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A note on a generalized hypersingular integral
by
RICHARD L. WHEEDEN* (New Brunswick, N.J.)

Abstract. We study integral transforms rclated to hypersingular integrals and
certain Marcinkiewicz integrals, but which have less stringent homogeneity require-
ments. We prove the results in the context of the Lebesgue spaces with mixed homo-
geneity of C. Sadosky and M. Cotlar.

Introduction. In this note, we will extend the results of [7] to trans-
forms of the form

pv. [ [fl@—2)—fl@)]du(2),
where p is a complex measure satisfying the condition [ |du(e)| = 0(87),
le|>8

6 >0, and f belongs to the Lebesgue (Sobolev) space LZ, 0 < a< 1. An
Q)

example of such a measure is du(2) = HT’L“J’—”—
2

and Q is integrable over |2’ = 1.
That such an extension might be possible is clearly indicated by
results in the paper [3] of E. H. Ostrow and E. M. Stein which correspond
essentially to the case n = 1 and « = 1. The methed can easily be adapted
to the Lebesgue spaces with mixed homogeneity introduced in [5], and we
shall present the results in this form. We will also derive a theorem on
certain Marcinkiewicz-type integrals as a corollary of the method.

dz, where ze R" 2’| =1

Preliminaries. Let & = (&, ..., z,) denote a point in n-dimensional
n

Euclidean space R" and |z} = ( 3 %) Given a fixed vector a = (a, ...
i=1

.-« @,) of rational numbers a;>1, a; =1, we call k(x) quasi-homo-

geneous of degree o If E(A%w,, ..., A%ux,) = A°k(=) for 1 > 0. In particular,

letting m be the smallest integer divisible by 2a;,4% = 1, ..., n, the function

o(@) = [2] = (3 «f*)Y™ is quasi-homogeneous of degree 1. It is easy
x @,

to see that g is a metric. Moreover, for g(#) % 0, the point —:1, ,——aﬁn)
4

= (Y1, +++)Yn) Delongs to 3 = o7 '(1) and dz = ¢ ‘dodo(y), where

la| = a;+ ... +a, and do(y) is the element of area on X. (See [2],[4].)

* I would like to acknowledge the Jihd hospitality of the Department of Mathe-
matics of Purdue University.
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18 R.L. Wheeden

Tollowing [5], we say fe LG, 1<p < oo, it £ (@) = (L+[2]™) 0" (o)
for some ge L?,-and we put HfHM lpll,- For simplicity, we congider
only 0 < a < 1 throughout the paper. It then turns out (see [5]) that
f = f = G, *p where G, L' and

D7, (2)| S elzl™" i @ > ol +ay—a

and
|D?@, (%) < o[w]*'“'“‘“"‘ it w]<1

Ot course the case g = ... = &, = 1, m =2 and [#] = |»| conespond%
to the ordinary homogeneous Bessel potentlals

We list here a few simple specitic facts about [#], ¢, and u which we
will refer to later. ¢ denotes a positive constant depending on # and a.

(1) (a) Tf [#]>1 then [#]<clwl. (b) If [®]<< 1 then [4] > clo).

For (a), note [#]>1 clearly implies |1] > ¢. Hemce if |z, <1, w;“".‘i
<1 <oln™ I |z =1, a4 < a? < [o™ and (2) follows by adding over i.
(b) follows from 13> [£] > |m|% > |-

(2) I [#] [¢]< 1 then |(22)| < o[#] [#].

For |(z-2)| = \2 o (] zl~ e [oP% )™ But 1> [#] [2]
= [#] |2V = [#]%z;]. Squaring and adding, we obtain (2).

- 2 a~lal—a;
(8) For 0< a <1, |@(@)| < c[@]*"* and ‘%Gu(m)i < o[w]* %,
i B

This follows from the two estimates on @, cited above. For [2]<1
it is exactly the second estimate, and for [#] > 1, it follows from the first
by choosing r large and using (1a). .

