M. Klosowska

- [7] A. N. Kolmogorov, La transformation de Laplace dans les espaces linéaires, Compt. Rend. Acad. Sci. Paris 200 (1935), p. 1717.
- [8] P. Lévy, Theorie de l'addition des variables aléatoires, Paris 1937.

208

- [9] K. R. Parthasarathy, Probability measures on metric spaces, New York and London 1967.
- [10] Ю. В. Прохоров, Сходимость случайных процессов и предельные теоремы теории вероятностей и ее применения 1 (1956), pp. 177-238.
- [11] S. R. S. Varadhan, Limit theorems for sums of independent random variables with values in a Hilbert space, Sankhyā, Indian J. Statist. 24 (3) (1962), pp. 213-238.

Received May 20, 1971 (342)

STUDIA MATHEMATICA, T. XLIII. (1972)

On the trace of some operators

ŀ

NIELS JØRGEN NIELSEN (Warszawa)

Abstract. Let X and Y be Banach spaces and $1 . We consider the space <math>\operatorname{TR}_{\mathcal{P}}(Y,X)$ of all bounded linear operators A from Y to X, for which the functional $N \to \operatorname{trace}(AN)$ is continuous for the p-nuclear norm on the space of all finite-dimensional operators from X to Y. Each such A defines in a unique way a cont. linear functional Tr_A on $N_p(X,Y)$ — the space of all p-nuclear operators from X to Y. It is shown, that every p-integral operator (1/p+1/p'=1) from Y to X belongs to $\operatorname{Tr}_p(Y,X)$, and that every element of this space is p'-absolutely summing. This result is used to prove that if n>3 is such that p< p'(n-1) and A_1,A_2,\dots,A_n are p-integral operators on X, then $\operatorname{Tr}_{A_1}(A_2,A_3,\dots,A_n)=\operatorname{Tr}_{A_1}(A_{i_2},\dots,A_{i_n})$ for each cyclic permutation i_1,i_2,\dots,i_n of $1,2,\dots,n$. This trace formula was conjectured by R. Sikorski. It should be mentioned that X is not assumed to have the approximation property.

Introduction and background. Let X be a Banach space. If $N: X \to X$ is a finite dimensional operator, i.e. there are finite sets $\{x_1, x_2, \ldots, x_k\} \subseteq X$, $\{x_1^*, x_2^*, \ldots, x_k^*\} \subseteq X^*$ such that

$$Nx = \sum_{n=1}^{k} x_n^*(x) x_n$$
 for all $x \in X$,

then it is well known that N has a uniquely determined trace $\mathrm{Tr}(N)$, defined by

$$\operatorname{Tr}(N) = \sum_{n=1}^{k} x_n^*(x_n),$$

i.e. $\mathrm{Tr}(N)$ does not depend on the actual finite dimensional representation of N.

If N is a nuclear operator on X with nuclear representation $N=\sum_{n=1}^{\infty}x_n^*\otimes x_n$, we shall say that N has a uniquely determined trace $\mathrm{Tr}(N)$, if the sum $\sum_{n=1}^{\infty}x_n^*(x_n)$ depends only on N and not on the actual representation, and in that case we put

$$\operatorname{Tr}(N) = \sum_{n=1}^{\infty} x_n^*(x_n).$$

211

It is a well-known theorem of Grothendieck [1] that every nuclear operator on X has a uniquely determined trace if and only if X has the approximation property.

If X and Y are Banach spaces and $1 \leqslant p \leqslant \infty$ it is natural to ask

the following question:

Which operators $A: Y \to X$ have the property that for any p-nuclear operator $N: X \to Y$ the sum $\sum_{n=1}^{\infty} x_n^* A x_n$ is convergent and independent of the actual p-nuclear representation $N = \sum_{n=1}^{\infty} x_n^* \otimes x_n$ of N?

For operators $A: Y \to X$ with this property we can then define a trace with respect to A of any p-nuclear operator.

It is easy to see that this question is equivalent to asking for which operators $A: Y \to X$ the linear functional $N \to \operatorname{Tr}(AN)$ on the space of finite dimensional operators is continuous in the p-nuclear norm.

