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On convergence of Fourier series of functions
of generalized bounded variation

by

DANIEL WATERMAN (Syracuse, N. Y.)

Abstract. Various classes of functions of generalized bounded variation are
introduced by assuming the finiteness of Y| F (L)l [Ans A 7 o0, {I,} nonoverlapping
intervals. The Fourier series of functions of one class, the functions of harmonic bounded
variation (HBV), converge everywhere and converge uniformly on closed intervals
of continuity. This result is best possible in that each larger class contains a con-
tinuous function whose Fourier series diverges at a point. The functions of ®-bounded
variation with complementary function ¥ satisfying Y'¥(1/n) < oo, a8 considered
by Salem, are contained in HBYV, as are the functions with logarithmically integrable
Banach indicatrix considered by Garsia and Sawyer. However, all these conditions
are contained in the test of Lebesgue. An example of an application to absolute con-
vergence of Fourier series is given.

In this note we introduce various classes of functions of generalized
bounded variation. We show that the Fourier series of functions of one
class, the functions of harmonic bounded wariation, converge everywhere
and converge uniformly on each closed interval of éont-i.uuity. This result
is best possible in the sense that each larger class contains a continuous
function whose Fourier series diverges at a point. The functions of
&-bounded variation in the sense of L. C. Young satisfying the Salem con-
dition, Z¥(1/n) < co, where ¥ is the complementary funection, are included
in this class of functions of harmonic bounded variation, as are the functions
with logarithmically integrable Banach indicatrix considered by Garsia
and Sawyer. We show, however, that all these conditions are contained
in the test of Lebesgue. The notions of generalized bounded variation con-
sidered here have other applications, and an indication of such an ap-
plication to absolute convergence of Fourier series is given.

1. Let us suppose that f is a real function defined on an interval
fa,b]. {I,} will denote a sequence of non-overlapping intervals I,
= [a,,b,] = [a, b] and we write f(I,) = f(b,)—f(a,). We let A denote
a non-decreasing sequence of real numbers 4, > 0 such that 1/, diverges.
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DErFINITION. A funection f is said to be of A-bounded variation. (ABV)
if for every {I,} we have

) < 003

"l:‘ﬂ 8

for A = {n}, i,

[Tl /n < o0,

“Ds

we say that f is of harmonic bounded variation (HBV).

We note that ABV funections share many of the properties of BV
functions as, for example,

1. ABV functions are bounded;

2. The discontinuities of a ABV function are simple and, therefore,
at most denumerable:

3. The Helly selection theorem holds for ABV functions.
It may be shown readily that the following are equivalent:

(i) f is a ABV function;
(ii) There is an M < oo such that for every {I,}, ;w'i FIN A, < M5
(iil) There is an M < oo such that for every finite collection {I,},
n=1,2,...,N, é‘v If( I} [A, < M.
If feABV, we may now define the A-variation,

V(e) = sup{ Y I£(Z,)

1

/Ay + {I,} such that I, = [a,m]},

where @e[a,b]. Clearly V(z) is a non-decreasing function, and we

may show that V is continuous at a point if and only if f is continu-

ous there.
It is easily seen that ABV is a Banach space with the norm

1Al = 1f (@)l +V (0).
Let us now suppose that @ and ¥ are two functions complementary
@
in the sense of W. H. Young, i.e., (2) = [¢

0

strictly increasing, and ¢(0) = 0, and ¥(z) = j ot

(t)dt where ¢ is continuous,
t)ds. A function f on
[a@, b] was said by L. C. Young [8] to be of <D bounded variation if there
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is an M < oo such that, for every partition ¢ =z, < oy < ... < z, =b,

we have
n—-1
2 @(‘f(wi—!—l)
1

The least such M is known as the ®-variation of f.
Salem [7] showed that if a continuous function fis of ®-BV and

%’ ¥(1/n) < oo, then the Fourier series of f converges uniformly. It has

been shown by Baernstein [1] that if Y>'¥P(1/n) = oo, then there is & con-
tinuous @-BV function whose Fourier series diverges at a point, answering
a question raised by Goffman and Waterman [5].

‘We note that the above definition of @-BYV is unnecessarily restrictive.
Suppose we assume merely that & is convex, ®(x) = o(z) as 2 — 0+,
D(x)]z — 00 a8 & — oo, and D{0) = 0. Let

—flag]) < M.

¥(z) = sup{wy—P(y): y > 0}.
Then we have
2y < P(2)+ ¥(y),

which is Young’s inequality.
With & satisfying these requirements, we may now define the $-va-
ration as above. In the following, s function f will be said to be of &-BV
if for some %k > 0, the function kf has finite ®-variation. This class has
been thoroughly studied by Musielak and Orlicz [6].
It is clear that if {I,} is as before and fe®-BV with ¥ satisfying
Salem’s eondition, then for some % > 0, by Young’s inequality,
~ N

kD (L) n < 3 ORI,

1

N S
M+ D P < M+ Y ¥P(in) < oo,
1 1

and so feHBYV.

