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An alternate proof of Pettis’ Theorem. Let J be a minimal
right idealin S. Since each element in J is affine, it follows from Rogen’s
Theorem [7], Theorem 1, and Day’s fixed point theorem [1], Theorem 3,
that K must contain a fixed point o for J.

Remark. If § has finite intersection property for right ideals (which
is the case when S is ecommutative or when § is a group) and equicon-
tinuous, then S has aunique minimal right ideal J. It follows that ¢(J) = J
for all pe 8. Hence in this case, the element we K chosen in the proof
of our main theorem (and that of Pettis) is even a common fixed point
for S, and consequently for § (see [4] and [5]).
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Intertwining operators
by
W. MLAK (Krakéw)

Abstract. This paper deals with operators which intertwine semi-spectral meas-
ures and subnormal operator representations of function algebras. It is shown thar
such operators extend uniquely to those which intertwine dilations of measures or
extensions of representations respectively. The function algebras in question are
approximating in modulus. -The extension mapping preserves several properties of
operators.

The present paper deals with intertwining operators for representa-
tions of function algebras and for semi-spectral measures. We are interested
mostly in subnormal representations and their intertwining operators. The
principal question is when one can extend the intertwining operator so
that the extension intertwines the extensions of representations. That this
is not always possible is shown by an example given in [6]. However,
if the function algebra satisfies a certain approximation property first
defined by Glicksberg in [9], then intertwining operators for subnormal
representations extend to inferwining ones for minimal *-extensions of
representations. But intertwining operators for =-representations are
suitably decomposable. Consequently, we are able to deseribe some analyt-
ical properties of intertwining operators for subnormal representations
at least in separable case.

We use the methods of dilation theory. As to this theory we refer
to [1], [2], [13] and [23]. For references in *-representations of C*-algebras
see [3], for references in function algebras [8].

1. Let Z be a compact Hausdorff space. The uniformly closed sub-
algebra A = 0(Z)is called a function algebra on Z, if 1« A and the functions
in A geparate the points of Z. ||-|| is the sup-norm in C(Z).

Suppose we are given two non-trivial complex Hilbert spaces S8
and 8. The space of all linear bounded operator X: 8" — 8" is denoted
by L(8', 8”). We write L(8') = L(8', 8'). Is, Ig. stand for the identity
operators in §' and 8 respectively.

The algebra homomorphism T: A - L(8) (§ — a complex Hilbert
space) of the function algebra on Z is called a representation of A if:

(1.1) Q) =Ig,

(1.2) IT ()| < llel]  for ueA.
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In what follows we consider merely Borel regular measures on Z.
The space of such measures is identified via Riesz—Kakutani theorem
with the dual of C(Z), with the total variation norm ||p|l. If T: A4 — L(8)
is a representation of the function algebra A on Z, then there is a gystem
{p(f,9): f,9¢ 8} of measures on Z such that

(1.3) (T(wf,g) = [udp(f,9), o DI<IfINgll  for wed; f,ges.

The measures p(f, g) which satisfy (1.3) are called elementary meoasures
of T.

Let T': A L8, T": A—-L(R"') be two representations of the
function algebra 4. We say that the operator XeL(S', 8') is (7', T")-
intortwining i X' (u) = T" (u) X for all ue A. It @' ¢ L(S") and Q' < L(8"),
then XeL (S, 8) is (@, Q" )-intertwining if XQ' = @' X. Thoe ordered
pair (7', T") (@', Q") resp.) is.called disjoint, if the only (2", T"'):inter-
twining (@', @"')-intertwining respectively) operator is the zero operator.

2. Suppose 4 is a function algebra on Z and let ', T be the repre-
sentations of 4 into L(8') and L(8") respectively. Let {G,} be the totality
of all Gleason parts of 4. Then T" and 1" have decompositions

2.1 =T (@), T'=1I;0o(@T)

(see [14] and [20] for definitions and proofs), where T, T/ are repre-
senfations of 4 having &,-continuous elementary measures and T, T)
have completely singular elementary measures. We call for convenience
the Ty, T parts the Gy-continuous ones. Let P"), L) be the orthogonal
projections on representation subspaces of T and 7" respectively. We
will prove that

(2.2) If X is an (T, T")-intertwining operator, then Py XP., = 0 if o + f.