In the present paper we discuss the above question and prove some theorems on operators with the above property; it is for example proved that if 1/p+1/p'=1, then every p'-integral operator from Y to X has the property. Finally this result is used to prove the main theorem of the paper, namely the so-called Sikorski trace formula for p-integral operators, a formula suggested by Sikorski [5].

1. Preliminaries and notation. Throughout this paper let X and Y denote Banach spaces and let us by B(X, Y) denote the space of all bounded linear operators from X to Y. B(X, X) will shortly be denoted by B(X).

If $1\leqslant p\leqslant \infty$ we shall by p' denote the dual number to p, i.e. 1/p+1/p'=1.

In the sequel we shall make use of the following operator ideals for $1 \le p \le \infty$:

 $N_p(X, Y)$ — the space of all *p*-nuclear operators from X to Y with the *p*-nuclear norm v_p .

 $I_p(X, Y)$ — the space of all *p*-integral operators from X to Y with the norm i_p .

 $I_p^Q(X, Y)$ — the space of all absolutely *p*-summing operators from X to Y with the norm i_p^Q .

 $B_0(X, Y)$ — the space of all finite dimensional operators from X to Y.

The reader may find the definitions and basic properties of these ideals in Persson and Pietsch [4]. We just note here that by definition $I^0_\infty(X,Y)=B(X,Y)$ and i^Q_∞ is the operator norm. In the sequel we shall use either of the two notations for B(X,Y) depending on what is the most convenient.

2. The trace of p-nuclear operators with respect to a certain class of operators. If $A \in B(Y, X)$ we shall define the linear functional Tr_{A} on $B_{0}(X, Y)$ by

$$\operatorname{Tr}_{\mathcal{A}}(N) = \operatorname{Tr}(\mathcal{A}N)$$
 for all $N \in B_0(X, Y)$.

We consider for $1 \leqslant p \leqslant \infty$

 $TR_p(Y, X) = \{A \in B(Y, X) | Tr_A \text{ is cont. in the } \nu_p \text{-norm on } B_0(X, Y) \}.$

If $A \in \operatorname{TR}_p(Y, X)$ we can extend Tr_A by continuity to $N_p(X, Y)$; the extended functional we shall still denote by Tr_A .

It is easy to see that the correspondence $A \to \operatorname{tr}_A$ is 1-1 and from the proof of Satz 52 in [4] it follows that if $A \in \operatorname{TR}_p(Y, X)$, then $A \in I^p_{p'}(Y, X)$ and $i^p_{p'}(A) = v^*_p(\operatorname{Tr}_A), v^*_p$ denoting the dual norm of v_p .

The problem if $\operatorname{TR}_p(Y,X) = I_p^Q(Y,X)$ is of course connected with the approximation property, in fact that $\operatorname{TR}_1(X,X) = B(X)$ if and only if X has the approximation property is just the theorem of Grothendieck, quoted in the introduction, and it is easy to see that if $\operatorname{TR}_1(X,X) = B(X)$, then $\operatorname{TR}_p(Y,X) = I_p^Q(Y,X)$ for all Banach spaces Y and

$$\operatorname{Tr}_{\mathcal{A}}(N) = \operatorname{Tr}_{\mathcal{I}}(\mathcal{A}N) = \operatorname{Tr}(\mathcal{A}N) \quad \text{ for all } N \in N_{p}(X, Y)$$

(the composition of a p-nuclear and a p'-absolutely summing operator is 1-nuclear).

The next proposition is an easy consequence of [4], Satz 52:

PROPOSITION 1. If Y has the metric approximation property, then $\mathrm{TR}_p(Y,X)=I_{p'}^Q(Y,X)$ for all $p,\,1\leqslant p\leqslant \infty.$

About the proof of Proposition 1 let us just remark, that the main point in the proof is that when Y has the metric approximation property, then the p-nuclear norm of any operator $N \in B_0(X, Y)$ can be computed only taking finite dimensional representations of N into consideration (Lemma 7 and Lemma 11 in [4]).

