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normal for each n) without the decomposition being monotone (cf. Re-
mark 3.2). We also note that if the decomposition for X is monotone,
then the decomposition for A (k"—X,) is also monotonc.
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The domain of attraction of a mormal distribution
in a Hilbert space
by
M. KLOSOWSKA (£6d7)

Abstracl.; Let H be a separable real Hilbert space. Denote by II"® the domain
of attraction of normal non-degenerate probability distributions in H. If peIrind),
then

Hfuxnﬁ’p(dx) < 4o for << 2.

Assign to a distribution p in H the family of S-operators S defined by the bilinear
form .

(Sxg,h) = f (=, 9) (@, W)p*—p(ds) for every g,heH.
Jlell<X

In terms of operators Sx we give necessary and sufficient conditions in order that
pelIlnd),

Introduction. The paper is an attempt to extent the known results
of A. J. Khinchin and P. Lévy concerning the domain of attraction of
2 normal distribution on a straight line to Hilbert spaces (see [6] and [8]).

Section 1 of the paper contains the basic definitions and theorems
of the theory of probability distributions in a Hilbert space.

Section 2 includes the them;cems concerning the shift-convergence of

a sequence of distributions u, = [] 4, , with iy, uniformly asymptotically
k=1

negligible to a normal distribution. These theorems follow from the re-
sults formulated in the papers by Varadhan [11] and Jajte [3]. In Section 3
we give theorems which are the basic aim of the paper, viz. we formulate
some properties of distributions bélonging to the domain of attraction
of a normal distribution in a Hilbert space and also the necessary and
sufficient conditions in order that & distribution belong to the domain
of attraction of a normal distribution in a Hilber space.

1. Let H be a separable real Hilbert space with the inner product
(y *) and the norm (|-||. Let M denote the set of all probability distribu-
tions in H, i.e. the set of normed regular measures defined in a o-field &
of Borelian subsets of H. 9t is a complete space with the Lévy—Prochorov
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metric (see [10], p. 188). Convergence in this metric space is equivalent
to the weak convergence of distributions (*)-
The convolution p*g (2) is a continuous operation in M. The con-

P
volution of # distributions P, ...; P will be denoted by []* py while

k=1
the convolution of n identical distributions will be denoted by p™.
Let pe M and fe H. By 7’ we denote the distribution on a straight

line induced by the element f, i.e.
@ 2'(B) =p{ueH: (2,f)e B}
for every B Borelian set on a strfhmigh‘n line.
The characteristic functional p (f) of the distribution pe M is defined
by the formula
(2) p(f) = [®Np(dw) (see [T]).
o

"This functional determines the distribution uniquely.

A linear operator in H is called an S-operator if it is non-negative,
self-adjoint and has a finite trace (see [10], p. 198).

A distribution we Miis called normal it

3) i(f) = expli(wo, f)—$(8F, )
where @,¢ H and § iy an S-operator.

Denote by 6, a degenerate distribution concentrated at & point xe H,
ie 8,(A) =1 if me A and 4 (4) =0 if w¢ A for Ae#. A sequence of

distributions p, is called shift-compact (shift-comvergent) in M if there
exists a {w,) of elements of H such that the sequence of distributions
Pu* g, 18 compact (convergent).

A distribution z is called infinitely divisible if for every natural
number # there exists a distribution u, such that

nk
B= fhy -
The distributions p,, (b=1,2,...,k,) are uniformly asymplotically
negligible it
(4) lim inf  pa(U) =1,

ner00  Lellesily,

where U is an arbitrary neighbourhood of zero in I,

(1) A sequence of distributions pne M is called wealkly convergant to the distri-

bution p it for every bounded and continuous funetion defined in H we have
im [ f@)pn(de) = [ Fle)p ().
n-»00 H H

@) prq(d) = [ p(A—)g(de) for every de .
" H
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Let pe M, define the distribution e(p) by Athe formula
o~
(B) ) (f) = exp [ [oN—
lef [€ 1]p(dw)} for every fe H (3).

The distribution e(p) is infinitely divigi
the tollowing aomn? y leiSIbIQ (see [9], p. 79). We introduce
T,p(A) =p{weH: ave A}

for every Ae #, where o is an arbitrary real number.

p=T.p, °p=p*Tp.
In the paper we make use of the following theorems:

1.1. If the sequence of distributions i
e DPn = Qp*1y, 18 cOM 3
the sequences of distributions q, and 7, ;re sh,;ft—gompaot I:‘Mtigtﬂ o
Theorem 2.2). " (ree 193,
1.2. If the sequence of distributions Pn s compact in M and lim P ()
= g(f) for every fe H, then the se e
] quence p,, converges weakly to the distributi
» and p(f) = g(f) (see [10], Lemma 1n.6). Y ¢ distribution