Proof. Let p’, p"’ be elementary measures of 7" and I"' respectively
and let f'e &', f"¢ 8”. Since Py and P!, commute with 7' and T” respec-
tively, we have

(T”('Lb)P;’.X,P;f’,f”) — (Pl;rTl/(u)Xz':);fl’fu)

Denote by p; the Gpart of the measure p” (XTI, ') and by p.
the G -part of p’(f', XP; f"). Xt follows that the measure Py =Py 1% ortho-
gonal to 4. Since a s f, the abstract M. and . Ricsz theorem, yields
(Py XPf',f") = [1dpy =0, q.c.d.

Next we have : .

TrurorEM 2.1. Let (2.1) be the decompositions of T' and T into @,-
continuous parts. Then every (17, T""\-imtertwining operator X 48 uniquely
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represented as X =@X,, where Xze L(Py8', Py8") is an (T,, T")-inter-
twining operator. Bvery operator X of the above form is (T, T")-intertwining.

Proof. The last part of the asserion is trivial. Let be X be (r', 1")-
intertwining. It follows from 2.2 that X = @P)XP, (a = 0 included).
Write X, = P, XP, and regard X as an element of L(P,8,P.8"). That
X, is (T, T,)-inbertwining follows easily.

A theorem similar to Theorem 2.1 can be formulated for Bishop’s
decompositions of 7%, T"" — see [15] for basic properties. Even more,
a general technique may developed to obtain abstract generalizations of
Theorem 2.1 based on an ‘“axiomatie” version of the M. and F. Riesz
theorem — the property (R) of [16] and [22T In what follows we will
present some examples and illustrations related to Theorem 2.1 and
spectral sets. We refer here to [12], [18], [19], [20] and [23] for other
references on spectral sets.

Suppose Z is a compact subset of the complex plane. Let Z be a spec-
tral set for 7" L(8') and T"¢ L(8"). We denote by {@,};n>1, the
sequence of all non-trivial Gleason parts of 4 = R(Z) — the uniform
closure on Z of the algebra of rational functions having poles off Z. 7" and
T" can be written as sums

T =T:)@(@Tn): " =T;>,®(@T;:)7

where T; and T, are normal operators with spectrum carried by 8%, T/,
and T, have @, as spectral sets; the representations of R(@,) generated
by T, and T, (n > 1) have elementary G,-continuous measures. Moreover,
T, and T, have @,-singular spectral measures for all a > 1.

Every (I', T"')-intertwining operator X can be written in the form

. X = @Xn}
n=0

where X, intertwines T, and T,. It follows that (T',T") is a disjoint
pair if and only if (T, T,) is disjoint for all » = 0. Since the unitary
dilation of a completely non-unitary contraction has a Lebesgue spect-

‘rum — [23], Chapter II, Theorem 6.4, we get

CorOLLARY 2.1. If T is a c.n.u. contraction and U a singular unitary
operator, then (T, U) and (U,T) are disjoint.

This is the result of Sz.—Nagy and Foiag — [23], Theorem 2.3, Chap-
ter II, which extended a result of Sarason [21] that if X intertwines the
contractions @' and @'/, then X = pr Y, where Y intertwines the minimal
isometric dilations of Q" and Q' respectively. Moreover, ¥ can be chosen
80 that || X|| = || X]. We need an equivalent formulation:

(*) If U’ and U’ are minimal unitary dilations of Q and Q"' respec-
tively, then every (@', Q" )-intertwining operator X is a projection of an
(U, U")-intertwining operator Y; Y can be chosen so that | X| = || Y.
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Suppose Z is a compact subset of C having a connected comple-
ment. Let T"eL(8), T"<L(8") have Z as a spectral set. Then the
following refinements of decompositions of 7' and T are avaible

— Theorem 4 of [20] (&, (n =1,2,...) stand for components of the
interior of Z):
2.3) ' =10 (@ e, T"=17 &(@m@n),

nzl T

where Tj and T, are normal with spectrum on 0%, @, and @, are cn.u.
contractions and g, H* (D). Both T;, Ty have decompositions

(2.4) T =@T,,0 T, T =al,.el,

where T ., T o are G -parts of the Z-normal part of T‘,, Ty respectively

(@, ranges over the totality of all Gleason parts) and T,,, .’l’0 are normal
operators with ecompletely singular spectral measures carried by 0Z.