(4) For 0 < a < 1and [#]>2[2], |G (5-+2) — G, (%) < c[2] [w]* 141,

For
memﬁ

<e( D [eT [m]m—zml 2ag)1l

by (3), since [w+02] > [w]—[2]> [#]/2. But since [#] []"' < 1, and
a; = 1, [2P%[2]7 2% < [2]*[#]7* for all ¢, and (4) follows.

|G (x+2) — G, (2)] = G (@ + Oe)

(5) If  is any complex measure on R, whose total variation satisfies

[ 1dpu(2)] = O(87%), 8 >0, then (cf. Lemma 1 of [3]).
[21>8

(@) J EPlap(@)| = 0(5) for f < a
and e
() [ ¥ lau(@)] = 0(8~°) for f>a.

[zl<é
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To show (b) for example, note that

)

[ EPldu) = ) [ EFlae)
[2]<8 A k=0 g—k—15fs] o ks
<e @R [ jautl
k=0 [e]>2—k—1s

<o D@7y (27F 1 0) = 0(85)

k:

=3

if f—a>0.
§ 1. In this section we prove the following theorem.
THEOREM 1. For fe L}, 1<p < oo, 0<a<l,letf, (2) = [ [flg—
R [21>e

—f(x)1du(2), where u s a compler measure satisfying f |du(2)]
=0(67%, 6>0. Then for 1< p < o, |f. < eliflly. and fe cowverges

in L? norm as e—0. Moreover, [{&: |f, (2)| >s}|< —~”f[|1afor 8> 0.
The constants ¢ are independent of & and f.

The method of proving this is so well-known that we will only give
the main points. We first suppose fe L2 so that

f7@ =5 @B.@); Bo)= [[€*9—1]du(e).
If efz]> 1, e
IB.(@)<2 [ |du(e)] = O([2]).

[e]> [z 2

If e[o] < 1,

Bao)< [ l@dllau@+ [ 20du@)] = 0]
fe] <fz] 1 [e]> 23—t
by (2) and (5). Hence |f, " (2)| < e(1+[a]™)"|f (@) < ¢lg” (o), and
ol <elf ]]iy . by Plancherel’s formula,.

The next step in the proof is to establish the weak-type statement
of the theorem. For this we may suppose f = #%p with @ >0, and recall
(see e.g. [1]) that given s >0 there are non-overlapping rectangles {I,}
with dimensions dg, ..., df» so that Y'|I,|< es~*|lgl;, and a decompo-
sitiong = yp+ Fwith ||1p||1 < il v < o3 almost everywhere, and f bdx = 0.

I
Since pe L* with [y} < esiglly, it follows immediately from our L? result ()

(*) We use IZ here only because we have already proved that case. If we had

a priori knowledge for some other I? we could use that information instead. We will
need this fact later.
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20 R. L. Wheedelf
that {w: |(£°p), (#)] > s} has measure at most cs™*|p|,. Hence, letting
I} denote the rectangle concentric with I, whose dimensions are (21d,)“,

.5 (2Ady)™ for a large fixed 1 1ndependent of k, it is enough to asﬁume
@ = 6 and prove |{u¢ UI* I ()] >} < 08\19H17 or that

(1) [ 17 @)l da < elo]s-

iy

Recall that the integral of § over I, is zero, and note that [# —y,)
> Ad,, for »¢ Iy, if y; denotes the center of Ij. Using Fubini’s theorem
and a change of variables it is then easy to see that (1.1) follows from
the statement

J o=y —2)—G.(o—y) —Gulo—2)+ Gu(@)1du(s)| < O

[x]>Ad [z] >&

for [y]< d.
To prove this we argue much as in [(] For 0 <a<1, we will in
fact prove the stronger result that

J dwficﬂ(w—y%)—Ga(m~y>~Ga<w~z)+Gu(m>1|du(z)|

[2)>Ad

(1.2)

§ bounded for [y]1< d. For (1.2) is majorized by

[ o [ (6o—y—2)—G.(2—y)—Gu(2—2)+ Gol@)] |du ()]
[z] >2d [21<d
+ [ o [ |6(2—y)—G.(@)du()
[x]>Ad 1>d
+ [ | (Gulo~y ~2) ~G.lo—2)l|du(a)l = A+B+0.
[x]>2d [z]1>d