We are now able to prove

THEOREM 1. If X and Y are arbitrary Banach spaces, then

$$I_{p'}(Y,X) \subseteq TR_p(Y,X)$$
 for all $p,1 \leq p \leq \infty$.

Proof. Assume first that $1 , let <math>A \in I_{p'}(Y,X)$ and $\varepsilon > 0$. We can then find a compact Hausdorff space K and a positive Radon measure μ on K, so that we have a factorization

$$\begin{array}{ccc} Y & \stackrel{A}{\longrightarrow} & X \\ \downarrow & & \uparrow Q \\ C(K) & \stackrel{L}{\longrightarrow} & L^{p'}(K, \nu) \end{array}$$

of A, where $\|P\| \leqslant 1$, $\|Q\| \leqslant 1$, $\mu(K)^{1/p'} \leqslant i_{p'}(A) + \varepsilon$ and I_{μ} denoting the formal identity map of C(K) into $L^{p'}(K, \mu)$.

If $N \in B(X, Y)$ is a finite dimensional operator, then

$$\operatorname{Tr}_{\mathcal{A}}(N) = \operatorname{Tr}(\mathcal{A}N) = \operatorname{Tr}(QI_{\mu}PN) = \operatorname{Tr}_{QI_{\mu}}(PN).$$

Since C(K) has the metric approximation property and I_{μ} is p'-integral with $i_{p'}(I_{\mu}) = \mu(K)^{1/p'}$ we get from Proposition 1:

$$\begin{split} |\mathrm{Tr}_{\mathcal{A}}(N)| &= |\mathrm{Tr}_{QI_{\mu}}(PN)| \leqslant i_{p'}^Q(QI_{\mu}) \, r_p(PN) \leqslant i_{p'}^Q(I_{\mu}) \, r_p(N) \\ &\leqslant i_{p'}(I_{\mu}) \, r_p(N) \leqslant [i_{p'}(A) + \varepsilon] \, r_p(N) \, . \end{split}$$

Since $\varepsilon > 0$ was arbitrary this gives that $A \in TR_p(Y, X)$.

If p = 1 we proceed as follows:

Let $A \in I_{\infty}(Y, X)$ and let $\varepsilon > 0$ be arbitrary.

We can then find a compact Hausdorff space K and a factorization

of A with $||P|| \le 1$ and $||Q|| \le i_{\infty}(A) + \varepsilon$.

If $N \in B_0(X, Y)$ we get as before using Proposition 1.

$$|\operatorname{Tr}_{\mathcal{A}}(N)| = |\operatorname{Tr}_{\mathcal{Q}}(PN)| \leqslant \|Q\| \|P\| \nu_1(N) \leqslant [i_{\infty}(A) + \varepsilon] \nu_1(N)$$

and hence

$$|\mathrm{Tr}_A(N)| \leqslant i_{\infty}(A) \cdot \nu_1(N)$$
.

COROLLARY 1. If X and Y are Banach spaces, then there is an isometric isomorphism φ of $I_2(Y, X^{**})$ onto $N_2(X, Y)^*$ so that

$$\varphi(A)(N) = \operatorname{Tr}_A(N^{**}) \quad \text{for all } N \in \mathcal{N}_2(X, Y).$$

Proof. Let $A \in I_2(Y, X^{**})$. If $N \in N_2(X, Y)$, then we can consider N^{**} as element of $N_2(X^{**}, Y)$; Theorem 1 together with the fact that $r_2(N^{**}) \leq r_2(N)$ for $N \in N_2(X, Y)$ then gives that the mapping

$$N \to \operatorname{Tr}_{\mathcal{A}}(N^{**}), \qquad N \in \mathcal{N}_2(X, Y)$$

is a continuous linear functional on $N_2(X, Y)$. Let us denote this functional by $\varphi(A)$; clearly $\varphi \colon I_2(Y, X^{**}) \to N_2(X, Y^*)$ is linear and

(1)
$$\nu_2^*(\varphi(A)) \leqslant i_2(A).$$

$$F(x^* \otimes y) = (Ay)(x^*)$$
 for $x^* \in X^*$ and $y \in Y$

and hence

(2)
$$F(N) = \sum_{n=1}^{\infty} (Ay_n) (x_n^*) \quad \text{for all } N \in \mathcal{N}_2(X, Y),$$

where $N = \sum_{n=1}^{\infty} x_n^* \otimes y_n$ is an arbitrary representation for N.