Let us fix # > 1 and write ¢, &, @', Q" T' T" in place of ¢, G, efe.
It is shown in [20] that @' and @' can be chosen so that ¢’ = w(T)
Q" = w(T "), where we H*(m); H*(m) is an algebra corresponding to
the representing meagure m for some point of G. There is also a bounded
(in Z) sequence of po]ynommlq {w,} such that w,—w a.ean. Now, if
X 1nte1tW1nes T apnd 1", then Xy (T') = w, (1) X. Jonsequently,
[w,dp’ (f, X*f") fw,,dp” (Xf', "), where p' << m, p" << m. By domi-
nated convergence and arbitrarness of f' and of f' we infer that X intertwines
Q" and Q". By (*) X is a projection of an (U’, U") intertwining operator Y.
It follows that ¥ ig (p(U'), (U")}-intertwining. But ¢(U’) and o(U’") are
minimal normal 8Z-dilations of " and T'' respectively. Since the minimal
dilation of a direct sum equals to a sum of minimal dilations, (2.3) and
(2.4) together with the above proved property prove via Theorem 2.1
the following

COROLLARY 2.2. Lat Z < C be a compact with connected complcmam
Suppose Z is a speclral set for 0Z-pure T, T". Then, every (T', T )~inter-
twining operator X 18 a projection of an opemtm Y which mtewwmm the
minimal normal 0Z-dilations of T' and T"' respectively. The operator ¥ may
be chosen so that |X|| = || X|.

3. The semi-spectral measure is a mapping I': #-> L(8) of the
o-field of subsets of some space Z, such that Pyt o~ (F(0)f, f) is o positive
measure for every fe 8. I is called normalized if 1'(Z) = Iy. The somi-
spectral measure ¥ iy called spectral it F(o;noy) = F(0y) B (0g) for oy, op
« #. We say that the operator X intertwines the s.x.1m. I and B’ if XF' (o)
= F"(0) X for all ¢.

©
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The ordered palr (F', F"y of semi- -spectral measures is called disjoint
it the only (F', I )-mteltmmng operator is zero. (', F"”) is disjoint if
and only if (F", F') is disjoint. We say that 7' and F are mutually sin-
gular it (F'f, ) L(F"f, ") for all £, 1.

The following proposition is a simple extension of Theorem 2.4 of [71.

Prorosrrron 3.1. Let ', F'' be spectral measures. Then (F', F") is
disjoint if and only if F' and F are mutually singular.

‘We next prove propositions related to Lemma 4.1 of [6]. We suppose
that Z iy a compact Hausdorff space. Let T, 7" be two involution pre-
serving — simply *-representations of ¢(Z) into L(8') and (8" )respect-
ively. Let 4 be a function a,lgebra on Z. We denote by T', and T’ the
restrictions to A of 7" and T respectively. Let B and B be regular
spectral measures on the Borel sets of Z corresponding to T and T"
respectively.

ProposrtioN 3.2. Let Xe L(S', 8”'). Then the following conditions are
equivalent:

(a) X is (B, B'")-intertwining.

(b) X ds (T, T")-intertwining.

(¢) X is (T, T7)-intertwining for. every function algebra A on Z.

() X s (T, T'))-intertwining for some funetion algebra A on Z.

Proof. The equivalence of (a) with (b) is obvious. The implications
(b) = (c) = (d) are trivial. Assume (d) holds true. Then XT'(3) = 1" (3) X
for all ve A by Fuglede-Putnam theorem. It follows that X7T'(vu) =
=T"(vu) X for all u,ve A. Now, by Stone-Weierstrass theorem X7’ (2)
= T""(2)X for all ze C(Z) which completes the proof.

ProrosITION 8.3. Let B a C*-algebra and lot T', T" be two *-repre-
sentations of B into L(8') and L(8"') respectively. If XT' (w) =T (u)X
for XeL(8', 8") and all we B, then 8' = (Ker X)* is invariant for T', §"
= R(X) is invariant for T' and the parts of T' and T" in & and 8" respec-
tively are equivalent.

The above proposition extends Lemma 4.1 of [6]. Indeed, by Fuglede—
Putnam theorem, any (7', T")-intertwining operator (T', 7" normal)
intertwines suitable *-representations of C'(SpecT’ USpecT").

4. Let F' be a semi-spectral measure on the o-field # with values
in L(S). This is the dilation theorem of Naimark that:

(*) There exists & space R, an operator V: 8 — R and a normalized
spectral measure H: B — L(R) such that F(o) = V*E(a)V for all o B.
The minimality condition R = \/ B (o) VS determines R, V and B uniquely
wp to unitary isomorphism. %
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The above spectral measure B is called a speciral dilation of F; it
is minimal, if B is minimal. The minimal # is essentially unique and the
expression F = V*EV is called the canonical form of F. If I is normalized,
then V is an isometric embedding of § into B and after identifying Vg
with 8, the adjoint V* will be interpreted as the orthogonal projection
of B onto §.