To estimate A, note that for the indicated ranges of # and z, ]G‘a (z—
—2)— G, (@) < c[m]""“‘ ! [¢] by (4). The same estimate holds for |G, (x—

—y—2)—G, (#~y)| since [y] is small compared to [#]. Hence
. .
| © e R [zlld[z]ldﬂ(z)l = 0@ @) = 0(1)
by 5 (b).
By (4) again,
B= [ |G-y —6.)d [ |du@)
[z >2d 5] >d
W apae — o).

[2]>Ad [+t

©

icm
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Next, majorize C by

Jaw [ [ [ |Go—z—1)—6.(0—a)du() = C:+Os.
b e ook <2 :
By (4),
[y] ,
01 < Cfdm [ J;d W_—a]d‘u(z)j
[xf}z]>2d
d
<a [ lgpEl [ S = 0w@a) = o).
[21>d [z—2]>2d [#—z]
Finally, by (3),
1
w<efo 1, (o= + e e
[x—z1<2d
d
<o [awe) [ e =0w@a) = o).
[s]>d fx] <3d [m]

To prove Theorem 1 for 1 < p < 2 we use the Marcmkiewiez inter-
polation theorem, and for p > 2 we use duality, Lfand L7, p~ 1 +p' " =1,
being dual spaces. (See [5], Theorem 2.) That f, converges in L? for fe L?
1 < p < oo, follows from the norm inequality of Theorem 1 and the fact
that it converges in L” for very smooth f. See [7] for details.

2. Maximal operator. We now use a method like that in [3] to prove
THEOREM 2. Let feLf, 0< a< 1, and

7@ =swplfy ()] =sup| [ [fl@—2)—f@)]1au(2)]
2 [z]>e
with ,u as in Theorem 1. Then ||f ||, < clifllp. for L<p < oo and |{:
I ¥ @) > s} < es7Hif |l ufor s> 0. In particular, f, (x) converges pointwise '
almost everywhere as e — 0 for 1< p < oo.
We will need oné additional fact stated in ’nhe followmg form(z)
LemMa. If f = #% and g > |a|/a then -

(2]

lallg
y]) }Mq(qn) (),

[flo+24y) —fl@+2)| < ely)® {1+(~[

where M, (¢) () = sup (67 [ |p(z-+s)%ds)!2.
>0 s} <6

(%) This particular statement is convenient for present purposes, but is somewhat
arbitrary.
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Proof. Write
flotety)—flate) = }
+ [ ele—9NGu(s+aty) -

L1 <2([2]+ [¥1)

Go(s+2)]ds = T+1II.

[s1>2([2]+ [v])

Applying Holder’s inequality and changing variables, we have-

< [ lplo—s)eds)" ([ ety +e) — Gl ds|
[s1<2([2]+ (w])

for L .;__1,_ = 1. However by (3) and (4),
q
G, (s)|% ds)"*

([ 16aly +5)— ‘
[,y] a g 1
) ds) +0( [sl 2[[1/]( [s]lalﬁa

<¢ ( f ( [S]!ai—H’ﬂ
[8]>21y]

a g
) ds ) .
| | laJ

It (|a]—~a)q < laly or if ¢ > —, this is O(Ly] "¢, Therefore,

la| la}

<oyl @ ((e14[y]) T Myly) (@).
On the other hand, by 4 and Holder’s inequality,

[y] —qa—( « Y]
I<e lple—8)| —=rm— ds < ofy] o (2 — 8)[* —romr—
[83>[Iv1 51 1s1>2[v) [s]e

for any ¢ > 1. A standard result about approximations to the identity
(see [4], p. 76) now gives [I| < ¢[y]"M,(p) (w), and the lemma follows.