Using now the same argument as Persson and Pietsch [4], Satz 52, we get that $A \in I_2^Q(Y, X^{**}) = I_2(Y, X^{**})$ and that

(3)
$$i_2(A) = i_2^Q(A) \leqslant v_2^*(F)$$
.

(2) now gives that $\varphi(A) = F$ and (1) and (3) gives

$$\nu_2^*(\varphi(A))=i_2(A)$$
.

The following theorem was originally suggested by Sikorski [5] in case p=1 and n=3, and proved by Grothendieck [2]. Here we have generalized it to arbitrary $p\geqslant 1$.

THEOREM 2 (Sikorski's trace formula). Let X be a Banach space, p a real number with $1 \le p < \infty$ and $n \ge 3$ a natural number such that $p \le p'(n-1)$. If $\{A_1, A_2, \ldots, A_n\} \subseteq I_p(X)$, then for any cyclic permutation i_1, i_2, \ldots, i_n of $1, 2, \ldots, n$ we have

$$\operatorname{Tr}_{\mathcal{A}_{i_1}}(A_{i_2},\ldots,A_{i_n}) = \operatorname{Tr}_{\mathcal{A}_1}(A_2,\ldots,A_n).$$

Remark. It follows easily from the final remarks of Persson [3] together with the multiplication theorems of [4] that any composition of n-1 of the operators A_1, A_2, \ldots, A_n is p'-nuclear, and hence in view of Theorem 1 all the traces in Theorem 2 are well defined.

The theorem will be a direct consequence of the following two lemmas.

LEMMA 1. Let X be a Banach space and let B^* denote the unit ball of X^* equipped with the w^* -topology. If p, n and A_1, A_2, \ldots, A_n are as in Theorem 2, then there exist p-integral operators $\hat{A}_1, \hat{A}_2, \ldots, \hat{A}_n$ on $C(B^*)$ such that

$$\operatorname{Tr}_{\hat{A}_{i_1}}(\hat{A}_{i_2}\circ\ldots\circ\hat{A}_{i_n})=\operatorname{Tr}_{A_{i_1}}(A_{i_2}\circ A_{i_3}\circ\ldots\circ A_{i_n})$$

for all permutations $i_1, i_2, ..., i_n$ of 1, 2, ..., n.

Proof. Let $P: X \to C(B^*)$ denote the canonical isometry. For each i, $1 \le i \le n$ there is a Radon measure μ_i on B^* and a bounded linear operator $Q_i: L^p(B^*, \mu_i) \to X$ such that the diagram

$$\begin{array}{ccc} X & \stackrel{A_i}{\longrightarrow} & X \\ \downarrow & & & \uparrow \\ C(B^*) & \stackrel{I_{\mu_i}}{\longrightarrow} & L^p(B^*, \mu_i) \end{array}$$

is commutative, I_{μ_i} denoting the formal identity map of $C(B^*)$ into $L^p(B^*, \mu_i)$.

Let us define

$$\widehat{A}_i = PQ_iI_{\mu_i} \quad \text{ for } 1 \leqslant i \leqslant n.$$

Clearly \hat{A}_i is a *p*-integral operator on $C(B^*)$. Let now i_1, i_2, \ldots, i_n be a permutation of $1, 2, \ldots, n$. The operator $N: C(B^*) \to X$ defined by

$$N=A_{i_2}\hspace{-0.05cm}\circ\ldots\hspace{-0.05cm}\circ\hspace{-0.05cm}A_{i_{n-1}}\hspace{-0.05cm}\circ\hspace{-0.05cm}Q_{i_n}\hspace{-0.05cm}\circ\hspace{-0.05cm}I_{{\mu_{i_n}}}$$

is p'-nuclear, hence it has a p'-nuclear representation

$$N = \sum_{k=1}^{\infty} \nu_k \otimes x_k, \quad \{\nu_k\} \subseteq C(B^*)^*, \quad \{x_k\} \subseteq X.$$

