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Analytic functions and linearly ordered groups™®

by
I. I. HIRSCHMAN, Jr. (St. Louis, Mo.)

Abstract. If Y‘[f(n)} < oo then {f: f(8) = 0}, where 7~ (6) = S‘f(n)e""" has
measure 0. It is shown that if the integer group replaced by an a.rbltrary linearly
ordered discrete group then a (weak) analogue of this result is valid.

Let Z be the additive group of integers and let L*(Z) consist of those
complex valued functions f on Z for which |f], < c where

Ifl= > Iftm)l.
zZ

We say that fed'(Z) if fe L'(Z) and i f(n) = 0 for all n < 0. Let R be
the real numbers and let T = R[2=Z. If feA'(Z), f # 0, and if

770 =D e f(n) 0T,
z

then {6: f™(8) = 0} is a (closed) set in T of measure 0. On the contrary
it fe IZ), f # 0, then {8: f~(8) = 0} can be an arbitrary closed set of
measure less than 2n. A weaker version of this statement, which does
not depend on a detailed description of 7' is the following. If fed'(Z),
f#0, if ge I'(Z), and if
{0: g'(6) = 0} = {6: f"(6) = 0},

then g = 0. We will show that properly interpreted this statement holds
for an arbitrary linearly ordered discrete group @, which need not be
Abelian.

Let G be a group with elements a, b, ¢,...; ¢ is the identity of G.
‘We assume that there has been distingnished on @ a linear order relation
“<” compatible with the group structure, that is:

(1) for each a,be@ exactly one of @ = b, a >b or a < b holds;
(1) (i) e<b and b < ¢ implies a < ¢;
(iil) @ < b implies ca < ¢b and ac < be for all ce G.
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We take @ in the discrete topology. @ is then unimodu]a;l: and an
invariant measure is obtained by assigning mass 1 to each. point of G.
I}(@) consists of all complex valued functions f on G for which ||f[l, < oo
where

W= 1f@.
[

We say that fed'(§) if fe ING) and if f(a) =0 for ;_mll a<e.

Let Q be the set of equivalence classes of irreducible unitary repre-
sentations of @. For each we 2 we choose a representation [U,(-), H,]
from o. Here H, is a Hilbert space and a - U,(a) is & homomorphism
of @ into an irreducible group of unitary operators on H,. Given ge L'(6)
we seb

[a, 81, = >, 9(a) <Uu(a) @, B
aeG
Here a, fe H,, and {:, -> is the inner product in H,. It is easily verified
that .
) Ita, 8] < llel 181 ligl-
Since [a, 81, is sesquilinear it follows that there is a unique bounded 1 inea
transformation ¢” (») on H, such that for all a, fe H,

[o, 8], =<9 (®) a, B)-
‘We can now state our principal result.
THEOREM 1. Let @ be as in (1), and let ge L' (@), fe A (@), f(e) = 1. If
{o: ¢" (o) # 0.} < {o: " (0) = 0,}
then g = 0. Here 0,, is the identically zero transformation on H,.
This will be a consequence of Theorem 2 below. Given ge M@ we

define ,g(a) to be g(ca). We further define the convolution fxg of two
functions f, g by

.

frg-(a)= D f(b)g(b7a).
b

It f,ge I@) then frge ING) and [frgly< [fl:lgl; i fe I(6) and
ge I*(6) then fxge T*(&) and [ fxgll, < |fl llgls, ete. Moreover if fe L*(6),
and g, he (@) we have f#(gxh) = (fxg)*h. In the present case divect
verification of all these formulas is very simple indeed.

THEOREM 2. Let @ be as in (1), let g LM, fe A (@), and let f(e) = L.
If

2)
for all ¢ < e then g =0.

gx.f =0
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Proof. Our demonstration is an adaptation of an argument taken
from Helson ([2], p. 4).

We define M to be the closed linear manifold in I?(@) generated by
the functions {;f}.<.. We note that for b fixed the mapping b —> h(b) of
I*(@) into the complex numbers satisfies [B(D)] < ||B]], and is thus a con-
tinuous linear functional on I*(@). Since, if ¢ <e, f(a) =0 for a<<e it
follows that if he M then k(a) = 0 for a < 6. Now let fy, be the projection
of f on M and let k = f—f,. We have k() =1 so that % == 0. Since &
is orthogonal to M and since Je M if ¢ < ¢ we see that

D k@) k(ea) =0 c<o,
which we can rewrite as

ExE"(¢) =0 for c>e.
Here %" (a) is defined as k(a™?). The identity, k+k™-(c) = k*k (oY),
implies that

kxk"-(¢c) =0 for c<e.
Finally .
kxk"(6) = [[k]z # 0.
Thus

kxE"-(e) = 8(c) k|3

where 8(c) is 1 if ¢ = ¢ and is 0 otherwise.

It is apparent from (2) that

g*k-(a) =0 all ae@,

and thus that

IKIE g(a) = g*k*k™(a) = 0
that is, g = 0.

Now let f and g satisfy the assumptions of Theorem 1. It is simple
to verify and well known that

()™ (@) = Tale™f" (@),

all ae G;

and
(@) (@) = g7 (@) [f1" (@) = " (@) Upla™Hf " ().
Thus our assumptions imply that for each we Q
(g*.f) " {w) =0, for all ce@.
This in turn, see [3; p. 360], implies that
g*.f =0
for all ¢e@. It follows from Theorem 2 that g=0.

An example of a non-commutative group which has an order satisfying
(1) is the free group on » letters, n >1. See [1] p. 47.
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On the function of Marcinkiewiez

by
T. WALSH (Prineeton N. J.)

Abstract. Define the Marcinkiewicz integral transformation acting on locally
integrable funetions in R™ by

©

s()@ = ([ [ @+ vty fw—yaypria)”,

o

where Q is homogeneous of degree 0. Rearrangement-invariant conditions on Q are
found under which p is bounded in LP.

0. Introduction. The Marcinkiewicz function of a locally integrable
function of one variable f is defined by

o0

w()@) = ([ 1 Flo+)+ Ple—1)—2F (@) @)™,
0
where F is an indefinite integral of f. Stein has considered the following
generalization to n variables

) phH@=([] [ ewfe—yafia)”,

0 st
where O denotes a locally integrable function which is homogeneous of
degree 0 and has mean value 0 on the unit sphere §* ' = {@: |z| =1}
with respect to Buclidean surface measure o.

Using the boundedness in L? of the 1-dimensional Marcinkiewicz
integral transformation Stein showed that if 2 is odd u defined by (1)
is also bounded in LP(R™) for 1 < p < oo ([2], Theorem 2). The results
for Calderén—Zygmund singular integrals in [4] give rise to the question
whether similar results hold for the Marcinkiewiez integral (1) and general
kernels.

For a homogeneous function 2 let |Q], denote the I” norm with
respect to the measure ¢ on 8"~ Also for a positive increasing function &
let

120IP(I)] = | @12 do(8).
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