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Abstract. The limit laws arising from an affine modification of sequences of
partial sums of independent random variables whose values belong to the Euclidean
space are characterized in terms of operator-decomposability of probability measures.
Our next aim is to give a representation of the characteristic function of these limit
laws. The method of proof consists in finding the extreme points of a certain convex
set of measures. Then the Choquet Theorem yields the representation formula.

Introduction. A Lévy’s probability measure on the Euclidean space
RY is a limit law arising, roughly speaking, from affine modification of
the partial sums of a sequence of independent RY-valued random va-
riables. This paper is concerned with a description of Lévy’s probability
measures. The limit laws in the case of a sequence of independent and
identically distributed random variables, i.e. the operator stable prob-
ability measures on RY were considered by H. Sharpe in [12].

Throughout this paper we denote by #(RY) or, shortly, by £ the
set of all probability measures on RY. With the topology of weak con-
vergence and multiplication defined by the convolution # becomes & t0-
pological semigroup. We denote the convolution of two measures A and
u by A%u. Moreover, by §, (ac<R") we denote the probability measure
concentrated at the point a. The charaeteristic function J of a meagure
Ae? iy defined by the formula

@) = [ expi(a, y)A(@y),
RN

where (#, y) denotes the inner product in RY.

Given Ae?, we define A~ by the formula 1~ (B) = A(— E), where
—E = {—2: z<E}. The mapping 4 -~ 1~ is an involutive automorphism
of 2. It is easy to see that i~ = 1, the last bar denoting the complex
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conjugate. For any AcZ, the measure °A = A*4~ is called the symmet-
rization of A.

We call a measure from Z(RY) full if its support is not contained
in any (¥ —1)-dimensional hyperplane of EY. We denote by F(RY) or,
shortly, by & the set of all full probability measures on RY. We mention
that the set & is an open subsemigroup of Z.

Let End BY denote the semigroup of all linear operators in RY with
the composition as a semigroup operation. Further, let Aut RY denote
the group of all non-singular linear operators in RY. For any A <End
RY and A<#(RY) let A4 denote the measure defined by the formula
AX(B) = A(47(B)) for all Borel subsets B of E”. It is easy to check the
equations for all 4, BeEnd RV -

A(BY) = (4B)}, A(i+p) = Adxdp, L) = (4™,

where A* denotes the adjoint operator. Moreover, the mapping (4, 1) —~ 41
from End-BY x #(R¥) onto #(RY) is jointly continuous, where End RY
is provided with a norm topology. Consequently, we have the following
statement :

(i) If & sequence {4} is precompact in End RY, then for every LeZ?(RY)
the sequence {A, A} is precompact in P(RN).

For full measures the converse implication is also true. Namely, we
shall prove the following statement:

(i) Let AeF (RY) and A4,cEnd RY (n =1,2,...). If the sequence
{4,4} is precompact in P(RY), then the sequence {A,} is precompact in
End RY,

Proof. We shall assume for the purpose of obtaining a contradiction
that {4,4} is precompact and {|4,|} is unbounded. Let us choose vectors
#, in RY such that |, =1 and |4} = [4La,l (n =1,2,...). Passing
to a subsequence, if necessary, it may be assumed that ||4,[ - oo and
the sequence of vectors |4 ~! 4}, tends to a vector weRY with |juf} = 1.
Sinee the sequence {4,1} is precompact and J|4;||~* z, — 0, we infer that

AN
Lim A,2(c Ayl a,) =1

A~
for every c¢eR. Consequently, by the transformation rule of 4,4,
lim A(c 4717 47a,) =1,

n—>00

which yields the equation i(¢u) = 1 for all ceR. In other words, we prov-

ed that the characteristic function of 1 is equal to 1 on a one-dimensional

subspace of RY. Hence it follows that i is not a full measure (see [12],
p. 52, Proposition 1). The contradiction implies that {|4,]} is bounded
and, consequently, the sequence {4,} is precompact in End R™.
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1. Operator-decomposability of measures. Let A< # (R") and A <End RY.
Suppose that there exists a measure 1,2 (RY) for which the equation

a.1) A= Ay

holds. Then we say that the measure 1 is A-decomposable. We denote
by E(2) the set of all operators A such that the measure i is 4-decom-
posable. Further, by A (1) we denote the subset of E(4) consisting of those
operators 4 for which in (1.1) we may take 1, = §, for some vector aeRY.
It is obvious that the identity operator I belongs to A(1) for all le#.
Moreover, since 01 = d,;, we infer that 0eE (1) for all 1e#.

In this section we shall establish some simple properties of the sets
E(2) and A(A).

PrOPOSITION 1.1. For every AeF (RN) the set E(1) is a compact sub-

semigroup of End RY.

Proof. Given 4, BeE(2), we put C = 4B and Ay = Alg*xi,. It is
easy to check that A = Oixls. Thus E(4) is a subsemigroup of End RV.
Suppose now that 4,¢E(1) (n =1,2,...). It is clear that the symmet-
rization °1 of 1 is also full and °A = 4,°4*°1, (n =1,2,...). By Theorems
2.2, and 5.1. in [10] (pp. 59 and 71) we infer that both sequences {4,°1}
and {°1 _4"} are precompact in #. Moreover, by the property (ii), the se-
quence {4,} is precompact in End R¥. Let A be its limit point. Without
loss of generality we may assume that the sequence {4,} converges to A.
Then
(1.2) limd, A= 43.
>0
It remains to prove that the sequence of measures {1, } is precompacs.
Since the sequence of the symmetrizations {°2 An} is precompact, we infer,.
by Theorem 2.2. in [107 (p. 59), that there exists a sequence {a,} of vectors
in RY for which the sequence of measures {1 4,%* 8, } I8 precompaet in Z.
Thus, by (1.2), the sequence u, = A,A%2, x0, (n =1,2,...) is pre-
compact in #. Bub g, *%d_, =1 (n =1,2,...). Now it is easy to prove
that the sequence {a,} is precompact in RY (see e.g. [12], The Compactness
Lemma, p. 53). Henee it follows that the sequence of measures {i, }
is precompact. Denoting by A, its limit point we have, by (1.2), the for-
mula 2 = 424+, which shows that 4 ¢E(1). Thus the set E(2) is compact
which completes the proof.

PrOPOSITION 1.2. For every Ae#F (RY) the set A(1) is a compact sub-
group of Aut RY.

Proof. Suppose that 4, BeA(1) and i; = §,, iz = J,. Setting’
¢ = AB and ¢ = 4b+a, we get the equation 1 = (4% 4,. Consequently,
A(2) is a semigroup. Further, for every A <A(2) the measure 41 is also
full. Since the support of A2 is contained in the image A(RY), we infer
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that the operator 4 is invertible. Setting d = — A™'a wehave the formula,
% = A™'2A= 3, which shows that A™'eA(A) and, consequently, that A (1)
is a subgroup of Aut BV. Suppose now that 4, eA (1) and for some vectors
a,eRY the equations 1 = 4,1 8,, (n =1,2,...) hold. By the Com-
pactness Lemma in [12] (p. 55) We infer that both sequences {4,} and
{a,} are precompact in Aut RY and RV respectively. Moreover, if 4 and
@ are their limit points, then 1 = 41#4,. Thus AeA( ) which completes
the proof.

PROPOSITION 1.3. If A and A~ belong to E(2), then 4 <A (A).

Proof. From the equation 2 = A™'A*l, , we get the following
one A1 = AxAJ3,-1. Hence and from the formula 1 = A1*1, we get the
inequality for characteristic functions
(?/ERN>7

AWl = A 1L @) < A@) 1A )]

which yields the equation ]i_4(y)[ =1 in a neighborhood of the origin.
By elementary properties of the characteristic function the last relation

implies the formula |, (y)| = 1 for all yeRY. Thus A, = 8, for a vector '

aeR” which shows that Ae<A(A).

In what follows for any operator 4 <EndR" det A will denote the
determinant of the matrix representation of 4 with respect to an ortho-
normal basis in RY.