It ig not difficult to show that:

PRrOPOSITION 4.1. Let F; be o semi-spectral measure on B with values
in (8, (i =1,2) and let By = Vi, V,; (i =1, 2) be the canonical empres-
sion of Fy. Then B, and B, are mutually singular if and only if Ty omd F,
are mutually singular.

The Lemmas below are basic for our purposes. They generalize a result
of Lebow [12] Theorem. on p. 68, and are in fact particular cases of Lemma
1.4.1 of [1]. They are closely related to Theorem 1.3.1 of [1]. We present
the proofs for the sake of clarity.

LemMA 4.1. Let T, T be semi-spectral measures on & with values
in L(8") and LS respectively. Suppose B and B’ are minimal spectral
dilations of T amd I and let F' = V*EV', F' = V'™ B V" be their
camonical expressions. Let R amd R be the corresponding dilation spases.

Suppose we are given an operator X e L(S', 8). Then the following
conditions are equivalent:

(a) There is constant ¢>0 such that (I (0)Xf, Xf) < o*(F'(0)f, f)
for fe8 and oc A.

(b) There is am (B, B'')-intertwining operator ¥ such that YV’ = V"X.

" The operator Y is determined by X satisfying (a) in ¢ unique way and
1Y <ec If 7' and F" are normalized, then Y is simply an emtension of X.
Proof. Suppose (b) holds true. Then

(B (o) Xf, Xf) = (B (o) V" Xf, V' Xf) = (B (o) XV'F, TV'f)
=[E" (o) YV} = | YT (o) VFIF < | XIPE (o) V'F, V')

which proves (a) with ¢ = ||X].
We assume (a). Let o ... 0, be a partition of the measure space and

define Z = %—X. Then by (a)

1> o) V" 24

1” = DB (o)) V"' Zfy|* = D (o) 2y, 2

< D (F@)fis h) = | 3 B o) v

which implies that there is a unique contraction T, such that Z'y 3B’ (o;) V' f;
= Y} B'(0;) V' Zf;. By minimality conditions 7, has a unigue extension
to a contraction TeZL(R', R") such that T8 (o)V' =8'(c)V" % for
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oe%. Hence TV' =V"Z and TE (0)E )V = E'o)E' ()V'Z
= E'"(0)TE (y) V which again by minimality of R’ proves that T is
(¥, B")-intertwining. The operator ¥ = ¢T does the trick. The final part
of assertion follows eagily.

Notice that if X intertwines 7' and F'', then X satisfies (a) with
¢ = ||X|l. Indeed we then have (F''(¢)Xf, Xf) = (X*XF (0)f, f)= 0. It
follows that X*X and F'(¢) commute and consequently

(X*XT(0)f,f) = (X" XF' (o)"f, F' (o)1) < | XIP(F (o), )
We get therefore the following:

CoROLLARY 4.1. If X is (F', F"')-intertwining, then ¥ related to X as
in Lemma 4.1 satisfies || Y|| < | X||. In particular, if both F', F'' are normal-
ized, then ||Y|| = |X]. ‘

Next we have:

CorOLLARY 4.2. If X intertwines F' and P"’ and X is isometric, then ¥
related to X as in Lemma 4.1 is isometric. Consequently, if X is (F', F'"')-
intertwining, then X*'X =TIy if and only if Y*Y = I, provided F'
18 nmormalized.

In what follows we use notation of Lemma 4.1. We will prove the
following :

CoROLLARY 4.3. Let ¥' and F" be arbitrary semi-speciral measures.
Assume that X satisfies (a). Then, if (X) is dense in 8", then the correspond-
ing operator Y has a demse ramge.

Proof. Let geR", g |#(Y). It #(X) =58", then V"#(X) spans
V"'8" and consequently g |V E'(o)V'8" =R’. Hence g =0, ge.d

q.e.d.

