

Analytic functions and linearly ordered groups*

by

I. I. HIRSCHMAN, Jr. (St. Louis, Mo.)

Abstract. If $\sum\limits_{0}^{\infty}|f(n)|<\infty$ then $\{\theta\colon f^{\hat{}}(\theta)=0\}$, where $f^{\hat{}}(\theta)=\sum\limits_{0}^{\infty}f(n)e^{in\theta}$, has measure 0. It is shown that if the integer group replaced by an arbitrary linearly ordered discrete group then a (weak) analogue of this result is valid.

Let Z be the additive group of integers and let $L^1(Z)$ consist of those complex valued functions f on Z for which $||f||_1 < \infty$ where

$$||f||_1 = \sum_{\mathbf{z}} |f(n)|.$$

We say that $f \in A^1(Z)$ if $f \in L^1(Z)$ and if f(n) = 0 for all n < 0. Let R be the real numbers and let $T = R/2\pi Z$. If $f \in A^1(Z)$, $f \neq 0$, and if

$$f^{\hat{}}(\theta) = \sum_{\mathbf{z}} e^{in\theta} f(n) \qquad \theta \in T,$$

then $\{\theta\colon f\ (\theta)=0\}$ is a (closed) set in T of measure 0. On the contrary if $f\in L^1(Z), f\neq 0$, then $\{\theta\colon f\ (\theta)=0\}$ can be an arbitrary closed set of measure less than 2π . A weaker version of this statement, which does not depend on a detailed description of T is the following. If $f\in A^1(Z)$, $f\neq 0$, if $g\in L^1(Z)$, and if

$$\{\theta\colon g^1(\theta)\neq 0\}\subset \{\theta\colon f^{\hat{}}(\theta)=0\},$$

then $g \equiv 0$. We will show that properly interpreted this statement holds for an arbitrary linearly ordered discrete group G, which need *not* be Abelian.

Let G be a group with elements a, b, c, \ldots ; e is the identity of G. We assume that there has been distinguished on G a linear order relation "<" compatible with the group structure, that is:

- (i) for each $a, b \in G$ exactly one of a = b, a > b or a < b holds;
- (1) (ii) a < b and b < c implies a < c;
 - (iii) a < b implies ca < cb and ac < bc for all $c \in G$.

^{*} Research supported by the U.S. National Science Foundation under NSF Grant GP-6907.

We take G in the discrete topology. G is then unimodular and an invariant measure is obtained by assigning mass 1 to each point of G. $L^1(G)$ consists of all complex valued functions f on G for which $||f||_1 < \infty$ where

$$||f||_1 = \sum_{G} |f(a)|.$$

We say that $f \in A^1(G)$ if $f \in L^1(G)$ and if f(a) = 0 for all a < e.

Let Ω be the set of equivalence classes of irreducible unitary representations of G. For each $\omega \in \Omega$ we choose a representation $[U_{\omega}(\cdot), H_{\omega}]$ from ω . Here H_{ω} is a Hilbert space and $a \to U_{\omega}(a)$ is a homomorphism of G into an irreducible group of unitary operators on H_{ω} . Given $g \in L^1(G)$ we set

$$[\alpha, \beta]_g = \sum_{a \in G} g(a) \langle U_{\omega}(a) | \alpha, \beta \rangle.$$

Here $\alpha, \beta \in H_{\omega}$, and $\langle \cdot, \cdot \rangle$ is the inner product in H_{ω} . It is easily verified that

$$|[a, \beta]_g| \leq ||a|| \, ||\beta|| \, ||g||_1.$$

Since $[\alpha, \beta]_g$ is sesquilinear it follows that there is a unique bounded 1 inea transformation $g^{\hat{}}(\omega)$ on H_{ω} such that for all $\alpha, \beta \in H_{\omega}$

$$[\alpha, \beta]_g = \langle g^{\hat{}}(\omega) \alpha, \beta \rangle.$$

We can now state our principal result.

THEOREM 1. Let G be as in (1), and let $g \in L^1(G)$, $f \in A^1(G)$, f(e) = 1. If

$$\{\omega \colon g^{\hat{}}(\omega) \neq 0_{\omega}\} \subset \{\omega \colon f^{\hat{}}(\omega) = 0_{\omega}\}$$

then $g \equiv 0$. Here 0_m is the identically zero transformation on H_{ω} .

This will be a consequence of Theorem 2 below. Given $g \in L^1(G)$ we define cg(a) to be g(ca). We further define the convolution f*g of two functions f, g by

$$f*g\cdot(a) = \sum_b f(b)g(b^{-1}a).$$

If $f, g \in L^1(G)$ then $f * g \in L^1(G)$ and $||f * g||_1 \le ||f||_1 ||g||_1$; if $f \in L^1(G)$ and $g \in L^2(G)$ then $f * g \in L^2(G)$ and $||f * g||_2 \le ||f||_1 ||g||_2$, etc. Moreover if $f \in L^1(G)$, and $g, h \in L^2(G)$ we have f * (g * h) = (f * g) * h. In the present case direct verification of all these formulas is very simple indeed.