PROPOSITION 1. 4. Let Ae# (RY). If A<E(a
AecA().

Proof. Consider the monothetic compact subsemigroup S of E(4)
generated by the operator 4. By a Theorem of Numakura (see [8], [9]
p. 109) the limit points of the sequence {A”} form a group G which is
the minimal ideal of § and S contains exactly one idempotent, namely
the unit J, of G. Of course, det J, = 1 and, consequently, J, is the identity
operator I. Hence it follows that S = G and, consequently S is a group.
Now our assertion is a consequence of Proposition 1.3.

ProPOSITION 1.5. For every idempotent J from E(2) the equation
A =dJA*(I~J)A holds. Consequently, I—JeE(4).

Proof. Let J be an idempotent and

) and |detd| = 1, then

(1.3) A= dJdAxdy.

s AN
Hence we get the formula JA = JA*J2%;. Consequently, Ji = Ji-JAs
. . . . -
which implies the equation JA,(y) =1 in a neighborhood of the origin.
. Fas
It is well-known that the last condition implies the formula Ji;(y) =1
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for all yeR™Y. Thus JA; = d,. Henee, in particular, it follows that the
measure A, is concentrated on the subspace (I —J)(RY). In other words,

(1.4) (I—Jd)Ay = 2y

Since 04 = §,, equation (1.3) yields the formula

I—I)A = (I —J)Jax(I~J)A; = 0 (I—J)ay = (I—J)2,
Thus, by (1.4), (I—J)A =2, which, together with (1.3), implies the
equation 2 =JA*(I—J)A )

PROPOSITION 1.6. Let J be an arbiirary tdempotent from E(2). Then
for every pair A, B of operaiors from E(A) the operaior JAJ +(I—J)B(I—J)
belongs to E(4) too.

Proof. Let 4, BeE(1), i.e

(1.5) A= Alxly
and
(1.6) 4 = Bi*ig.

If J is an idempotent from E(Z), then by Proposition 1.5,

(1.7) A= dJix(I—J)2

Thus

{1.8) JAL = JATAxJA(I —J)A

and

(1.9) (I—JYBi = (I —J)BJAx(I—J)B(I—J)A.

The equations (1.5) and (1.8) imply the equation
(1.10) JA = JAAxJAy = JATAxJA(I—J)ixJ2,.
Further, from the equations (1.6) and (1.9) we obtain

(111)  (I-Ii={I—J)Bax(I—J)ig

= (I —NBI—NAx(I—J)BIL* (I —J)2p.

Taking into account (1.7), (1.10) and (1.11) we get the formula

(1.12) A=dJAJA*x(I—J)B(I—J)A*lg,
where }:c =JAI — ) A% Ji ¥ (I —J)BJA*(I—J)Ap. Setting ¢ = JAJ +
~({—dJ)B(I—J), we get, by virtue of (1.7),

(2 = CIA*C(I—J)A = JATA* (I —J)B(I —J)2.

Hence and from (1.12) we get the formula A = C2xiy which yields

CeE(2). The proposition is thus proved.

2 — Studia Mathematica XLIV. 2
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ProposITioN 1.7. If B,eE(X) (n =1,2,...),

ImBf =0 (n=1,2,..),

ko0

(1.18)

(114) LmB, = I

N0

and the set {B’,‘:’“: k=0,1,...,mn =1,2,...} is precompact, then i(y) #0
for every yeRY.

Proof. Suppose the contrary and assume that i(a) = 0 and A(y) % 0
whenever [ly|| < |ja|. First we note that the equations i(y) = fl(B,,y)iBn(y)
(n =1,2,...) and the agsumption (1.14) imply the relation lim ﬁBn () =1

N—>00

whenever |ly|| < |la|l. But the last relation is equivalent to the following one

(1.15) mz,; = é,.

N—-00

Let E, be the closure of the set {Byfa: k = 0,1,...,n = 1,2, AR
By the assumption the set B, is compact. Thus, by (1.15), lim ZBn(y) =1
N~

uniformly on #,. Consequently, without loss of generality we may assume
that

(1.16) I, () £0 (n=1,2,..59¢H,).

Now we shall prove that i(z) = 0 for all vel,. Since Z(a) =0 to
prove this it suffices to prove that E(B,,y) =0 (n=1,2,...) whenever
A(y) = 0 and y<E,. But this implication is a consequence of the equation

iy) = M(Buy)ig, )

and the inequality (1.16). In particular, we have the formula Z(O) =0
because, in view of (1.13), 0¢E,. But this contradicts the obvious formula
4(0) = 1. The Proposition is thus proved.

2. Statement of the problem. A triangular array of probability mea-
sures uy (¢ =1,2,...,%; 4 =1,2,...) on RY is said to be uniformly
infinitesimal if for every neighborhood U of the origin the relation

lim max g, (BR¥\U) =0 )
o0 1i<hy,
holds.

In terms of random variables, the problem we study is enunciated
as follows: suppose that {Xa} is & sequence of independent R¥-valued
random variables and assume that {4,} and {a,} are sequences from
AutRY and R¥ respectively such that the probability distributions of

icm
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4, %, (B=1,2,...;n; m=1,2,...) form a uniformly infinitesimal
triangular array and the distribution of

An Zn'Xk-'— y,
k=1

converges, to & measure u; what can be said about the limit measure p?%
Converting this to a problem involving only measures we ask which mea-
sures u can arise ag limits of sequences 4, (u, *us *... *u,) * 4, where {u,}
is an arbitrary sequence of probability measures in RY, such that AL p
(k=1,2,...,n; n =1, ...) form a uniformly infinitesimal triangular array.
The limit measures x will be called Lévy’s measures. The set of all Lévy’s
measures ol BV will be denoted by Zy.

‘We refer the reader to M. Loéve [6] (p. 319) for an account of the
set Z,. The problem of characterizing of this set was proposed by A. Ya.
Khintchine in 1936 and solved by P. Lévy in [5] (p. 195). He proved
that a measure belongs to %, if and only if, it is self-decomposable.
Self-decomposability of & measure u means here that E(u) contains the
open interval (0,1) (see [5], p. 319 and [67 p. 323). Tt is possible in this
case to describe the set %, in terms of characteristic functions. Namely, -
the set £, coincides with the set of probability measures with the charae-
teristic function ¢ of the form

¢(y) = exp {iay +

i i 1+a?
- )_i
A 142 2

where aeR and M is a bounded monotone non-decreasing function such
that on (—oo0,0) and (0, o) its left and right derivatives, denoted in-

a (o),

11z2
variably by M'(z), exist and —iﬂl’(m) do not increase.

Another characterization of %, was given in [13]. Namely, I proved
that & function ¢ is the characteristic function of a measnre from %,
if and only if

=

— 0

du — iy arctan Ja)

. v(dx)
p(y) = exp {zay—\— m};
where aeR, v is a finite Borel measure on R and the integrand is defined
as ity limiting value —1y* when x = 0.
All that has been done so far in the multi-dimensional case is to
describe limits of distributions of sequences

(X + X+ .+ X)) +a,,


GUEST


126 K. Urbanik
where 4,, is a multiple of the identity operator. By the same techniques
as in the one-dimensional case, one finds a representation of characteristic
functions (see [14]).

Our aim is to characterize all full Lévy’s measures on RY. Before
proceeding to state and prove the main results of this paper we shall
establish auxiliary propositions.

3. Norming sequences. We say that a norming sequence {4,} of
operators from AutR¥ corresponds to a measure u if there exist sequences
{u,} and {a,} of elements of Z(R¥) and R" respectively, such that
Ap(p*po*.. %)% 8, converges to u and A,um (=1,2,.. u;
n =1,2,...) form a uniformly ininitesimal triangular array.