COROLLARY 4.4. Let F'y, T be semi-spectral measures amd let X be
a (F', B )-intertwining operator. Let Y be the corresponding (E', B'')-inter-
twining operator. Then Y is strictly invertible if X is strictly invertible. If X is
strictly imvertible, then the corresponding (B, B')-intertwining operator for
X equals YL

Proof. Suppose X is strictly invertible. Then X! intertwines F’"
and F'. Let W be the corresponding (B, E')-intertwining operator for
X~ We have for fe 8 :

WYE (o) V'f = WE' ()Y V'f = WE' () V'Xf
= B (JWV' Xf = B (o) V' X' Xf = B'(0) V'f
and by similar token, for ge 8", YWE"'(¢)V''g = E' () V"'g. By mini-
mality of B and B, WY = Iz, YW = Ip., q.e.d.
COROLLARY 4.5. Let B be the minimal spectral dilation of the semi-

spectral measure F. Denote by Y the operator which commutes with B and
which corresponds to an operator X which commutes with F.The correspond-
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ence X — Y is an involution preserving isometric homomorphism. ,Oon'
sequently:

(a) X =X* if and only if ¥ = Y.

(b) Y is normal iff X is mormal.

() X =0 if and only of ¥ = 0.

If 7' and F" are normalized, then 7' 8" and ,11/;" 8’ are identified wit}}
8 and 8" respectively. In this case V'™ and V are prmeetug&s on §
and 8" in R and R’ respectively. We write P’ = V', P"" = V'™, Using
this notation we have: o

Levma 4.2. Suppose F' and F'' are normalized. -If'X is /(F’l,;: )
intertwining, then its (B, B'")-intertwining (imtm?lsio’n satzs.fu'as YP = P Y:
If X satisfies (a) of Lemma 4.1 and “,8, (j'E‘ , B ).-mtertw'mmg extension Y
satisfies YP' = P" Y, then X is (F', F")-intertwining. o

Proof. Ii XF (o) =F'(0)X, then for fe§ YFP'H(o)f =
P'E (6)Yf =P 'YE (0)f. Sinee K is l;l’liIlllmELl I;”P = Py,
Conversely, if YP' — P ¥, then XF (0)f = YP'F (0)f = P" YE (o)f =
PR (0)Xf = F'" (o) Xf for fe8' which completes the proof.

5. Let Z be a compact Hausdorff space and let A be a function alge-
bra on Z. We say that the representation T: A4 — L(S) is subnormal
if there is a Hilbert space B which contains S as & Hilbert space and an
involution pregerving representation 7: 0(Z)—~ L(R) such that T(u)
T (u) for every ue A. T is called a *-ewtension of T. It ig called manimal,

if R= \/ 7T(w)8. The minimal *-extension is determined uniquely up
e0(Z o .
to equi:fal(ex)lce. Indeed, let Ty, T, be two minimal *-extensions of sub-

normal representation T: A — L(8). We denote by E,, B, the regular
spectral measures of T, and T, respectively. Then for f, ge § and u,ve 4

[wsd(Byf, g) = (T(w)f, T(v)g) = [ubd(Bsf, g)

which by Stone-Weierstrass theorem yields that (B,f, g) = (Hof, g). Since
minimal spaces of 7', and T, respectively are spanned by El(g)ﬂ and
By(0)8, B, and FH, are equivalent. It follows that for.every gtibnormal
T: A — L(8) there is a unique (regular!) normalized semi-gpectral measure
F on #(Z) — the ofield of Borel sets in Z, such that T(u) = J udl

and [T W) fIF = [ luPd(Ff, f) for ued, feH. F iz then called the semi-
z

-spectral measure of T. .
In all what follows all operator measures are Borel regular ones.
The study, of subnormal operators has been initiated by Halmos [10]

and later-developed by Bram [4] and Ito [11] and other authors. From

icm
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our point of view the study of commutative families of operators which
have commutative algebraically coberent sim:

: ) ultaneous normal exten-
sions reduces to the study of suitable subnormal representations. The

‘point is that having in mind the Gelfand-Naimark theorem about abelian

C*-algebras one proves that to every uniformly closed abelian algebra R
with unit I whose elements form a positive definite family there is a unigue
(up to homeomorphism) compact space Z and a unique subnormal Tepre-
sentation (up to equivalence) T of the function algebra A on Z such that
R =T(4), with.Z — spectrum of C*-algebra generated by the minimal
normal extension of R. For details see [11]. Avoiding a rather standard
proofs of the above statements we Dresent a direct proof of a proposition
which is a reformulation of Theorem 2 [11].

PROPOSITION 5.1. Let T be a subnormal representation of the function
algebra A on Z. Then T is equivalent to a subnormal represeniation of A,
where @ — dlosed support of the spectral measure of the minimal *-extension
of T. Moreover, T is isometric that is 1T (W)l = sup Ju] for ue A.