1.3. The set of distributions b ;
, . Dy teT is compact in M if and only 4
for every e >‘0 there exists a compact set Z, = H such that f{w e Wty ;’f
p(H —2Z,) <'¢ (see [10], Theorem 1.12). i

2. Let p,; (B = ni :
Write ot ( 1,2,..., k,) be uniformly asymptotically negligible.

kﬂ
1) tn = [T ttne;
k=1
(2) @ f) = [ (@) pine(dw)  for every feH
llell<1 ’
Ky, :
(3) Mn Z;(”n,k* 5—zn,k)1
=1
(4) (Thg, h) = ” “f (%, 9) (@, h) M, (ds) with an arbitrary positive e.
x[|s<e

. It follows from the . infinite divisibility of the distribution
#* -

]]l e(fn*0_s,,) and from Theorem 5.10 in [11] that [ ||}, (dz)

== m

< -+80, and hence it follows that the operator 7° defi ved ili

form (4) is an S-operator. b § e by biinear

00 %
3 o - < P
(®) Then e(p) = ¢! 12%) T where p* = g.
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COROLLARY 2.1. The sequence of distributions (1) is shift-convergent to
a normal distribution if and only if
1. lim [ M,(d#) =0,
N0 |]acﬂ>e
2. lim sup Z’ (T%6;, €) = 0, {¢;} is a basis in H,
N—oo n i=N
)y = (Bf, f) for every feH,

3. Um (T,f,f)
N> i

for an arbitrary s> 0 (see Theorem 6.3 in [9)).

Then the sequence (1) is shift-convergent to the normal distribution deter-
mined by the S-operator B.

Proof. To prove this it suffices to employ the corollary in [3] and
Theorem 6.4 in [11] and also the fact that if condition 1 is satisfied, then
lim (T5f, f) and lim (T5f,f) do not depend on e. It follows from condi-

>0 Ne->00

tions 2 and 3 that B is an S-operator and hence that the assumption of
compactness of the operators T), is reduced to condition. 2.
Define now by bilinear forms the S-operators:

() (Big®) :
=3 [ (@ 9) @ Wumplde) =] [ (@ unsld®) [ (@, 1) pmdal]},
k=1 Jai<e llof<e e
ky,
‘(6) ng3h’) f(m”‘wn,mg) (w’—mn,k:h’)ﬂn,k(dm)’
k=1]jz]<e

where & is an arbitmry positive number and define the meagure
kﬂ«

M’:L = 2 /‘n,k‘ .
k=1

THEOREM 2.1. The sequence of distributions (1) is shifi-convergent to
a normal distribution in H if ond only if

(7

1. 11m f M, (dw) =0,
* Jajz=e
2'. lim sup Z (Be;, 6;) = 0, {e;} is a basis in H,
Novoo (=N
3. lm (BLf,f) = (Bf,f) for every feH,
N—+00

with an arbitrary ¢ > 0.

Proof. Writel, = sup

1<kl

Iy, ¢ll. By Lemma 7.1 in [11]

limé, = 0.

00

(8)
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Simultaneously
kfl
(9) Mdo) =3 [ palde) < f i, (dw)
zll=e+1,, k=1fz—zy pli=e+ly, N
.
< Hnpldz) = [ M,(dm).
k=1 {z—z, pl>e—1, lel=>s—1,

From (8) and (9) we find that conditions 1 and 1’ are equivalent.
From (8) it also follows that condition

(10) lim sup Z(B‘ €y 6;) = 0

for every £ >0
N->oo n =N

is equivalent to condition 2 and that condition
(11) lim (B.f, f) = (Bf,f)

is equivalent to condition 3 (see Corollary 2.1).
Let 0 < e< 1. Find

i,
(Baf, 1) = (Bof s ) = D) (Ghser )
k=1

for every fe H and ¢> 0

2( wir IV [ thn(d),

k=1 | mli=s

where (g5, f) = [ (®, fpnr(dw) for every feH. Introduce the

notation e<fial<t
Ky, ko

(12) (@9, %) = D (Ghier 9) @has W+ Y @nr ) @uir B) [ praalde).
k=1 k=1 lizl==

Bilinear form (12) defines the S-operator Q.
Suppose condition 1’ is satisfied. It follows from (8), (12) and from
the fact that u,; are uniformly asymptotically negligible that s

(13) li 1 Z(Qne“ &) =0,
n—o0 177
(14) Lm (@1, ) for every fe H,

(13) means that (10) is equivalent to condition 2‘, (14) means that (11)
is equivalent to condition 3’. The assumption 0 < & < 1 is not essential.

Remark. Making use of a corollary in [3] one may prove in the
same way as above a more general theorem which asserts in terms of
the measure M, and operators B the necessary and sufficient conditions
for sequence (1) to be shift-convergent.