PROPOSITION 3.1. For every morming sequence {A,} corresponding to
a full measure the relation lim A, = 0 holds.

n—o0
Proof. Suppose that {4,} corresponds to a full measure w. Taking
if necessary the symmetrization of the measures in question, we may
assume that a, = 0 (n =1, 2, ...), i.e. that the sequence A, (u, % py*...* u,)
converges to . Contrary to our statement let us suppose that thereexists
a subsequence of indices n, < n, < ... for which

(3.1) lim [|4,,]|> 0.

k—co

Let us choose vectors. z,eRY with |jg,| =1 and [A%] = |4}2,). Passing
if necessary to a subsequence, we may assume that the sequence u;, = ]]A:‘lku“l
A:kznk converges to a vector u<R". Of course, |u| = 1. From (3.1) it
follows that the sequence IIA::ku‘lz,,k is bounded. Since, by the assumption,
EA,,W =0, (j =1,2,...), we have the relation

1i A/\- A% |t = j
kl]ll ukl"y(cﬂ el z"k) =1 (j=1,2,..)

P
for every ceR. Consequently, by the transformation rule of A,y wWe
get the formula

}]G-i:g f;,-(ﬂuk) =/2j(cu) =1 (j 172":-)

for all ceR. Introducing the notation v, = y,* Ho® ... % u, We have
(3.2)

talouw) =1 (n=1,2,...; ceR).

We note that the vectors g, = (AN 'u (n=1,2,...) are different from
0. because |ul] = 1. Let » be a limit point of the sequence {||y,l " y,}, say
glm ]]ymku"‘ymk = v. Since 4,v, converges to 4, we have for all ce R

A v (€1 my | Yong) = (o).
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On the other hand, by (3.2),

/\ A
Anvn(cuynll—lyn) = n(@”yn‘r] u) =1 (n = 1, 2,...)

and, consequently, u(ev) =1 for all ceR. Hence, by Proposition 1 in
[12] (p. 52), it follows that the measure x is not full. But this contradicts
the assumption. The Proposition is thus proved.

ProOPOSITION 3.2. To every full Lévy’s measure there corresponds a nor-
ming sequence {A,} with the property

lim 4,,, 47" = 1.

Proof. Let x be a full Lévy’s measure. Suppose that a sequence
{B,} corresponds to u, i.e. B, (p,*uy*...* #q)* 0, converges to u for some
sequences {u,} and {b,}. Setting v, = u,*pus*...%u, we have for some
vectors ¢,

(8.3) Bui1¥ns1* 8y = Bnii By (Buva* 8y ) * Bupytnii ¥ e -

Since the measures By, (k =1,2,...,2; 1 =1,2,...) form a uniformly
infinitesimal triangular array, we infer that the sequence {B,.;p,.1}
converges to 6,. Consequently, from (3.3) and the Compactness Lemma
in [12] (p. 55) it follows that the sequence {B,,,B;'} is precompact in
Aut R~. Moreover, for every its limit point J one can find a vector ¢;e RY
such that g = Ju*Jd,. Consequently, Jed (u).

Let T be the set of all limit points of the sequence {B,,,B;"'}. The
set A(u), according to Proposition 1.2., is compact. The set T being
a closed its subset is compact too. Consequently, for every interger n we
can find an operator J, in T such that

& = H‘]n“Bn-)-lB;! | = min{ﬂJ——BnHB;lfl: JT}.
Obviously, lim ¢, = 0. Moreover, the operators J, belong to A(u). Since,

n—+o0
by the Proposition 1.2., A(x) is a group the operators H, defined by
the formulae H, = I, H, = J7'J;'...J;  (n = 2,3,...) belong to A(u)
too. Put 4, = H, B, (n =1,2,...). It is clear that 4, e AutRY, Moreover,
(84) A A;'—I =H, (ByBy'—J,)H, ®=1,2,..).

Since the set A(u) is compact, all operators from A(u) have the norm
bounded in common; say JA] < ¢ for all A <A (u). Consequently, by (3.4),

My A = T < Hp ol iBas1 By ' — Tl IHA < €%e, (0 =1,2,...)

which implies the relation
lmAd, 4t =1.

>0
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It remains to prove that the sequence {4,} corresponds to the measure
#. We note that sequence {H,} contained in the compact set A(u) is
precompact. Consequently, the sequence {H, B, v, * dp p }, i.e. the sequence
{4y, * 0,5} is precompact in Z(RM). Moreover, its limit points are
of the form Hux* 4, where H is a limit point of the sequence {H,}. Since
H ¢ A(u), we have the equation ’

Hux 0, = p* 0,

where b ¢« RV. Hence it follows that we ean choose a sequence {a,} of
vectors such that the sequence {4,»,*d, } converges to u. Thus the
sequence {4,} corresponds to x which completes the proof.

PrOPOSITION 8.3. Let ng < my, (b =1,2,...) and n, — oco. For every
norming sequence {A,} corresponding to a full measure u the sequence
{AmkA;kl} is precompact in End RY. Moreover, all its limit poinis belong
fo E(u).

Proof. Suppose that

(3.5) lim A,v,%6, = p,

where v, = p,*pyx... %y, and {u,}, {a,} are suitably chosen sequences
from Z(R¥) and RY respectively. For simplicity of notation we put

¢, = AmkA;kl (k=1,2,..).
Then we have the equation

(3.6) Ay 8y = Oy

Ny, ”k* 54,%) * Wy

where w; i3 a probability measure. The symmetrization of (3.6) yields
the formula

© . o
Amk""mk = C”k-Ank”nk* oy

Hence, by virtue of Theorem 2.2 in [10] (p. 59), we get the precompactness
of the sequence {Ok'A'nkD"’nk}' Passing if necessary to a subsequence we
may assume that the last sequence is convergent to a probability measure,
say A. Thus

T .
lim Gy A, v, (y) = A(y)

k—o0

(3.7)

uniformly on every compact subset of RY.

First we shall prove that the sequence {0} is precompact in End RY.
To prove this it suffices to prove that the sequence of norms {[|C4} is
bounded. Contrary to this let us. suppose- that- the - sequence of morms-is
unbounded. Of course, we may agsume, without loss of generality, that
lICxll = co. Let us choose vectors x, in R¥ such that llzgll = 1 and |OF
= 05 (k =1,2,...). Passing to a subsequence, if necessary, it may
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be avs§umed that the sequence of vectors u, = [|C3l~ Oy, tends to a vector
ueRY with Juj| = 1. Thus, by (3.5),

S

(3.8) limd,, %, (ous) = °u(ou)

for all ceR. Since ||C51 'z, — 0, we have, by (3.7),

/\ .
1im Gy, 4, v, (e 10F) ™ ) = 4(0) =1

koo

for all ceR. But the last formula can be written in the form

S~
Lmd, °v, (o) =1  (ceR).
ko
Comparying it with (3.8) we get the equation °n(eu) = 1 for all ceR.
Hence it follows that u is not & full measure (gee [12] p. 52, Proposition 1).
The contradiction shows that the sequence {C,} is precompact in End BV,
Let A be a limit point of {C;}. Without loss of generality we may
assume that the sequence itself tends to A. From (3.5) and (3.6), by
virtue of Theoret1 2.2 in [10], we get.the precompactness of the sequence
{op* 6bk} for suitably chosen vectors b,eRY. Without loss of generality
we may assume that the last sequence is convergent. By (3.5) and (3.6)
it is easy to show that the sequence {b,} is convergent to 0. For instance
one can apply the Compactness Lemma in ({127, p. 55). Thus the sequence
{wg} is convergent to a probability measure which will be denoted by
4. Finally, from (8.5) and (3.6) we get the equation y = Au*xpu,
which shows that 4 <E(u).

4. Decomposability properties of Lévy’s measures. Let J be a non-zero
idempotent in End RV, i.e. a projector from RY onto J(RY). For every
operator 4 in End RY by det;4 we shall denote the determinant of the
matrix representation of the operator JA in J (R") relatively to an ortho-
normal basis of J(RY). It is easy to prove the following formulae
(4£.1) det ;A = det;JA4 = detydJ = detJAJ,

(+2) det, (AJB) = dety4 det,B.
Moreover, if the projectors ., and J, satisfy the conditions o/,
= 0, then for all 4, B<EndRY we have the equation

(4.3) dety, i, (Fy A, - T, BJs) = det; Adet; B.