Another generalization of bounded variation was given by Garsia
and Sawyer [2]. They restricted themselves to continuous funetions with
range [0, 1]. If n(y) is the Banach indicatrix of f, that is, the cardinality
of {z: f(#) =y} if this is finite and oo otherwise, they consider those
functions such that

1
[ logn(y)dy < eo.
0
They showed that these functions too have uniformly convergent Fourier
series.

Goffman [3] considered regulated functions, i.e., functions whose
discontinuities are simple and for which f(z) = [f(w+)+fz—)]. He
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“showed that if we replace the continuous functions by these, the conditions
imposed by Salem, as well as those of Garsia and Sawyer with a suitable
modification of the definition of n(y), then imply everywhere conver-
gence of the Fourier series. The principal tool here was a result of Goffman
. and Waterman [4] on the everywhere convergence of Fourier series of
continuous functions. Using this result, which he observed held for regu-
lated functions as well, he showed that if the Fourier series of a regulated
function diverged at a point, then the function was not of harmonie bound-
ed variation (in our terminology) and showed further that this implied
that the conditions of Salem and of Garsia and Sawyer would not be
satisfied.

‘We have indicated above why HBV includes @-BV with the restriction

g Y(1/n) < co. We turn now to the relation between HBYV and the con-

1
dition of Garsia and Sawyer.
Let f(x) = limsupf(¢) and f(z) = liminff(f). A function is said to

t—x - sz

have an external salius if for some =, f(w)¢[f(®), f(#)]. It is well-known
<

that the set of points at which an arbitrary function has an external
saltus is at most countable. Thus if our only interest was in the conver-
gence properties of Fourier series, there would be no loss in generality
in restricting ourselves to functions with no external saltus. It is easily
seen, in this case, that the property that fe ABV is independent of its values
at points of discontinuity. We note, however, that the demonstration
of the fact that the condition of Garsia and Sawyer implies inclusion in
HBYV does not require the assumption of no external saltus.

We shall use the following result.

Lumwma. Let {H;} be a sequence of u-measurable sets of a measure space
(&, o, u) and let 8, = LimE,; and 8,,n =1,2,3,..., be the set of poinis
belonging to exactly n of the sets B;. If {a;} is @ decreasing sequence of non-
negative real numbers, then

Dlagu(B) < 3wl Znai) + Z”am(sw).

o

COROLLARY. If u(%) < oo, then D, (B[t = oo implies that u(S.) # 0
o 1

or Du(8,)logn = co. ‘
1

Proof. If 4, denotes the characteristic function of H;, we have,

for each weS,,

9

D aig(@) <
1

"‘[\/ls

a;.
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Hence

leam(E,-) = [( > sl au (@)

I(Za’ixi(w)) d;z(m)-(—ja,-y(é’m)

Sp

I

“Ds “Ms

3

#(Sn)(zn’ a’i) +2“¢#(Sw)-

Letting a; = 1/i, we have Y a; ~logn; u(%) < oo implies u(S,) < oo for
0 1 ” n

every n. If ;‘,‘(E,-) i = co and u(8,) = 0, then Y u(8,)(31/i)= oo, from
1 1

which the corollary follows immediately.

Let us now consider a bounded function f on the interval [a, b]. For
each # at which f is discontinuous, we adjoin to the graph of f the smallest
segment containing (x, f(2)), (#, f(x)), and (z, f(#)), and call the resulting
set . It is not difficult to see that # has the following

GENERALIZED DARBOUX PROPERTY. If a <@, <, <b and (w,, y,)
and (%,, y,) are in F, then for each y between y, and y, there is an xe[x,, ;]
such that (v, y)eS.

We may now define a generalized Banach indicatrix n(y) = n:(y)
to be the cardinality of {#: (x, y)e#} if finite and oo otherwise. Let I be
the interval {y: (z, y)ef}. We will say that f satisfies the Garsia-Sawyer
condition if [logn(y)dy < oco.

I

<

If f¢HBV, but is bounded, there iy {I,}, a sequence of non-overlap-
ping in [a, b] such that > [f(I,)|/n = co. Let I, = [a,, b,] and let E, be
1

the interval with endpoints f(a,) and f(b,). If y<8;, then the generalized
Darboux property implies that n(y)> k. Thus

oo [-~] 1
[ tognyay> Y m(s,) logn+ D' —m(8,) = o
I 1 1

since 3 m(B,)/n = oo and m(I) < co.

The corollary above (proved otherwise) is due to Goffman [3], who
used it in & similar manner to show that a bounded regnlated function
satisfying the Garsia—Sawyer condition satisfies the Goffman—Waterman
condition [4] for everywhere convergence of its Fourier series.