G

Proof. The first part of the assertion follows immediately from the
well-known properties of spectral inbegrals. It is also obvious that N ()|
< sgp luf for e A. Denote o = {z¢ G 1T ()l < [u(2)[} and let fe 8. Then

for p;, = (Bf,f) (B — the spectral measure of the minimal *-extension
of T — the minimal dilation of semi-spectral F' of T)

f %
2 | T(w)
provided T'(u) # 0. . .

It follows that Py(0) = 0. Consequently F(s) = 0. Since ¥ and F
are mutually absolutely continuous, F(s) = 0 which is in contradic-
tion with the definition of @ provided o =£@. I T(u) =0, then
T1ul2d(Bf, f) = 0 for all fe 8. '

It follows that py(y) = 0 for y = {ze 7| [(2)] > 0} for all fe 8 which
by minimality of # completes the proof.

In what follows we deal with operators which intertwine subnormal
representations of some special class of function algebras. This class first
defined by Glicksberg in [9] is the class of algebras approximating in
modulus. S

'We say that the function algebra A on Z is approzimating in modulus,
shortly a.im., if every positive continuous function on Z can be approxi-
mated uniformly on Z by moduli of functions in 4. Every log modular
and consequently every Dirichlet algebra is a.im. This is the result of
Glicksberg [9] that 4 is a.i.m. if the unimodular functions in 4 separate
the points of Z. In particular, every polydisc algebra 4 (D™) — the uniform
closure of analytic polynomials on the #-dimensional torns I™ is a.im.

20

dp;<|IfIF forallm =1,2,...
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The following theorem generalizes a theorem of [17]:

TuEorEM 5.1. Let T, T" be subnormal representations of the function
algebra A on Z. Suppose T, T are minimal *-estensions of T', T'' respec-
tively. If A is approvimating in modulus, then every (r, T”)-Nmtertwimng
operator X estends uniquely to a (T, T")-imtertwining operator X. Moreover,
(X1 = [IX1-

Proof. The proof is almost trivial in view of Lemma 4.1. Indeed, ‘

gince XT'(u) = T"'(w) X, then .
fl“l’d(ﬁ’"xf: Xf) = |T" (w) XfI < lelzflulid(f"fyf):

where F', F'' are semi-spectral measures of T, T" respectively, we 4
and fe 8. Since 4 is a.im. the above inequality proves that

(#" (o) Xf, Xf) < | XIP(F (0)f, f)
for Borel gets o. The minimal spectral dilations of, F* and F"' are spectral

measures of 7' and of T respectively. The assertion follows now from

Lemma 4.1.

A simple application of Theorem 5.1 is now in order. It concerns an
extension of Corollary 5.1 of [6]. For the sake of simplicity we deal with
finite families of operators. As to existence of suitable unitary extension
see [11].

PROPOSITION 5.2. Suppose we are given commuting isometries Vie L(8'),
VieL(8") (b =21,...;m). Then every operator XeL(S',8") such thai
XV, =VyX for k=1,...,n has a unique cxtension which intertwines

the minimal unitary extensions of Vi, ..., Vi and of Vi, ..., V..
Proof. Let A = A(D") and define
T'(w) = Vi, ey Vi, T (u) = Vi, L, Vi

for wu(ey,...,2,) = 2%, ...,20. Both T, T" extend to subnormal repre-
sentations of A. Their minimal *-extensions are generated by minimal
unitary extensions of isometries in question. The assertion follows now
from Theorem 5.1. . C

The mapping X — X established in Theorem 5.1 iy linear and iso-
metrie. It is natural to ask which properties of X are invariant under this
mapping, in analogy of a series of corollaries of section 4. One could try
to apply this corollaries. However, this would lead in somne cases to rather
restricted theorems. The point is that if X intertwines subnormal repre-
sentations, then in general it does not intertwine their semi-spectral meas-
ures. A simple example is at hand, namely the uniteral shift which commutes
with representation of A (D) which it generates, but does not commute
with the semi-spectral measure of this representation.
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However, under the assumptions
preserves quite a lot of properties.