Returning to Theorem 2, suppose feL?, 1 < p < oo, and let f~denote
the limit in I? of f,”. (See Theorem 1.) Let 4 (x) be a smmooth, non-negative,
decreasing function of [#] supported in [#] <1 with integral 1. Then

4, (3) = ¢4 (
has L” norm bounded by ‘a constant times ||f]},.. By [4], sup |(g*4,) (a)]

,—Z—%) is supported in [#]< e and sup |f x4,

g’

< cM,(g) (@) and M, is a bounded operator on LP, 1 < p < oo. Hence

Theorem 2 for 1< p< oo will follow if we show. that sup|f, —f *4,|
has I” norm less than a constant times ||f||,,. Since f *4, = (f+4),,
it is enough to show the same for supA and supBB , Where

Ao)= [ If+4a—2)
and B (m =

—fl@—2)|ldu(e)| + fl(f*A ) ()
fl(f*ﬁ ) (w—2)—(f*4,) (00)1[du(z|

—f(@)lldu (2,
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Consider first B,(z).
B.(@)< [ @) [If(e—y)—f@)]|d.(y—2)—

[z1<e

4.y dy.

In the inner integral [y]< 2¢ since otherwige 4,(y—=z) = 4,(y) = 0.

. Moreover, .
n 1/2
|4y ~2)— Al < o 3] 121D 4,0y~ 62)F)
n 1/2
0(2( [z])ﬂal “a}) < 0'[—:18~Ia!
2] .

since —— < 1. Hence,
A :

B,(@)<ee™t [ [ldu@)| [ If(e—y)—f(=)ldy

[z] <& <2

<o [ |fle—y)—f@)ldy.
<2

By the lemma,
< oMy(g) (0)-supe* [ yray <eM,lp) ().

lyy<2e

sup B, (z) <
) The second part of supAs(w) is

sup|(f+4.) (@) —f(@)] [ ldu(2)]

[21>e

esups“’f]f(m y)~f (@) 4. (y) &

< osupeI [ 1f@—y)—f(=)dy,
i<s
which is the expression just considered. #
Finally, in the first part of 4.,

(F*4) @=2)~fa—2) = | [ [fl@—z—y) —flo—a)] 4. () dy|

lal

<o) [+ (B) ) ama

ia! |al

< eMy(@)@) (" +¢ T[] 7)
la]

since a — —- > 0. Hence the first part of supA (#) is at most a constant

times
dd - jal
¢ {217 Haup(2)|

Mylp) (@)sup [ {e" e < 6, (%) (@)

e [2]>e

by 5 (a), since a>%
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We can now eagily complete the proof of Theorem 2. We have shown

a
that for f = #“p and ¢ > ~|—!

sup |fe (@) —f " * A, < eMy(p) (@)

Since M, is a bounded operator on L? for p > 1, M, is a bounded operator

la 1

on I? for p > g. Theorem 2 follows immediately for p > -—. But it is

also true for p =1, that is, [{z: f (@) >} < s |fllya- To see this,
we simply refer to the proof in Section 1, adding two comments. First,
the expression (1.2) used in the proof for the “bad” part ¢ does not even
depend on &. Second, mstead of the a priori L2 result used in Lhe argument
for the “good” part v, we use the LZ result for £~ * for any p > l——l— (See
the footnote on p. 4.) Theorem 2 follows for all 1< p < o by 1ntelpo-
lation.

§ 3. In this. section we show that results on some Marcinkiewicz-
type integrals can be obtained as corollaries of the method of Section 1.
Let B, = {#: [#] <t} and let » be a non-negative measure on E"
satisfying
i) 0<p(B) < oo, O<t< o0
(i) »(By) < ov(By), ¢ independent of .

For ex&n{ple, let dv(z) = k(z)dz where k>0 ig quasi-homogeneous of

degree f — |a|, # > 0, and integrable over X. Then »(B,) is & constant times

1. (See [6] and [8].) '
Let ¢

(3.1)

(3.2) Fa,1) = f|f(a;—z —fl@) v (2).

dt 1/2
(f [ow =

TEEOREM 3. Let fe L¥, 1< p < o0, 0 < a < L. Then
XPTF (0, 0} < 0| fllpey 1< < 00,

V(Bt

For functions g(x, t) we use the norm X”ng =

]

and
Ho: T2 F (2, )} > s} < 687 | llyu-
2

We will briefly prove the cases p =
Let fe L2. By Schwarz’s inequality,

and p = l of Theorem. 3.