A review of the above considerations shows that the following result
may be established.
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TH:EORE’\I 1. (i) If fe®-BV and 3¥(1/4,) < oo, then feABYV.
ii) If the mnge of f is contained in a finite 'mtem)al I and L(z) 4

a fim‘te-valued inecreasing function such that L(n) ~211 M @8 M — oo,
then

fL Ydy < oo

implies that feABYV.

2. In this section we establish our result on the relation be-
tween HBV and the Lebesgue test. We use the conventional notation

h
() = gu(t) = 3{fla+1) +f@—1) —2f (@)}, @ = [ g0 ds.
L]
The Lebesgue test can be stated as follows ([9], vol. I, p. 65):
The Fourier series of f comverges to f(x) at every point @ at which

BH—op(t
o(h), f lp@®)—et+n)

dt -0 as n=m/n-—>0,

O (h)

and the convergence is uwniform over any closed interval of continuity where
the second condition is satisfied uniformly.

‘When we consider the case of convergence at a point of simple discon-
tinuity, it is clear that we must take f(#) = ${f(#+0)+f(x—0)} in the
test and in the definition of g,(?).

Our principal result is the following.

TaeoREM 2. If f is a function of harmonic bounded variation, then
f satisfies the condition of Lebesque at each point and satisfies the second
condition uniformly over amy closed interval of continuity.

Before we pass to the proof of this result, we turn to a simpler ques-
tion, in what sense is this best possible, for which we have the following
answer.

TaEOREM 3. If ABV > HBV properly, then there is a continuous
fe ABV whose Fourier series diverges at a point.

Proof. There ex1s1:s a,"\0 such that Ean/l converges, but Z‘a
Zaﬁ/}. Let f,(z) be deflned in [0, 2x] to be a; for
(26— 2y < {m-§)n <"(’Zﬂ, Dr, ¢=1,... ,n+1 and 0 elsewhere. Then

diverges. Let b,

in ABV, ifull = byyy. I 8, (f) denotes the nth partial sum of the Fourier,

series of a function f at the point 0, then

icm
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2n (k+Drfintd)

ST RIATED M AL L

0 sty :
+1 i—
- 2 @n+1)a O ’("“)S. i
e in
= . Zi—-1)r . . (n+1%)
= (i=2)mind)

n+l n+1

—Zu,/ (2i—1) > —Za,/‘l,

n+1

Thus I8, = —
bn+1 1

an feABYV such that {S,(f

113

D) i > o0 as m — oo, which implies that there is

)} does not converge. Note that the continuous

functions of 4-bounded variation themselves form a Banach space, since
convergence in ABV implies uniform convergence. The functions f, used
above can be modified so as to be continuous withont excessively compli-

cating the argument, thus yielding the desired result.
‘We now return to the previous result.

Proof of theorem 2. We consider first the case of uniform con-
vergence and suppose that f is continuous at each point of [¢, d]. Let

L(n, ) = f leo () — %(t%/m-dt

..%

If we assume that f does not satisfy the second condition of Lebesgue’s
test uniformly on [¢, d], then without loss of generality we may assume
that Oefec, d] and that there exists x40, #n; 7 oo, and a > 0 such that

L(ng, ;) > a for every k.
Now

nin 8

Lin, z) = = Ly(n, z, 0)+Ly(n, &, 6),

and

1
Ly(n, @, 6) < >

%{J (@ 41) —f @+t 7/m)| di

a

+ f \fa—1) —fla—t—m/n)at}

< %H Ftp—F (-4 fm)idh = 068y s —>-c0. -

Hence for a sequence §;, 0 there exists a subsequence #;, with ny, d; 7 oo

such that Lz(nki, Ty, 0;) = 0.
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We suppose that {6;} is fixed and that {m} and {m;} are our original
sequences. Let my = [7 6/m+1]. Then m,‘-rc/nk > Oy, My, 7 00, and

Lo(nyy @y mym[ny) =0 a8 k& — oo.
For k sufficiently large, say k> %, we have

Bafd < Ly(tg, @y mpTe/mp)
mp—1 ’

s ) . 1
= Of g: (Poy (b i) — g [t -+ (L) | e dt

Thus for some 6¢(0, =/n;), We have

my—1
1
3a/4 <——2 (P2 (0-+ /1) — @ (0 -+ (i +1) /)|
=1 .
mp—1

= ;‘ ';.l—l%k(e-l—iﬂ/%k)—%k(e—[-(i—{-l)n/nk)l.

Let A(k) = sup{lf(w—i—h) —f(@)]: gh;gnl,we[c_mk%i, d+mhnl]}.