LemyvA 4.1, Let g be a full Lévy’s measure and let J be a non-zero idem-
potent from E(u). Then for every number ¢ satisfying the condition 0 < ¢ < 1
there exists an operator B, in E(u) such that det,B, = c.


GUEST


130 K. Urbanik

Proof. Let {4,} be a norming sequence corlespondlng to p. By Prop-

osition 3.2 we may assume that

(4.4) leﬁAMlA;l =1.

Put by, = detzd, 47 (n < m). Obviously,

(4.5) ) bpw =1 (mn=1,2,...).
Moreover, by Proposition 3.1,

(4.6) ?iiﬂclcbm,,———o n=1,2,..).

By Proposition 3.3. the set {4,,4,"; m>n,n =1,2,...} i3 precompact
in EndR~. Consequently, all its elements have the norm bounded in
common, say by a number d. Thus

Mg A7 — A A < My At — T4 AN < g 43" — 1
Consequently, by (4.4),
lim sup [|Am+1A 1A, AN = 0.
N0 MZN
Hence we get the relation
{4.7) Hm sup byyg1n—bpnl = 0.

n—>00 M=2n

Given a number ¢ satisfying the condition 0 < ¢ <1, we can find, by
virtue of (4.5) and (4.6), an index m,, > n such that b,,_, > cand by, ., <c¢
(n=1,2,...). From (4.7) it follows that

(4.8) lim by, =

By Proposition 3.3 the sequence {4, 4.’} is precompact in End EV.
Let B, be its limit point. By the same Proposition we infer that B,<E (u).
Finally, by (4.8), det;B, = ¢ which completes the proof.

LevwmA 4.2. Let u be a full Lévy’s measure and let J be a non-zero idem-
potent from E(u). There exists then a sequence {8,} of operators from E(u)
which converges to J and satisfies the conditions JS, = 8,J = 8§,
(n=1,2,...) and

lim S=0 (n=1,2,..).

Proof. We shall prove the Lemma by induction with respect to
the dimension of the subspace J (RY).

First consider the case dimJ(RY) =1. Let us choose, by virtue

of Lemma 4.1, operations C, from E(yx) for which det;C, :l———1~
. 7
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(n = i, 2, ...). Put §, = JC,J. Since the subspace J(B") is one-dimen-
sional, the operator S, is a multiple of the operator JJ. Moreover, by (4.1),

. 1 1
det;S, =1 - Thus 8, = (1 — T) J. Now it is obvious that the operators

8, fulfil the condltlons of the Liemma.

Suppose now that dimJ(RY) =d>1 and for all prOJector.: K
belonging to E (u) for which K (R¥) is of dimension less than d the Lemma
is true.

First suppose that there exists a non-zero idempotent I in E(u)
different from J and satisfying the condition

(4.9) L=JL=1LJ.

In other words L maps RBY into a proper subspace of J(BY). By (+.9)
the operator J —L is an idempotent. Moreover, by Proposition 1.5,
I— LeE(u). Consequently, by the equation J(I — L) = J — L, the idempo-
tent J — L belongs to E(u). We note that both subspaces L(RY) and
(J —IL)(RY) bave the dimension less than d. Consequently, by the in-
duction assumption we can find two sequences {U,} and {V,} in E{u)
which converge to L and J — L respectively and for every » satisfy the
conditions LU, = U,L = Up, J—L)V, =V, (J—L)= 7V, and HmT%

k—roo
= HmV* = 0. Setting 8, = Up+V,, we infer that the sequence {S,}
k—roc
converges to J. Further, from the equation 8, = LU, L+{I—1L) Vo (I—L)
and Proposition 1.6 we obtain the relation S§,eE(u). Moreover, by (4.9),
JS, = 8,d = §,. Since 8% = Ui+ VE, we finally have the equation
im §% = 0. Thus the sequence {S,} fulfils the conditions of the Lemma.

I-s20

It remains to consider the case when E(u) does not contain non-zero
idempotents I different from J and satisfying (4.9). By Lemma 4.1 we
can find operations D, from E(u) such that

(4.10) 0 < det;D, <1

and

(4.11) lim det, D, =
N—>00

Moreover, by (4.1), we may assume that
(4.12) JD, = D,J = D,,

and, by the compactness of E(u) (see Proposition 1.1) that the sequence
{D,} converges to an operator D in E{x). Obviously,

(4.13) JD =DJ =D
and
(4.14) det;D = 1.
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Put A = D-+I—J. By Proposition 1.6, A <E(u) and, by (4.3) and (4.14)
detd = det;Ddet; ;I =1. Hence and from Proposition 1.4 it follows
that 4 A (u). By Proposition 1.2 A () is a compact group. Consequently,
there exists a sequence r; < 7, << ... of indices such that {4™} converges
to the identity operator I (see [9], p. 109). Since JA™ = D", the sequence
{D"} converges to J. Consequently, we can find a sequence %, < %, < .

of indices such that Dir —J. Setting 8, =D (n-=1,2,...), we get
a sequence from F (u) convergent to J. Moreover, by (4.12), JS = 8,J =8,
and, by (4.10), det;S, < 1. From the compactness of E(u) it follows
that for every n the sequence {Sf} is precompact in E (). Consequently,
the limit points of this sequence form a group (see Numakura Theorem,
[9], p. 109). The unit L of this group is an idempotent belonging to E (u)
and satisfying the equation L = JL = LJ. Taking into account for-
mula (4.2), we infer that det;L = 0. Consequently, L # J. We have
assumed that E(u) does not contain non-zero idempotents different from
J and satisfying (4.9). Thus L = 0 and, consequently, the group of all
limit points of {Sy} is the one-element group {0}. In other words, lim 8% = 0

ko0

for all n and the sequence {8} fulfils the conditions of the Liemma which
completes the proof. :

5. A characterization of full Lévy’s measures. The aim of this
section is a characterization of full Lévy’s measures in terms of operator-
decomposability.

PropostrIoN 5.1. Let p be a full Lévy's measure. Then the set E(u)
contains @ one-parameter semigroup exth (t>0) with the property
llmexth = 0.

Proof. By Propositions 1.5 and 1.6 the identity operator I can
be written in the form I =dJ;+J,+...+J,, where J, are mnon-zero
idempotents from E(u), J,J, = J,J, = 0 for # s and for every s there
is no non-zero idempotent XK in E(u) different from J, and satistying
the eondltlon Kd; = J,K = K. By consecutive application of Proposi-

tion 1.6 we conclude that ZJ A eE(p) whenever 4,, 4,,...,4,<E(u).

By Lemma 4.2 for every 7 (1<r<¢) we can find a sequence {84} of
operators from E(x) satistying the conditions

{5.1) Jrsn,r = Sn,rJr = Sn,r (n=1, 2,0,
(5.2) im§,, = J,
N—>00
and
{8.3) mSE, =0  (n=1,2,..).

Je—so0
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Moreover, by (5.2) and (5.3), we may assume that

(5.4) 0 <det; 8,, <1 (n=1,2,..).
Put
- (8.5) o(n, r) = [—(logdety, 8,,)7"1,

where square brackets denote the integral part. Let W be the set of all
non-negative rational numbers. By the Proposition 1.1, ie. by the com-
pactness of E(u), the sequences {SE{»™1} (weW, r =1,2,...,q) are
precompact in E(u). Passing, if necessary, to subsequences we may assume,
without loss of generality, that all these sequences are convergent. Put

q
lim )il = B,

00 g1

(weW).

Since F’SM"""”] = ,VJ Qe . we infer that B,eE(u) for weW.
r=1 r=1
Moreover, by (3.5),

(5.6) dety, B,, = lim(det,; S, ' =™  (r =1,2,...,9).
A—00

Hence, by (4.3), we get the formula

(5.7 detB, = ™™ (weW).
Consequently, B,cAutR”. Moreover, it is easy to verify the equation
(5.8) Byrw = ByBy (u,we W).