THEOREM 5.2. Suppose X, T', T and X. 7. 7'
Theorem 5.1. Then: Y I, T

(a) X s isometric if amd only if X is isometric,
(b) If X has a dense range, then X has o dense range.
(e) If X is strictly invertible, then X is striotly invertible and X~ — F-1
Proof. The non-trivial part of (a) can b it X s
o L. .
isometrte, Hhen fon P : ) proved as follows: if X ig

IXT" (W = [wpPa@f, ) = 17" () Xf |

= [wra@” xz, x7).
Since 4 is a.i.m. we infer therefore

(Fff) = (X*F" Xf, f)
and consequently F'(¢) = X*F"(4)X for Borel sets o. It follows that

1235 s f = o35
= 2T @)X 8) = | DB o)

for partition oy, ..., 0, and fje 8. B and B ini
on. « . e 8 are as usually the minima]l
sp.ec.trajl .dllatmns of ' and F"'. The required assertion follows from the
minimality of B i.e. that of 7'
The statement (b) follows from Corollary 4.3 and fr
of Theorem 5.1. Y o the proof
The part (c) is simple. Indeed if X intertwines 7" and T, then X!
interwines 7" and 7’. Since X-! ig (B, B')-interwining, X-! — X-1
(see the proof of Corollary 4.4) q.e.d. :
Combining Proposition. 3.3 with (e) of Theorem 5.2 we get
O‘OROLLARY b.1. The minimal *-extensions of similar subnormal repre-
sentations of am a.i.m. algebra are equivalont.

. Theorem 5.2 can be completed in case 7' = T"' i.e. if the things are
going ahout operators commuting with subnormal representation. The
theorem below deals with such operators. It completes also a Theorem
of [17].

‘ THEOREM 5.3. Lot T: A — L(8) be a subnormal representation of an
a.s.m. algebra. If X commutes with T, then:

(a) X = X* 4ff X = X*.
(b) If X 4s normal, then X s normal.
() X=0 iff X>=o0.

of Theorem 5.1, the mapping X -» ¥

and A are such as in
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The proof of the above theorem is based on the following lemmas:

LEvMA B.1. Suppose the assumptions of Theorem 5.3 hold true. If X is
an orthogonal projection so is X. v

Proof. It is obvious by Theorem 5.1 that in our case the mapping

X - X is an algebra homomorphism. y )
Tt follows that if X is a projection so is X. If additionally X = X¥

then (| X]| < 1 and consequently [|)f|| < 1. But a contractive projection is
necessarilly orthogonal g.e.d.
LEvvA 5.2. Suppose X, commute with T, T bemgﬂ subﬂnormal repre-
sentation of an a.i.m. algebra. If X, — X weakly, then X, — X weakly.
Proof. The norms |]X~'n|| are equibounded because |X,[ are. Let B
be the spectral measure of the minimal x-extengion of T, and R the dila-
tion space. We have for fe S, ge B

(X,B(9)], 9) = (B(0)Xuf, §) = (Xaf, PsB(0)g) > (Xf, Ps B (9)g),
= (XB(0)f, 9)-
It follows that _f“h ~Xn weakly for 7 in a dense set of R. Consequently

by boundedness of norms llinu, ;fn—%XN weakly, g.e.d.
Proof of Theorem 5.3. Let G(-) be the spectral measure of X = X
Since X commutes with 7'(w), the values of G(-) commute with T'(u).

Tt follows from Lemmag 5.1, 5.2 that G () is & spectral measure. Hence
Foo L — ~
Y = [ 2d@, is selfadjoint. But the value G (o) of G(-) is an extengion of

G(a). ﬂ follows that ¥ is an extension of X. Since G commutes with the
spectral measure of the minimal *-extension of I, ¥ shares this property.
By the uniqueness of the extension ¥ = X. We just proved that X = X*
implies X = X*. Suppose now that X = X*. If fe 8, then (Xf, f) = (Xf,f)
is real, q.e.d.

Suppose now that X is normal. By Fuglede-Putnam theorewm x*
commutes with 7. Hence Re X and Im X commute with 7. Consequently

—_— P PR —
ReX and Im X are self adjoint and commute. Hence X = ReX 4-ilmX,

f—

and by uniqueness of extension we have that ReX = ReX, ImX = ImX
which completes the proof of (b). .

Assume now that X > 0. Then X is selfadjoint by (a). Since the

measures & and G have equal closed supports X> 0, g.e.d.

6. This section deals with what one can call more or less precisely
the functional models of intertwining operators. Such models are in [23]
for operators which intertwine contractions in separable spaces. In what
follows we restrict ourselves to models of operators intertwining some simple
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supnormal representations of a.i.m. algebras. We notice only that when
using the theorems of Section 4 one can prove for models of operators

inte}'twining sem‘i-s.pectral measures more precise theorems, than those
avaible fqr interwining subnormal representations. We apply usual methods
of reduction theory for which we refer to {31 and [5].