Theorem 2. Let G be as in (1), let $g \in L^1(G), f \in A^1(G),$ and let f(e)=1. If

$$g*_{c}f \equiv 0$$

for all $c \leqslant e$ then $g \equiv 0$.

Proof. Our demonstration is an adaptation of an argument taken from Helson ([2], p. 4).

We define M to be the closed linear manifold in $L^2(G)$ generated by the functions $\{cf\}_{c<e}$. We note that for b fixed the mapping $h \to h(b)$ of $L^2(G)$ into the complex numbers satisfies $|h(b)| \leq ||h||_2$ and is thus a continuous linear functional on $L^2(G)$. Since, if c < e, cf(a) = 0 for $a \leq e$ it follows that if $h \in M$ then h(a) = 0 for $a \leq e$. Now let f_M be the projection of f on M and let $k = f - f_M$. We have k(e) = 1 so that $k \neq 0$. Since k is orthogonal to M and since $ck \in M$ if c < e we see that

$$\sum_{a} k(a) \ \overline{k(ca)} = 0 \qquad c < e,$$

which we can rewrite as

$$k*k^{\sim}(c) = 0$$
 for $c > e$.

Here $k^{\sim}(a)$ is defined as $\overline{k(a^{-1})}$. The identity, $k*k^{\sim}\cdot(c)=\overline{k*k^{\sim}(c^{-1})}$, implies that

$$k*k^{\sim} \cdot (c) = 0$$
 for $c < e$.

Finally

$$k*k^{\sim} \cdot (e) = ||k||_2^2 \neq 0.$$

Thus

$$k * k^{\sim} \cdot (c) = \delta(c) ||k||_2^2$$

where $\delta(c)$ is 1 if c = c and is 0 otherwise. It is apparent from (2) that

$$g * k \cdot (a) = 0$$
 all $a \in G$.

and thus that

$$||k||_2^2 g(a) = q * k * k \sim (a) = 0$$
 all $a \in G$:

that is, $g \equiv 0$.

Now let f and g satisfy the assumptions of Theorem 1. It is simple to verify and well known that

$$(cf)^{\hat{}}(\omega) = U_{\omega}(c^{-1})f^{\hat{}}(\omega),$$

and

$$(g*_{c}f)^{\hat{}}(\omega) = g^{\hat{}}(\omega)[_{c}f]^{\hat{}}(\omega) = g^{\hat{}}(\omega)U_{\omega}(c^{-1})f^{\hat{}}(\omega).$$

Thus our assumptions imply that for each $\omega \in \Omega$

$$(g*_{c}f)^{\hat{}}(\omega) = 0_{\omega}$$
 for all $c \in G$.

This in turn, see [3; p. 360], implies that

$$g*_c f = 0$$

for all $e \in G$. It follows from Theorem 2 that g = 0.

An example of a non-commutative group which has an order satisfying (1) is the free group on n letters, n > 1. See [1] p. 47.

References

- [1] L. Fuchs, Partially Ordered Algebraic Systems, New York 1963.
- H. Helson, Lectures on Invariant Subspaces, New York 1964.
 - E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1., Berlin 1963.

Received June 25, 1971

(356)

On the function of Marcinkiewicz

T. WALSH (Princeton N. J.)

Abstract. Define the Marcinkiewicz integral transformation acting on locally integrable functions in \mathbb{R}^n by

$$\mu(f)(x) = \Big(\int_{0}^{\infty} \Big| \int \Omega(y) |y|^{-n+1} \psi(t^{-1}y) f(x-y) dy \Big|^{2t-3} dt \Big)^{1/2},$$

where Ω is homogeneous of degree 0. Rearrangement-invariant conditions on Ω are found under which μ is bounded in L^p .

0. Introduction. The Marcinkiewicz function of a locally integrable function of one variable f is defined by

$$\mu(f)(x) = \Big(\int\limits_{0}^{\infty} |F(x+t) + F(x-t) - 2F(x)|^{2}t^{-3}dt\Big)^{1/2},$$

where F is an indefinite integral of f. Stein has considered the following generalization to n variables

(1)
$$\mu(f)(x) = \Big(\int_{0}^{\infty} \Big| \int_{|y| \le t} \Omega(y) f(x-y) \, dy \Big|^{2} t^{-3} \, dt \Big)^{1/2},$$

where Ω denotes a locally integrable function which is homogeneous of degree 0 and has mean value 0 on the unit sphere $S^{n-1} = \{x : |x| = 1\}$ with respect to Euclidean surface measure σ .

Using the boundedness in L^p of the 1-dimensional Marcinkiewicz integral transformation Stein showed that if Ω is odd μ defined by (1) is also bounded in $L^p(\mathbb{R}^n)$ for 1 ([9], Theorem 2). The resultsfor Calderón-Zygmund singular integrals in [4] give rise to the question whether similar results hold for the Marcinkiewicz integral (1) and general kernels.

For a homogeneous function Ω let $\|\Omega\|_p$ denote the L^p norm with respect to the measure σ on S^{n-1} . Also for a positive increasing function Φ let

$$\|\Omega\|[\Phi(L)] = \int_{S^{n-1}} \Phi(|\Omega(\xi)|) d\sigma(\xi).$$