Lemma 2.1. If the distribution p*~p is normal in H, then the distri-
bution p is normal in H. .
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Proof. By assumption we have |p(f)]* = ¢ ®/), where § iy an

S-operator.

Let fe H. Consider the distribution (p*— p) =p"+p’ on a straight
line; the characteristic function of this distribution is [P ()2 = e=t*6HD,

By Cramer’s theorem (see [1])

(15) D(tf) = exp[—3(8f, f)-+itm(f)]

Since m(f, +f,) may be interpreted as the expected value of the random
variable (f,+f,, &), where £ is a random variable with the values from H
and with the distribution p, the functional m(f) is additive.

Let ||f,)] — 0 as n— oo then by Theorem 1.10 in [107 the sequence
' converges weakly to 2’ The distributions p’» are normal on a straight
line and thus m(f,) —~ 0 as n-> co. Thus the functional m(f) is linear,
i.e. there exists an x,¢ H such that m j) (@q, f). Putting in (15)
t =1, we obtain the assertion.

LEMMA 2.2. If the sequemce g,*q, converges weakly 0 a normal
distribution im H, then the sequence ¢, 1is shift-convergent to a mnormal
distribution in H.

Proof. Let a sequence of distributions °q, converge weakly to the
distribution ¢ and let § (f) = ¢~®), where § is an S-operator.

By Theorem 1.1 the sequence g, is shift-compact. Thus there exists
a sequence x,e¢ H such that each subsequence of the sequence g,*d,,
includes a subsequence converging o some distribution. By Lemma 2.1
the limit distributions are normal, have the same dispersion operator S
and differ in the factor 8,. Thus the sequence s, may be so modified that
every subsequence of the sequence Qn* 6y mcludes a subsequence converg-
ing to the same normal distribution, e g. to the distribution with the
characterigtic functional ¢~*¥", and thus the sequence g, is shift-con-
vergent to a mnorral distribution in H.

Introduce the notation oy

Mn = Zol"n,m

Joma 3
(Bag, h) = [ (@, g) (@, W), (dw).
[lzli=<e
COROLLARY 2.2. The sequence (1) is shift-convergent to a mormal
distribution if and only if |
1° lim M, (dz) =0,

A-+00 ][m];s

2° lim sup 2 (Bie;, ) = 0,

N0 n f= N
3° hm(Bf Y = (Bf,f)

(16)

)

for every feH -
for awbztmry e>0.
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Proof. By Lem_ma. 2.2 one may consider the weak convergence of

the sequence °u, [] ®thn,z- It follows from Corollary 2.1 that the condi-

tions 1°, 2°, 3° are eqmvalent to the shift-convergence of the sequence
of distributions °u, to a normal distribution in H. The distributions Ot
are symmetrised, and from Theorems 4.4 and 4.5 in [9] we easily obtain
the weak convergence of the sequence °u,.

3. The set of distributions pe 9t for which there exists a sequence
of positive numbers {a,} such that the sequence of distributions T, ™
is shift-convergent to a distribution ge ¢ is called the domain of atiraction
of the set of distributions %.

Denote by

II(B) — the domain of attraction of normal distribution determined
by S-operator B;

e . the domain of attraction of normal, non-degenerate distri-
butions in H, i.e. (8f,f) = 0;

II®) — the domain of attraction of normal distributions in H and
regular, i.e. (8f,f) >0 for f #0;

I _ the domain of attraction of the family of one-dimensional
normal non-degenerate distributions; '

o9 7®) _ the normal domain of attraction, ie. a
where ¢ > 0. )

COROLLARY 3.1. A distribution p belongs to II(B) if and only if there
exists a sequence of positive numbers {a,} such that the sequence of disiri-
butions T np"* converges weakly to the normal distribution determined by
the S-operator B.

Levwma 3.1. If the distribution p belongs to IT with a sequence {a,},
then
1) lim a, =0,

N—>-00

= o/l/;,

lim =1 (see Lemma 2 in [4]).
nsoo lpyy

(2)

Prooif. By assumption the sequence Tanp"* is shift-convergent to
the non-degenerate normal distribution ‘q. It is easy to find that there
exists an element fe H such that the distribution ¢’ is non-degenerate
on a straight line. Thﬁs the sequence of non-degenerate one-dimensional
distributions T, (p y** is shift-convergent to a non-degenerate distribution
¢. Bya lemma from § 29 and Theorem 4 from § 14 of [2] we have the
assertion.

COROLLARY 3.2. The distribution p belongs to II(B) if and only ’Lf there
exists o sequence of positive numbers {a;} such that
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1° limn [ T,°%(dz) =0,

N0 [,r”):
2° lim sup Z’ n [ (x0T, p(dm) =0,
Nooo n =N "Z‘H\E
where {e,}"is a basis in H.
3° lim n [ (a,f)7T,°p(dz) = (Bf,[) for every fe H,

noo  l<e

for an arbitrary ¢ > 0.