, 1
FHo,0 < sp J o —2)—flo)an(a),

©
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and therefore

(X7 {iF (=, 1)}) =fdmfmt-2°*1?2(m,t)dt

<@ +w(B fdv(zflf(m—z) —f (@) da
= [If" (@)1 ()dz;
~ dt

I(@) = f Gy f |63 — 112dw(z).

For any i, [ |62 —1]*dr (2) < 4v(By), while if ¢ < ﬁ]— then by (2)
By

[ 162 —1Pdn(s) < ofe] [ [2Tdv(z) < e[aTEv(B)).

[<t (<t
Hence :
1f[x]
I(w) < ofoT f ";“-—14— f parl T O([=T),
1/fz]
for 0 < a < 1. Thus (X*T*{~"F (z, )})* < [If " (@) [@]"dw and the result
follows.

We will use the second part of (3.1) to prove the weak-type result
for p = 1. Let f = #%¢, ¢ = 0. Given s >0, decompose R" and ¢ as in
Section 1. By the usual considerations, it is enough to show

[ T F (@, 0)de < c|oll

(ngI}’S)'
for f = #°6. But

P F @, 0} < [ dp@)| [ 0) [Gulo—y —2) —Gue—)1dy |,

gooat 1
where du(z) = w(z)d»(2), w(z) = ( f m”f};") . It is therefore enough
to show that g (B .

[ @16, @—y—2)— (@ —y) — Gula—2) +Gul@)|du(2)
[£]>2d
is bounded for [y] < d, which is what we did in Section 1 for measures

satisfying [ |du(2)] << ¢6™% In the present case, x>0 and

[1>6 -

©

f du(z) = 2 f w(2)dv(z).

21> f=0 2ks<[z]<ok+1s
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Since w decreases as [2] increases, this is at most

Sy at 112 d
D [ ustagg) B <0 X p(Bay 5 B
k=0 g5 ¢ 0

<ed™ ¥ 27 = 0(8%.
%)
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A characterization of commutators with Hilbert transforms
by
D. PRZEWORSKA-ROLEWICZ (Warszawa)

Dedicated to Professor Antoni Zygmund

Abstract. There are given necessary and sufficient conditions for the commutator
of the Hilbert transform with an operator bounded in L* to be compact. Similar results
dre obtained for the cotangent Hilbert transform and for the Cauchy singular integral
operator on a closed are. These conditions follow from a property of commutators of
linear operators with an involution.

The purpose of the present note is to give necessary and sufficient
conditions for the commutator 'of the Hilbert transform with an operator
bounded in I* to be compact. Similar results will be obtained for
the cotangent Hilbert transform and for the Cauchy singular integral
operator on a closed arc, and so on. The proofs are based on a simple
property of commutators with an involution, which are presented at

the begining.

1. Let X be an algebra (a linear ring) with unit ¢ over the field of
complex scalars. An element ae X is said to be an inwvolution if a + ¢ and
a® =e¢. An element aeX is said to be an almost involution, with respect
to a proper two-sided ideal J = X, if the coset [a] is an involution in the
quotient algebra X/J, i.e. if there is a beJ .such that a* = e4-b (see [3]
and [4]). Let us denote the commutator and the anticommutator of two
elements a, beX as follows:

[a, b] = ab—ba, (a,b) = ab+ba.

PROPOSITION 1.1. Let a be an involution in an algebra X with unit.
An element be X commutes with a if and only if there is a bye X such that
b = (@, by).

Proof. Let us suppose that b = (@, by) for an element bye X. Then

[@, b] = ab—ba = a(aby+bya) —(ab,+bya)a

= a?by+abya —abya—bya® = eb,—bye = 0.
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