Since

$$NP = A_{i_2} \circ A_{i_3} \circ \dots \circ A_{i_n}$$

and

$$PN = \hat{A}_{i_2} \circ \hat{A}_{i_3} \circ \ldots \circ \hat{A}_{i_n}$$

we get the p'-nuclear representations

$$\hat{A}_{i_2} \circ \ldots \circ \hat{A}_{i_n} = \sum_k \nu_k \otimes Px_k,$$

$$A_{i_2} \circ \ldots \circ A_{i_n} = \sum_k P^* r_k \otimes x_k$$

and hence

$$\begin{aligned} \operatorname{Tr}_{\mathcal{A}_{i_1}}(A_{i_2}\circ\ldots\circ A_{i_n}) &= \sum_k \langle P^*\nu_k \rangle A_{i_1} x_k = \sum_k \nu_k P A_{i_1} x_k \\ &= \sum_k \nu_k \hat{A}_{i_1} P x_k = \operatorname{Tr}_{\hat{\mathcal{A}}_{i_1}}(\hat{A}_{i_2}\circ\ldots\circ \hat{A}_{i_n}). \end{aligned}$$

LEMMA 2. If X is Banach space having the approximation property and $1 \leq p \leq \infty$, $A \in I_p^Q(X)$, $N \in N_{p'}(X)$, then

$$\operatorname{Tr}(AN) = \operatorname{Tr}(NA).$$

Proof. Let $A \in I_p^Q(X)$. Since X has the approximation property both $\operatorname{Tr}(AN)$ and $\operatorname{Tr}(NA)$ are defined for all $N \in N_{p'}(X)$; futhermore the linear functionals $N \to \operatorname{Tr}(AN)$ and $N \to \operatorname{Tr}(NA)$ are continuous on $N_{p'}(X)$, and since they clearly agree on $B_0(X)$ they are equal on the whole of $N_{p'}(X)$. Q.E.D.

Proof of Theorem 2. Let p, n and A_1, A_2, \ldots, A_n be as in Theorem 2, and let $\hat{A}_1, \hat{A}_2, \ldots, \hat{A}_n$ denote the operators from Lemma 2. Since $C(B^*)$ has the approximation property we get from Lemma 3:

$$\begin{split} \operatorname{Tr}_{\mathcal{A}_1}(A_2 \circ \ldots \circ A_n) &= \operatorname{Tr}(\widehat{A}_1 \circ \widehat{A}_2 \circ \ldots \circ \widehat{A}_n) \\ &= \operatorname{Tr}(\widehat{A}_2 \circ \widehat{A}_3 \circ \ldots \circ \widehat{A}_n \circ \widehat{A}_1) = \operatorname{Tr}_{\mathcal{A}_2}(A_3 \circ \ldots \circ \widehat{A}_n \circ \widehat{A}_1) \\ &= \operatorname{Tr}_{\mathcal{A}_2}(A_3 \circ \ldots \circ A_n \circ A_1). \end{split}$$

Continuing now, using Lemma 1 and Lemma 2 in that way, it is clear that we for any cyclic permutation i_1, i_2, \ldots, i_n of $1, 2, \ldots, n$ get that

$$\operatorname{Tr}_{A_{i_1}}(A_{i_2}\circ \ldots \circ A_{i_n}) = \operatorname{Tr}_{A_1}(A_{i_2}\circ \ldots \circ A_{i_n}).$$

This concludes the proof of the theorem.

References

- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [2] The trace of some operators, Studia Math. 20 (1961), pp. 141-143.
- A. Persson, On some properties of p-nuclear and p-integral operators, ibidem 33 (1969), pp. 213-222.
- [4] and A. Pietsch, p-nukleäre und p-integrale Abbildungen in Banachräumen, ibidem 33 (1969), pp. 19-62.
- [5] R. Sikorski, The determinant theory in Banach spaces, Colloq. Math. 8 (1961), pp. 141-198.