- Let Z be a compact metric Space, and p the positive finite measure

on Z. SBuppose we are given two direct inte,
! 1] grals of measurable fi
H'(z), H" () of separable Hilbert Spaces: rable fields

H = [@H (@i, B = [@H" (2)ap.
Denote by I', T the natural representations of ((Z) i ’

: ; Z) into H ”
respectively i.e. representations defined by () fnto e
(T (w)f) (2) = u(z)f'(2), (T" (W)f") (2) = u(2)f” (2);

e C(Z), f'«e H', f"« H". This is the basic theorem on representations that

every *-}‘epr,t?sgntation‘ of C(Z) is equivalent to a natural one. An operator
Ye L(H', H') intertwines 7' and T if and only if it is decomposable i.e.

Y= [0Y(@)d,
where Y (2) is a measurable operator function such that

(6.1) Sup ess 1X (=) = [¥].

Suppose we are given two separable Hilbert spaces §' and 8. We
define :

(8, p) = [@H ) (2)ap,
where H'(z) = 8, H' () = 8" for all 2; p normalized.

For a function algebra 4 on Z we define H*(8'""), 4, p) as the L2(8'"", p)
closure of the space of functions f')(z) = Yu;(2)f;" (finite sum), where
Use A, (,E,md F¥e 8 (), The natural representation in Z2(8'"", p) restricted to
B*(8'™, 4,p) is a subnormal representation T of A; the minimal

*-extension of T is just equal to the natural representation 7'() in
Lf(‘s ( )y P).

Using all the above notation we have:

THEOREM 6.1. Suppose X is an (T, T"')-intertwining operator. Assume
that the algebra A is approwimating in modulus. Then there ewists a unique
decom?osable operator | ®X(2)dp which is the (T, T' "\-intertwining exien-
ston X of X. The following properties hold true:

(a) X is isometric if and only if X () is isometric a.e.p.

(b) If X is st_wlctly invertible and | X || < &, then X () is strictly invert-
ible a.ep. and [X(2)| <k a.ep. '

(¢) If X is umitary, then X (2) 18 umitary a.e.p.
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Proof. That the extension X is decomposable follows from the
property, that every (I, T'')-intertwining operator is decomposable. The
point (a) follows from Theorem 5.2 (a) and from the well-known prop-
erties of decomposable operators. The property (b) follows easily from
Theorem 5.2 (¢) and from the property that the extension mapping ig
isometric, via (6.1). N

To prove (¢) we agsume that X is unitiary. Then #(X) = H*(8"', A D)
which by Theorem 5.2 (b) proves that X is unitary. Consequently X (z)

is unitary, a.e.p. ) o
The above Theorem is a certain kind generalization of Lemmag

‘3.1, 3.2 Chapter V of [23]. Using Theorem 5.3 one proves easily the follow-
ing:

TrporEM 6.2. Let §' =8, T =T =T, A be as in Theorem 6.1
and let | (—Bf (#)dp be the decomposition of the extension X of X commuting
with T. Then: 3 ‘

(a) X is selfadjoint if and only if X (») is selfadjoint a.e.p.

(b) If X is mormal, then j(z) is normal a.e.p.

(¢) X =0 if and only if X(2)> 0 a.e.p.

Theorem 6.1 and Theorem 6.2 hold true if I* and H* spaces ‘are
replaced by sams

@LZ(S;(”):Z%); @B (8, A, py),

where p, are mutually singular. The involved representations should be
replaced by suitable direet sums of representations.

Conditions (a), (b) and (c) of both Theorems 6.1 and 6.2 hold true
for operators which commute with semi-spectral meagures. The I* space
should be then replaced by a suitable integral in which the involved
representation is interpreted as a natural representation. The decom-
position of the extension of the operator in question is taken with respect
to this direct integral.

Final remarks. Some of the properties discussed in Section b
and Section 6 remain true under more general aggumptions.

Suppose namely:

(a) 4 is adm.

(b) T’ is linear and dilatable, i.e. T”(u) = [udF for some semi-ypec-
tral F.

(e) T" is a subnormal representation of A. i

Then, if XT" (u) = T"' ()X for ue A, then X extends to an operator X
which intertwines the minimal dilation of T’ which corresponds to F and
the minimal #-extension of 7. Notice, that X depends on I'; T may have
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non-equivalent dilations. However, the methods based on Lemma 4.2
apply with suitable changes.

Since the dise algebra when considered as a funection algebra on
the unit cirele is a.i.m., the desired extension X (unique!) exists if X7

=T"X, where T' is a confraction and T" isometric, X intertwines the
minimal unitary dilation of 7" and the minimal unitary extension of 7",
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