
where
6(2) = Ink(P,(£)[Po(8),
is pesitive. This proves the lemma.

. Proof. ‘of theorem. Without loss of generality we may assume
a:‘ls the origin, 7“= 0, and [lpl, = 1. By virtue of the lemma, the theorem
will be proved if the geometric mean of the function 2 —» lp(— ax)

EeR™

ls

relative to o, tends to zero as g — 0. But, the hypotheses imply that on

icm°®

Boundary values of bounded holomorphic funetions 357

the subset B, = —a 'K, of the unit ball, whose measure is > b|B(0, 1)|.
we have [p( —az)| < s(a), therefore the geometric mean in question does

. not exceed exp(o(K,)logs(a)) = s(a)°®d; this tends to zero as a 0

since o(E,) is larger than a positive constant (depending only on ») times
{E,|, hence bounded away from zero. The theorem is proved.

COROLLARY 1. Under the hypotheses of Theorem 1, if K denotes an open
cone with vertex at x°, we have

f p(z)de = 1.

Lim [KnB(a®, a)|*
0 E~B(zY0a)

a—>

Proof. Apply the theorem, with k(—x) equal to the character-
istic function of K nB(z° 1).

‘We can specialize the theorem for ¢ which have period 2= in each
variable, and thereby obtain an analogous theorem for the -polydisc..
Letting D denote the open unit dise, and 7 its boundary, each function
FeH?(T™) can be “lifted” into H(R"™) by the formula ¢, ..., s,)
= flexp(izy), ..., exp(iz,)). Then, defining the notion “point of density
= b” relative to a set in %, in the obvious way, we have:

CorOLLARY 2. Let feH™(T™) have the Fourier expansion > f(v‘) Pt
(here v runs through lattice points in the “first quadrant”’, and vr denotes

. ] 0
2+ +2,2,). Let R < T and suppose ©° = (¢, ceey €™ is a point
of T™, which is of density > b > 0 relative to B. If f(t) — A as t tends to t*
through points in H, then for every keL'(R") satisfying [ kdw = 1,

(2) Tm Yk (@) f(9)6"" = 2.

Clearly (2) follows.from (1) by inserting for ¢ its Fourier expansion;
it is a reinterpretation of (1) in the framework of summability of Fourier
series. For instance, taking n =1, IE(:(:) = (L—[2)F, (2) states that the
Fejér means of the Fourier series of f converge to 1 at «°. The point is
that this is valid under & much weaker hypothesis than the classical one
(continuity at 2°), precisely because f is here assumed to belong to H*(T),
not merely L™ (T).

Theorem 1 can also be stated in a “uniform” version: if Jis a compact
subset of R", each point 4° of which satisfies the hypotheses of Theorem 1
for suitable A(x°), s(a;#°) and b, with b > 0 independent of x°, then
(p*Fgy) (2°) — A(2°) fk(m)dm uniformly for x%¢J. Indeed, given a%¢dJ
and &> 0, for all a << ay(s, 2°), B(#% a) contains a set K,(2°) of measure
> b[B(2% a)] on which esssup|p(z)—A(2°)|< e The compactness of J
guarantees that ay(e, #°) can be chosen independently of z% and now
it is easy to verify that the previous convergence proof yields the desired
uniformity with respect to @ J. (Observe that since @k is continuous
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for each a, the function # — A(#) is, under the stated assumptions, necessa-
rily continuous on J.)

An interesting consequence is: )

CoROLLARY 3. Let J be a compact subset of R*. Suppose for o certain
positive number b each point of J is a point of density = b relative to .J.
Let e H* (R™), and suppose the restriction of f to J coincides a.e. with a eon-
tinuous function A on J. Then, for each keL'(R") satisfying [ kdn = 1,

lim max‘l(£)~f¢p(£——aw)k(w)dw‘ =0.
a0+ el

This result (which answers question (a) posed in [2], p. 116) can be
viewed as a very strong “localization principle” for compact gets. In
particular, on a compact subset J of the circle satisfying the density
condition of Corollary 3, the Fejér means of any fe H* (T) whose restriction
to J is (after correction on a set of measure zero) continuous converge
uniformly. Even for J an arc we have not found this result in the literature,
although its direct deduction by means of known Tauberian theorems
would not be difficult.

In conclusion we remark that the proof of the lemma has a “function
algebras” flavor, and an analogously formulated proposition is valid for
certain function algebras on T™ (in particular, for the polydise algebra
. itself); what is decisive is certain properties of the “Jensen measures”
that would be easy to formulate explicitly. For the weak® closure in
L7(T") of such an algebra the analogs of Corollaries 2 and 3 would then
be wvalid. :

Also, it is possible to estimate how rapidly A (k, a) tends to zero,
enabling the rate of convergence in (1) to be estimated in terms of s(a)
and properties of the kernels k. This will be discussed in [3].

I wish to express my thanks to Charles Fefferman for a valuable
remark converning the subject of this paper.
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On the derivation and covering properties
of a differentiation basis

by
Miguel de GUZMAN* (Madrid, Spain)

Dedicated to Professor Zygmund with gratitude

Abstract. A theorem is presented that determines the type of covering pro-
perties of a differentiation basis which differentiates integrals of functions satisfying
a rather general integrability condition.

We define a differentiation basis R in n-dimensional Euclidean space
R" as a collection of open bounded sets of R" such that for every zeR"
there is at least one sequence {R;} < R so that R, »>2 as k — oo (i.e.
for all k¥ =1,2,...,2eR; and for every neighborhood U of z there is
a ky = ko(U) such that R, < U for k> k). An example of a differen-
tiation basis in R" is the collection R, of all open cubic intervals. Another
one is the collection R, of all open bounded intervals. A third one is the
collection R; of all open bounded rectangles of R"

We consider a locally (Lebesgue) integrable function f: R™ — R
and define the upper derivative D([f,x) of [f with respect to R at
the point # in the following way :

B( [ 1,0) = suplim— [ j)a,
k-0 [Rk! Ry,

where the sup is taken over all sequences {R,} < R such that B, — =
a8 k — co. The lower derivative is defined setting inflim above. We shall
say that R differentiates [f if D{[f, ) =D([f, @) =f(#) at almost
all points zeR™

The type of covering properties considered in this paper find its
motivation in the following. Let E c R™ be bounded and measurable.
We say that T' = R is an R-fine cover of # if for every w<E there is a se-
quence {T};} < T such that T} - as k — co. There are differentiation
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