Consequently, the set H = {B,: we W} is a subsemigroup of the group
AutR~. Let us introduce the notation H™' = {B;': we W}. To prove
that the union H U H™! is a group it suffices to prove that for every pair
u, we W B,Bgz' or B,B;" belongs to H. By symmetry we may assume
that w > u. Then, by (5.8), ByBy' = By uBy,By' = By,_,cH. Let S be
the closure of H in AutRY. It is elear that S E(p) and 6 =8 u S~ is
a closed subgroup of the group AutRY. Moreover, by (5.6),

(5.9) dety 4 = det;, 4 = ... =det; 4 (4de8),
and, by (5.7),
{5.10) O<detd <1 (4eS).

Since, by (5.8), B, = I, the set 8§, =S8 n A(g) is non-void. Moreover,
being a closed subsemigroup of the compact group A(u) it is a compact
group (see [9] p. 23). From (5.10) we obtain the equation

(5.11) detd =1 fordeS,.
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The mapping h(4) = logdet 4 is a homomorphism of the topological
group G onto the additive group E. We shall prove that S, is the kernet
of this homomorphism. By (5.11), 8, is contained in the kernel of A. Sup-
pose that A <G and det 4 = 1. Of course, A or A~ belongs to 8. Without
loss of generality we may assume that A <S. Consequently, 4 cE(u) and,
by Proposition 1.4, 4 eA(g) which implies the relation AeSy. Thus §, is
the kernel of . Hence it follows that the factor group G/S, is isomorphic
to R. Since the group G is commutative and compactly generated, we
infer, by Pontrjagin Theorem ([7], p. 187; [15], § 29), that G is isomorphic
to the direct sum of R and S,. Let g: G - B x 8, be such isomorphism.
Since RX S, = g(6) = ¢g(S) U g(S)™" and ¢(8) is a closed semigroup, we
infer that either g(8) = R+x 8, or ¢(8) = R~ x8,, where R+ and R~
denote the right and left half-lines respectively. For ¢>0 we put T,
= g7} (<t, I)) in the first case and T, = ¢g~'({—t, I>) in the remaining one,
where I is the unit of S,. It is clear that T,(t > 0) is a continuous one-
parameter semigroup of operators from 8 satisfying the condition
lim T, = I. By Theorem 8.4.2 in [3] it can be represented in an exponential

10
form T, = exptQ (> 0). Moreover, T,¢S, for ¢> 0. Consequently, by
(5.10) and (5.11), *

(5.12) 0<detT; <1  for t> 0.

Trom the definition of the operators §,,, B, and the semigroup § it
follows that the idempotents J,, Jy, ..., J, commute with the elements
of S. We note that the semigroup T, (¢ > 0) is precompact in E(u). Con-
sequently, to prove the relation lim T, = 0 it suffices to prove that 0

t->c0
is a limit point of this semigroup. It is well-known that the set of limit
points of the semigroup T, (¢>>0) contains an idempotent K (see [9],
p- 109). By (5.12), we have the equation det K = 0. Consequently, by

(5.9) and (4.3),
(5.13)

dety K =0 (r=1,2,...,9).

Since J, commutes with K, the operator J,K is an idempotent in E(u).
Taking into account (4.1) and (5.13), we have the inequality J,K # J,.
On the other hand J,(J.K) = (J,K)J, = J,K, which by the definition
of the idempotents J,,d,,...,J, yields the equation J,H = 0. Thus
K =J,K+J,K+...4+J,K = 0 and, consequently, 0 is a limit point of
the semigroup T;(t > 0). The Proposition is thus proved.

PrOPOSITION 5.2. Suppose that a one-parameter semigroup expi@
(t = 0) fulfils the condition %ml expiQ = 0. Then each expiQ-decomposable

for t= 0 probability measure p is a Lévy’s measure. Moreover, for every
1> 0 u = expiQu=*l;, where 1, is an infinitely divisible measure.

1 ©
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: 1
Proof. Setting B, =exp—@ (n =1,2,...) we have the formula
n
{5.14) p = B.p*pgp,,
where up ¢P(RY). It is easy to verify the relation

(5.15) lim pp, = &
00

Moreover, the operators B, satisfy conditions of the Proposition 1.7.
Thus

(5.16) Aay) =0 for all  yeRY.
Put
. 51
(5.17) An=an=epo-k—_Q (n=1,2,..)
k=1 k=1 .
and
(5.18) =47 m= Aglﬂl?k (£ =2,3,...)

From (5.17) it follows that the set {4, 47" k =1,2,...,n50 =1,2,...}
is precompact in EndRY. Moreover, for every k lm 4,4;" = 0. Con-
A—>00
sequently, by (5.18), {447 pg} (k=1,2,...,7;0 =1,2,...) form
a nniformly infinitesimal triangular array. Consequently, by (5.18) {4}
(k=1,2,...,m5% =1,2,...) are uniformly infinitesimal too.
From (5.14) and (5.18), by virtue of (5.16), we get the formulae

m) = 24Ty,
y) = B, (AT 9) = AIAT) 9 E((AR207Y)
Thus

(k=2,3,...).

A(pn* pa* - * ) () = [ | in(45y) = ie(y)
k=1

and, consequently,

(5.19) Ap(pa*ps®.xpy) = (n=1,2,...).

which shows that u is a Lévy’s measure.
Gr]icven t> 0, we can choose a sequence of integers k, > n such that
n
1
lim — =1{. Then, by (5.17),
[EE ) S B
lim 4, A7 = expi(.

A

Further, by (5.19),
po= A A Ay (¥ fasa® e F )
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The characteristic functions of the measures in question are, according
to (5.16), different from 0 everywhere on RY. Thus the last equation
yields the existence of the limib

Ay = limAkn(/“nﬂ-l*/‘ﬂ—*z* o ’*'ukn:
Nn—>00

>

and the equation yu = expt Qu#d,. Since {4, u} (j =n+1,n+2,..., ky;
n=1,2,...) are uniformly infinitesimal, the limit distribution 72, is
infinitely divisible (see [10], p. 52) which completes the proof.

The class of infinitesimal generators @ which can oceur in Proposi-
tions 5.1 and 5.2 is closed under similarity transformations and is simply
describable through spectral properties. Namely, %im expt@Q = 0 if and

—>00

only if all eigenvalues of @ have negative real part. As a consequence
of Propositions 5.1 and 5.2 we get a characterization of full Lévy’s
measures.

THEOREM B.1. A full probability measure on RY is a Lévy’s measure
if and only if it is expiQ-decomposable for 1> 0 where § is an operator
whose all eigenvalues have megative real part.

‘6. An extreme point method. Our next aimis to give a representation
of the characteristic functions of exp?@-decomposable for ¢ > 0 measures
in R¥. By Proposition 5.2 all such measures are Lévy’s measures and,
consequently, are infinitely divisible. The metliod of proof consists in
finding the extreme points of a certain convex set formed by Khintchine
meagures corresponding to expi@Q-decomposable measures. Once the
extreme points are found one can apply a Theorem by Choquet on rep-
resentation of the points of a compact convex set as barycentres of
the extreme points.

First we introduce some auxiliary spaces. Let ¢ be an operator on
R¥ whose eigenvalues have negative real part. Let 8" be the m-dimen-
sional unit sphere and & the compactified real line: B = B U {— oo} U{oo}.
Put HY = §¥-1x E. Obviously, the space HY is compact.

We define a congruence relation in HY as follows: (z,t) ~ {y, 1)
where #, ye8¥" and t, u<R if and only if there exists a real number
s-such that expsQz =y and u = t-+s. Suppose that (&, t,> ~ Yn, Uy
(n=1,2,...) and the sequences {(w,, >} and {{(¥,, u,y} converge to
{z, ty and {y, u) respectively. Then for some real numbers 8, XD 8, 0%, = Uy
(n=1,2,...). Since all eigenvalues of @ have negative real part, the
last equations and the compactness of §V-1 imply that the sequence
{82} is bounded. If s is its limit point, then expsQx =y and % = t-+s.
Thus {x,?) ~{y,u)y and, consequently, the quotient space HY/~ de-
noted by MY is compact (see [1], p. 97).

icm°®
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The element of MY, ie. the equivalence class containing {x, t>
from HY will be denoted by [z, t]: We define a one-parameter group
T, (seR) of transformations of MY by assuming

Tilw, 8] = [z, 5 +1¢].