Cleaxrly 4(k)NO0 as k — oco. Choose k;, > t such that 4(k;) < af8. For
each j = 2,3, ..., choose k; > k;_, such that

meg_y

| (2 %) A(k;) < af8.

i=1

() 20myt) g <ifm_, ()

Foreach j = 1,2,3, ..., there is 6;¢(0, n/nk) such that, if ¢(i, j) denotes
[q:,kj(ﬁ,-—i—iw/nk ~¥u, (0 —!—(z +1) '”/”’“il we have
'mk —~1
3 pli, )i > 3alt.
i=1
From (ii) we have
mkj_l_l

S pli,li<as  forj>1.
=1

Thus
mlcj__l“l .
D ¢G,j)fi>B8a8  for j>1.
mkj'*—l

To ¢(4,]) correspond the intervals
I = [+ 65+ im/my, @+ 64 (i-+1) /]

icm°®
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and
Ly = [y — 0;— (1) /nyy @ — 0;—im g5
we have s

o0, 9) < $(IF(TF H‘ff(Iﬂ)

All the intervals corresponding to (¢, 7), 1< i< my, —1, are con-
tained in an interval of radius (mk +1) 1-c/n,r7 and center ;.. Condition
(i) implies that for each § =2, 3, ..., these intervals overla.p at most
two intervals corresponding to <p(7,, ]—1 1<i< My ,—1. The mono-
tonicity of {z;} and condition (1) imply that these (at most) two intervals
are of the form I; ., I,HJ_1 and also that If,j =2,3,..., over-
laps with none of the Ij;,j' < j.

Let my, = 1. For each N =1,2,..., we have
mg—1 =1
SN+SN—Z Z < (TG |+2 Z > 5 e
J=1 1.—mk 1 =1 t-mk 1 N

As noted above, the intervals I} in the sum 8% are non-overlapping.
If for each j =1, ..., N —1, we eliminate from Sy the at most two terms
containing the intervals overlapping with intervals of the (j--1)-st stage,
we make at most 2( —1) deletions, and the sum after these deletions
will exceed

a
Sy —2N —
N 3

gince A(k;) < a/8. In the above sums denote I} by If and Ij by I; .
I {i,}, n =1, ..., m(N), denotes the indices of the terms remaining in
Sy after the deletions, then the intervals I are non-overlapping. Since
i, = 1, We have

"y )

_2 lfI+l~'~y =1

=1 n= 1

F(I5) > Na,

which implies that one of these sums exceeds Na/2.

This argument is easily modified to include the pointwise case. The
first condition of Lebesgue is immediate for HBV functions. If we assume
that the second condition does not hold at # = 0 and that f(0) =0,
then we proceed as above, setting «, = 0 for all % and

A(k) = sup{|fE)—ft+h): 0 < b < mw/my,
[t,t+h] = [ —my m/nyg, 0) U (0, mym/ng]}.

Condition (i) now implies that the intervals corresponding to ¢(i,j) do
not overlap with any of the intervals corresponding to ¢(s,§') with |
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j <j. I we set If = If and Iy = Iy for my,_, < i< my—1, we have
two sequences of non-overlapping intervals with the property

NI X IR = oo
1 1

3. We now give an indication of other applications of generalized
bounded variation by establishing a result on absolute convergence of
TFourier series which generalizes a theorem of Zygmund ([9], vol. I, p. 241).
‘We note that in the following, ABV may be replaced by a less restrictive
requirement obtained by allowing {I,} in the definition of variation to
be replaced by a partition in the usual sense, numbered in either direction.

Suppose now that f is continuous and of period 2w. As usual, we
seb g, = (a2 b%)F and let w denote the modulus of continuity of f.

If feABV and V denotes its A-variation, then, letting I, = [#-+
+(k—1)=/n, 2+ krx/n], we have

oy o
SR = D) 2l fT 1 (L) e < Voo (V) Aoy,
Thus = !
2Nf f(e+njn)—fla—nn)Pdo < 27V Ay o (x/N)
or
j gisiﬁznn 12N < } Vo (n/N) /N,

Setting N =2,

21’
3 ) a<iVo(n2)27 4.

Figuis S
Thus
2 2" '
D a2t Y A)f <eiVietn2) i,
#=1l 2¥=1lig
and so

Do <27V ) @t (n)2) A,
1

2

* THe convergence of*the seriés on the right is ‘equivalent” fo fhat of

D ot 2n/n)
1

icm
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if the terms of this series are monotone decreasing from some point on.
If feHBV, the convergence of that series is equivalent to that of

Zw'n‘*w*(rr/n).

We have established the following result for continuous functions
of period 2.

TEEOREM 4. If fe ABV, then the Fourier series of f converges absolutely
if YiEnT ot (2x/n) is a convergent monotone series. If f <HBYV, then the
Fourier series of f converges absolutely if Yn~*ot(n/n) converges.
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