Further, for every element [x,%]e MY we put

(6.2) [, 1]] = llexpiQz| ificR, |[z, co]| = 0 and|[zx, —oco] = oco.

Since lim exp#@ = 0 and for every zeR¥\{0} lim|expiQz| = oo,
00 t>—o0

each element 2eRV\{0} can be represented in the form z = expiQw,
where ¢SV and fcR. In general this representation is not unique.
But z = expu@y, where yeSV " and ucR if and only if (z,1) ~ (¥, u>.
Thus the mapping

(6.3) z(expiQx) = [x,1] (2e8¥ Y, 1cR)

is an embedding of RY\{0} into M¥. Obviously,

(6.4) il = =(y)]
and
(6.5) a(expsQy) = T = (y)

for all ¥y<RY\{0} and seR.

We say that a subset B of M” is bounded from below if inf {|a|: a<F}>0.
Let A be a finite Borel measure on M”. For any Borel subset E of MY
bounded from below we put

(6.6) L(B) = [ (1+u™)A(dw),

B
where the integrand is assumed to be 1 if |u| = oo.

Let .# be the set of all finite Borel measures 2 on MY satisfying
the condition

(8.7) - Li(B)—T1,(E) = 0

for all £ > 0 and all Borel subsets E bounded from below. It is clear that
the set . is convex. Let " be the subset of .# consisting of probability
measures. The set ¥ is eonvex and compact.

Suppose that 2 Borel subset F of MY i3 Tiinvariant for all feR
and Ae.#. Then the restriction i|F belongs to .# too because of the
equation

Lip(B)—~ T Lp(E) = L(En F)—T,I,(E n E).
Hence it follows that the extreme points of the set # are measures con-

centrated on orbits of elements of ¥~. In other words, we have the fol-
lowing proposition:
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PrROPOSITION 6.1. The extreme points of A are measures concentrated
on one of the following sets: {[z, —ool}, {[#, o1}, {[z,t]: teR} where
reSVL

We proceed now to the investigation of extreme points of A con-
centrated on the set F, = {[z,t]: teR}. Let 2 be a probability measure
concentrated on F,. Put

(6.8) Jou) = L({[z,t]: t<u}) (ueR).

It is easy to verify that Ae o if and only if the inequality (6.7) holds
for all > 0 and all subsets B of the form {[#, t]: a <t < b}, Where a < b
and a,beR. Taking into account the formulae

Lle, 4]: a<t<b}) = J,(0)
T, ({[z,1]: a<t< b)) = I,({[x,1]: a—s <

—dJ(a), )

t<b—s})

we infer that ie o if and only if for every triplet a, b, te R satisfying the
conditions a < b and > 0 the inequality

(6.9) J5(b) =3 (a) = J(b — 1) +Ja(a—
is fulfilled.

Now we shall give more convenient description in terms of the fune-
tion J; of measures A from 2. Let f be a continuous bounded function
on F,. By (6.6) and (6.8) we have the formula

[reratae = ff([m])
Fy oSS

Substituting b = a--1 into (6.9) we get the inequality
Jaa) < 3T (a—t)+J (a+1))

for all aeR and ¢ > 0. Thus the function J, is convex. Moreover, by (6.8),
it is also monotone non-decreasing with J,(—oco) = 0. Consequently,

>0

[z, w]?

T+ 1t@, e ¥

(6.10)

i

a0 = [

—0a

u)duw  (teR),
where the funetion ¢, is non-negative and monotone non-decreasing.
Of course, we may assume that ¢; is continuous from the left. In this
case the funetion ¢, is uniquely determmed by A. Further, by (6.10),
we have the equation
K z, u]®
| lte, ]l ga(w)du = 1.

T, Wl
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Suppose now that we have a non-negative monotone non-decreasing
function ¢ on R satisfying the condition

[z, u]?

(6.11) J Tt

(u)du = 1.

We define a measure 1 on F, by means of the formula

[, w])®

(6.12)
1+ [z, u]}?

[r@ae = [ 12,1 a(u)du,
Py —00

for any bounded continuoung function f on #,. It is obvious, by (6.11)
that 1 is a probability measure on F,. Moreover, J,(tf) = f g(u)du. Since

¢ is monotone non-decreasing, the function J, fulfils the eondltlon (6.9).
Consequently, A« #". Thus we proved the following proposition.

ProrosITION 6.2. Equation (6.12) defines a one-fto-one correspondence
between all measures A from A concentrated on F, and all non-negative
monotone non-decreasing continuous from the Zeft Sfunctions q on R satisfying
the condition (6.11).

In the sequel we shall use the following Lemma.

LEMMA 6.1. For every acR and zeR” the integral

¢ _llexptQal®
Polo) = | oo
4 1+ lexpiQa]|
8 finite. Moreover, for every ae<R there exist positive constanis b, and b,
such that for oll ze<RY the inequality

bylog(1+ [jz]*) < Pg(#) < bylog (1 + |l#]%)
s true.

Proof. We assumed that all eigenvalues, say a,, a5, ...,a,, of @
have negative real part. Consequently, for 0> b > Rea; and ¢ < Rea;
(j =1,2,...,p) we have the relations

lime YexptQ = 0 = lim e~ %xpigQ.
o0 t—>—c0

Henece we get the inequalities

sup e~ expiQ] = ¢; < co
i=a

and
sup fle”“exptQ| = ¢, < oo
<—a

3 — Studia Mathematica XLIV. 2
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Thus for zeR”Y and >
lexptQall < e, €™ ]
and
el = e exp{—1Q) (expi@n)| < ¢, llexpiQul].

2

Sinee the function 1 _t}_ = is monotone non-decreasing on the right half-line

we have the inequalities

e

ft< Py < [ <20 lal
i 1Tcﬁemuwn~ e

Hence and from the formula for m < 0

2mt2

1
t = ————log(L-s%e®™
f 11 e o 08 (LS

by a simple computation we get the assertion of the Lemma.
As a consequence of the definition (6.2) and Lemma 6.1 we get the
following Corollary: : :

. e, wlp )
COROLLARY. For every a e R and xSV the integral | ————— du 48
very e ¢ g af1+|£w,u1r

Simite.

We define a family my,, (¢<R) of probability measures on F, as
follows. Put
6.13 t 0 Ti<a
(‘ ) ga()"" Oa ift>a,
where

[, u)f
J Tz, ulf

By Corollary to Lemma 6.1, the constant ¢, is finite. It is very easy to
verity that the function g, fulfils the conditions of the Proposition 6.2.
Consequently, it determines, by formula (6.12), the measure m, , belong-
ing to 4 and concentrated on F,.

ProPOSITION 6.3. The set of measures {my, . a<R} is identical with
the set of extreme points of A concentrated on F,.

Proof. First we shall prove that each measure my,, is an extreme
point of #. Suppose that

Mig,ay = Cy oy -+ (1 —6) pa,

icm
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where 0 <c<1 and py, gse . It is clear that both measures u, and
#o are concentrated on the set F,. Let g, and ¢, be the functions cor-
responding, by Propogition 6.2, to u, and u, respectively. Then

Jo = o3 +(1—0c)gs.

Since both functions ¢, and g, are non-negative monotone non-decreasing
and continuous from the left, we infer that the last equation is possible
if they are constant on the half-lines {—oo, a] and (a, o). Furthermore,
by condition (6.11) g; = ¢, = g, which proves that the measures m,,,
are extreme points of 2.

Now we shall prove that each extreme point 4 of X4 concentrated
of F, is one of the measures m, (acR). Let g, be the function cor-
responding to i according to Proposition 6.2. Suppose that there exists
a real number v, such that the function g, is not constant on both half-
lines (—o0, 9,] and (7, c0). Setting

— ¢ Lo w] [
¢ = q;() —[0 1+ i, w]f

we have, by (6.11),

f I—ETE.W w]® g () du

the inequalities 0 < ¢ < 1. Further, the functions

g (t it i<
7n(t)=[c_1q'() SO
equlvy) i 1> v,
and
if t>
hz(t)’—:{ - . Do,
(1= g —glv)) i 1< v,

satisfy the conditions of the Proposition 6.2 and, consequently, determine
the probability measures, say 4, and 4, belonging to & and concentrated
on F,. Since h; # hy and ¢; = ¢k, + (1 —0)hy, we infer that 1, # 4, and
A = eAy+(L—¢) A, which contradicts the agsumption that 1 is an extreme
point. Thus for every real number v the function g, is constant on ab
least one half-line (—oo, %] and (v, o). But, according to (6.11), it is
not constant on the whole line R. Let & be a point of increase of ¢;. Then
the function ¢ is constant on both half-lines (—co, a] and (&, oo). Taking
into account condition (6.11), we infer that ¢, is equal to 0 on the half-line
(—o0, a] and is equal to ¢, on the remaining half-line. Thus ¢, = ¢, and,
consequently, 4 = my,, Which completes the proof.

From the definition (6.13), in view of (6.2) and (6.12), we get the
relation M, = My, i and only if [x, a] = [y, b]. This fact permits
us to introduce the notation

(6.14)

Mppgy = Mz i 287" and aeR.
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By (6.1), (6.12) and (6.13), for any function f continuous on M~ we have
the formula

r |, L@, a]l*
(635) [ 10 (@) = o | JE0, @) T
MmN 0
where
T [, a]i?

o (_lmyell®
{6.16) wa = | T 17,(a, alf
Further, we put
(6.17) Mg = O it either @ = —oo or a= oo.

The mapping z — m, from M" onto the set of extreme points of
A iy one-to-one. From (6.15) and (6.16) it follows that this mapping
is continuous at every point [z, a] with a<R. Further, it is obvious that
Mgy tends to My, Whenever #, >« in 8§¥-1 and either ¢ = —oo
or a = co. Suppose that z, - in 8¥% a,¢R and a, - —oo, ie.
, @,] = [@, —oo]. Then, by (6.1) and (6.2),

limth[mn’ a’n]] =
n—o0

uniformly in ¢ in every finite interval. Hence and from (6.16) it follows
that

(6.18) lim ¢ g = 0.
N0

Given ¢ > 0 and a continuous function f on MY, we can choose a number
1, and an integer n, such that for all ¢ < t, and n > n, the inequality

[ ([ 8 —f ([, —o0])l <&
holds. Consequently,
(6.19) |F(T e[y a,]) —f([@, —o0)[ < &

whenever n > n, and ¢ < |a,|+1,. Since, by (6.1),

; |2 11
(6.20) f = f T o i

lay )+
and |z, = 1, we infer, by virtue of Lemma 6.1, that the integrals (6.20)
are bounded in common. Thus, by (6.18),

T[40, ]
1+ !Tt[mman]lg

1T [,y @117
(6.21) lim oy, f (F(T, L2, oo7)) ﬁmm —0

lapl+gy

nl) —f([2, —
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Further, by (6.19),
it 1T, (2, 11"

Clogagl | (F(Le[@ns an]) —f (@, —oo])) T3 Tz, a1F

o

whenever n.2>n,. The arbitrariness of and (6.21) show that my_ o ;= My, ooy
Thus the mapping z — m, is also continuous at the points z of the form
[z, —oo].

Suppose now that «, +« in 887, b,eR and b, > oo, ie. [4,,b,]
— [#, co]. Then, by (6.1),

lim T [#,, 8,] = [2, o]
00

uniformly in ¢ (¢ > 0) which, by (6.15), implies the relation my | = Myze-
Thus the mapping 2 — m, is continuous at the points 2 of the form [z, oo].
This completes the proof of continuity of the mapping z — m,. Hence,
by well known Theorem (see [4], p.11), we conclude that this mapping
is & homeomorphism between MY and the set of extreme points of ¢
Thus we have the following Proposition:

PROPOSITION 6.4. The set of measures m, (ze M™) defined by formulae
(6.14) and (6.17) coincides with the set of extreme poinis of A". Moreover,
the mapping z — m, is a homeomorphism between M~ and the set of extreme
points of A'.

Once the extreme points of K are found we can apply a Theorem -
by Choquet ([2], see also [11], Chapter 3). Since each element of 4 is
of the form cy, where ¢> 0 and ve 2, we then get the following propo-
sition:

PROPOSITION 6.8. A measure u belongs to M if and only if there exists
a finite Borel measure 2 on M~ such that for each continuous function f on
MY the equation

[ [rwm

N u¥

[ fw)u(d) = (duw) 1(d2)
N

holds.

7. A representation of characteristic fumctions. Suppose that all
eigenvalues of ¢ have negative real part. By Proposition 5.2 each exptQ-
decomposable for £ 0 probability measure g is infinitely divisible.
Consequently, the characteristic funetion # has a Lévy-Khintehine
Tepresentation

(1) Aw) =exp{ i(a, )~ 3(Dy, 9+

_|_ i iy.u) —_1— 2.'(y: u) ) 1"‘"'“”2,},(&“)},
J © (e T+ wlE] i
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where a is a vector from R¥, D is a symmetric non-negative operator
in RV and y is a finite Borel measure on R¥\{0}. The triplet a, D and
¥ is uniquely determined by . The operator D and the measure y will
be called the Lévy-Khintchine operator and measure of u respectively.
In what follows = will denote the embedding of R¥\{0} into MY defined
by the formula (6.3).

ProrositioN 7.1. 4 symmetric mon-negative operator D and a finite
Borel measure y on RVN\{0} are Lévy—Khintchine operator and measure
respectively of an expi@-decomposable for t> 0 probability measure if and
only if the operator QD+ DQ* is non-positive and the induced measure
ay belongs to .

Proof. Put for simplicity of notation T, = expiQ (teR). Suppose
that the characteristic function of a measure x4 is given by (7.1). By Prop-
osition 5.2, u is Ty-decomposable for ¢> 0 if and only if for any ¢ 0
@ = Tyu*pu, where y, is an infinitely divisible measure. This condition

can be formulated in terms of the characteristic functions as follows: -

) P
 is Ty-decomposable for ¢ > 0 if and only if for any ¢>> 0 &/T,x is the
characteristic function of an infinitely divisible measure. From (7 1) by
a simple computation we get the formula

N

w0 Tnty) = exp { (0, 9) 4D, )+

+ f (ei(y,u) 1 iy, w) ) 1+ [lufl®
RN (0} T+Jul?]

yt(du)},

where a,¢RY,

(7.2) D, = DT, DT}
and
(7.3) r(8) = p(B)— [ LELEIT0P) g,

# A+l IT_ o)

Hence if follows that u is T-decomposable for ¢ > 0 if and only if for
any t.> 0 D; is non-negative and y, is a non-negative measure.
y First we shall prove that the operator D, is non-negative for ¢ 0
if and only if the operator QD +DQ* is non-positive. Suppose that D, is
non-negative for all ¢ > 0. By (7.2), we have the expansion in a neighhor-
‘hood of 0 D, = —4QD~+DQ*)+0(t). Hence it follows that QD+ DQ*
is non-positive.

Assume now that QD+ DQ* is non-positive. Given z¢R¥, we put
W, (1) = (D&, 2). By a.simple computation-we get the formula

a
7 = —[(QD+DQ*)T?$, T} )

icm°®
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d
which implies the inequality T w, (1) = 0. Taking into account the initial

condition w,(0) = 0, we get the inequality w,(f) >0 for all ¢> 0 and
all reR™. Thus the operators D, are for #>> 0 non-negative.

Taking into account (6.2), (6.3), (6.4), (6.5) and (7.3) for each Borel
subset E of M~ bounded from below we have the formula

1+ juje

.W__ yildu) = L, (E)—T,1.,(E).

s=1E)
Consequently, y; is non-negative for ¢> 0 if and only if zwye.#. The
Proposition is thus proved.
THEOREM 7.1. Suppose that all eigenvalues of Q have negative real
part. A function ¢ on RY is the characteristic function of an expiQ-decom-
posable for i 0 probability measure if and only if

(1.1 ¢ly) = exx)‘ ila, y)— %Dy, ¥+
\

-

N / ~(6“”’emw$)~_1_q i{yexpiQx) »(dx)

1+ lexp tleF) log (1 + [z®) |’

RN¥N010

where a is a vector from R¥, D is a symmeiric non-negative operator in
RN for which the operator QD - DQ* is non-positive and v is a finile Borel
measure on RYN\{0%. Moreover, the function ¢ determines the triplet a, D
and v uniquely.

Proof. The necessity. Suppose that u is an expi@-decomposable
for ¢ > 0 probability measure. By Proposition 5.2 u is infinitely divisible
and its characteristic function can be written in the form (7.1) with pa-
rameters a, D and y. Moreover, by Proposition 7.1, the operator QD+ DQ*
is non-positive and the induced measure @y on MY belongs to .#. By
Proposition 6.5 there exists a finite Borel measure @ on M” such that
for every continuous function f on M¥ the equation
(7.5)

[ fwyay@) = [ [ fluym,(du)o(de)
N MV N

holds. Here m, (ze MY) denote the extreme points of ¢ defined by the
formulae (6.14) and (6.17). It is clear that the measure mry is coneentrated
on the set Uy = m(BR¥\{0}). Consequently, by (7.5), the measure o is
also concentrated on Uy. Since for ze Uy the measures m, are concen-
trated on Uy (see (6.15)), the formula (7.3) can be rewritten in the form

[fomyan) = [ [fwym.@na(ds),

Uy

(7.6)
U_\v UN
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for any function f confinuous and bounded on Uy. Let us introduce the
notation 1 =z 'w and

W(B) = [o@)log(L+ ol i(dw)
E

where B are Borel subsets of RY\{0} and

ola) = lexp Q|
§ 1+llexpiQa(?

By Lemma 6.1 » is a finite measure on R¥\{0}. By a simple computation,
in view of (6.2), (6.3), (6.4), (6.5) and (7.6), for every continuous and
bounded function g on BV\{0} we get the formula

. B ; lexp#Q)® v (da)
(7.7) g (@) y(de) = expt .
RN\I«,} RN\{O}.,f g(expige) 1+llexpt@a]  log(1+[w|?)
Setting
— | gwa i(y, ) | 14 o)
9@ = (e -1 1+nwn?) o~ ED

int9 the last formula and taking into account (7.1) we get the represen-
tation (7.4). The necessity of the conditions is thus proved.

Th'e sufficiency. Suppose that the function ¢ is given by formula
7 .4)..F1rst we ?mte that ¢ is a limit of products of a Gaussian characteristic
function exp (%(a,y)~{;(1)y,y)) and Poissonian characteristic functions
of the form
iy, b)
1+ fo)*’

?vh.er.e c= 0' aﬁd beRY\{0}. Thus ¢ is the characteristic function of an
infinitely divisible measure, say & (see [10], Theorems 4.1 and 4.10).
For every s> 0 from (7.4) by a simple computation we get the formula

expe (e“””’) —1— )

. —TT
(7-8)  u(y)/expsQu(y) = exp{i(as,y)~%(1)sy, Y+

8
+ f (ei(y, explQe) _q _

Joymwian ), i) )
RpN\{0} 0 !

1+ flexptQuw|? ) log (1 + ||z[}?)

where a,¢RY and D, = D—(exps@)D(expsQ)*. From the assumption
that the operator QD -+ D@Q* is non-positive and from Proposition 7.1 it
folloys that the Gaussian probability measure with the characteristic
function exp(—4(Dy,y)) is expi@-decomposable for t> 0. Hence we

icm°®
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infer that the operator I); is non-negative. Consequently, the function
(7.8) is a limit of products of Gaussian and Poissonian characteristic
functions. Thus (7.8) is the characteristic function of a probability measure,
say As. Obviously, u = exps@Qu=* A, for s >> 0 which shows that the function
¢ is the characteristic function of an expi@-decomposable for { > 0 prob-
ability measure. The sufficiency of the conditions is thus proved.

It remains to prove the uniqueness of the triplet a, D and » in the
representation (7.4). First we note that the formula (7.7) establishes
a one-to-one correspondence between the Lévy—Khintchine measure y and
the measure ». In fact, it is evident that » determines y uniquely. To prove
the converse let us take an arbitrary continuously differentiable function
fin RY with a compact support and vanishing in a neighborhood of the
origin. Then the function

tlm2
plo) = — L2 flexpigo)log 1+ lexp1Qol-y
is continuous and bounded on RY. Setting it into (7.7) we get the formula

| gfa)ytam) = [ fla)v(da)
rV\ {0} BN oy
which shows that y determines » uniquely.

Suppose now that the function ¢ has two representations (7.4) with
the triplets (a;, D;, v;) and (a,, D,, »,) respectively. Then denoting by
y, and y, the measures corresponding in (7.7) to », and v, respectively
we have, by (7.4) and (7.7), the equations

o) = exp{i(al,y)—%_rwly,yw

w1 15, ) )1+na:n= ‘ }
+ [ feeo 1+ i) e

RN}
= exp {i(az, ) — 3Dy, 9)+

1+ o

flecllz

+ yz(dm)}.

i (ei(y,:t)__l__ iy, )
g 1+ el
RV}
Hence, by the uniqueness of the Lévy—Khintchine representation (see
[10] Theorem 4.10), a, = a,, D; = D, and y, = y,. Since the measures
y; and y, determine the measures », and », respectively, we have the
equation », = v, which completes the proof.
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On the Riesz—Fischer theorem for vector-valued functions
by
W. MATUSZEWSXA and W. ORLICZ (Poznai)
Dedicated to Professor A. Zygmund

on the ion. of S0tk iversary
of his scientific research

Abstract. Let ¢: {0, o) - R be a nondecreasing continuous function satisfying
conditions g(u)ju — 0 if u - 0, p(u)/u oo if w —oc, X let denote a Banach space,
Z its dual space. Let, further, X~ denote a vector space consisting of sequences
z~ = {m;}, zieX.

Assuming that ¢ is a convex function on X~ one can define a modular g, (x)

o0
= sup Y'o(]£(2;)|), where supremum is taken over the ball 5, = {£: &)< 1}.
1

Investigated are the properties of the space I*?(X), elements of which are the
sequences z~ ¢ X * such that pg{ir~) < oo for some A > 0. Section 2 of the paper deals
with the spaces of vector functions x(-): {a,b> - X, of finite Riesz g-variation (as
defined in 2.1) and with the spaces V*#(X).

In Section 3 ceriain remarks are made about orthogonal series of the form
() 1@y + To@a + ... wWhere z;¢X, and {g;} is an orthogoenal system in <a,b}.

If #(): <a, by — X is a vector function absolutely continuous in (a, b, then
its Fourier coefficients are represented by @, = | @,(f)dc where the integral in this
formula is a (Dunford) integral <a, b with regp:gg to the vector measure z(:) asso-
eiated with z(-).

Using the spaces I*#(X), T*¥(X), where g(u) = u2, authors obtain the analogue
of Riesz—Fischer Theorem for series of the form ().

1. In this note X always stands for a real Banach space provided
with a norm Ji-{, = for its conjugate space, 5, = {£e5; ||£]| < 1}. H denotes
the class of all zero-one sequences {n;}, # denotes the algebra of subsets
of an interval T = {a, b)> whose elements are finite unions of intervals
{e,dy,a<e<d<b, {d,b), a<<d<band the empty set, & is the o-al-
gebra of Lebesgue measurable subsets of 7 and u is the Lebesgue measure
on &. Measurability of sets and functions are always understood with
respeet: o p. A

z(*), y(-),... or x,¥,... always denote vector-valued functions
from T into X, f(-), ¢(*), ... or f, g, ... real-valued function on 7. A series

o0

Ya; of elements belonging to a Banach space is said to be perfectly con-
L
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