To prove this it suffices to make use of Corollary 2.2 and the fact
that the distributions T, p are uniformly agymptotically negligible.

TuEoREM 3.1, 4 non—degmemw distribution p belongs to ™ if and
only if
(3) [ llzlfop (do) < +oo.

H

Suppose that 1°, 2°, 3° hold with a, = 1/Vn and (Bf,f) 0. Then
for am arbitrary >0

(4) lm n [ ep(ds) =0,
RS P
(8) im [ el op(da) = D (Bei, ) = a* >0.
M0l eV n i=1

Let °¢ be a random variable in H with the digtribution °p.. From (4)
and (B) it follows that the distribution of random variable ||°Z|| belongs
to #{"® (Theorem 2, § 26 in [2]), and by Theorcm 6, § 34 in [2], we have (3).

Suppose now that (3) holds. Condition 1° for a, =1/ Vn is obtained
from the inequality:
o<én [ op@a)< [ olf op(da).
llzl=eVn . lef=a/n

Condition 2° follows from the inequality

[ (@, e ) < [ (a,6)*°p (do),

o scev/n u
while condition 3° results f1om the monotonity and boundedness of the
sequence [ (x,f)°p(dw) and fronmi conditions 1° and 2°.
[l <sev/n

CoroLLARY 3.3. A mon-degenerate distribution p belongs to a®d gif
and only if

©® f el p (d) < + oo
o

Proof. Condition (6) is equivalent to condition (3) (see the proof
of Theorem 2.6. (vi) in [5]).
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CoROLLARY 3.4. If pelI™ and [|ja|’p(dw) = + oo, then
-1
f(m,f)zp(dw) = +oo  for every feH and f 5 6.
H

Proof. Suppose there exist an fe H and an f # 0 such that
0< f(f, @)*°p (do) < + oo;

then p’e z{"® (see Theorem 6, § 34 in [2]). From the assumption, p’e 7"
with some sequence {a,}. By Theorem 2, § 10 in [2] we have

lim
Vn

Thus the sequences of distributions Tanp"* and T,,;p"™ are shift-con-
vergent to the same normal distribution (Theorem 1.10 in [10]), and by
Corollary 3.3 we have (6), which contradicts the assumption.

Let pe M, define the distribution p, on a straight line by the formula
(M P1(B) = p{we H: |ju]|« B}

for every Borelian set B on a straight line.

TeroREM 3.2. Let p belong to II™; then p, belongs to II{.

Proof. If condition (6) is satlsfled we have pye 1™ (Theorem 6,
§ 34 in [2]). The opposite case remains to be considered.

By assumption and by Theorem 2.1 there exists a sequence of posi-
tive numbers {a,} such that

1. lima [ p(ds)=0,

=¢>0.

lzl>¢/a,,
2. i ’ 3» y 6:)2p (dx) — 16 7} =
T SEP,Z’"- a {“zugf% (z, €)*p (dw) [nzu<{1a,,(w &)p (d)[} = 0,
8. ’lim " a"{lzu / (ﬂﬂ,f)2:!)(da?)—[|I usf/ (@, f)p (@)} = (Bf,f)

for an arbitrary e > 0.
From conditions 2° and 3’ we obtain

(8)
lim 'n,a,i{ f |§wnzp(dm)—2w[ f (2, 6 p(dm]} jBe,,e ) =a*>0.
=00 lzl<slay, i=1[zl<e/a, i=1
Write (g5, f) = " f/ (2, f) p(dw); thus we find
z|<e/ay,
©) D [ @ap@f=lgn<] [ islp@)]

=1 " [z|<e/ay, zl<s/ay,
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Since [||*p(dw) = 4 oo, we have
7

L Jelp @l

10) ligp lH=sden . =

(20) A T e (dw)
llzll<slay,

(see the proof of Theorem 1, § 34
in [2]).

‘Making use of (10), we get the equi?alence of the following condi-
tions:

(1) mnad{ [ [elp@e)—] [ lelp@)f} = >0,

o0 [EE lzll=sla,
(12) lm na [ [wiPp(da) = e >0.
e ol elay,

From (9) it follows simultaneously that (12) is equivalent to (8); thus
we have proved that condition (11) is satisfied. By theorem 2, § 26 in [2]
and by conditions 1’ and (11) we get the assertion.

COROLLARY 3.5. If a distribution p belongs to IT®D, then

[lel’p(da) < +o0  for 0< 8 <2,
H

This corollary follows from Theorem 3.2 and from Theorem 5, § 34
in [2].

Let {¢;} be a basis in H.

THEOREM 3.3. A distribution p belongs to IT™ if and only if

(a) the distribution p% belongs to IIMD for every i =1,2, ... with
a umiversal sequence of positive numbers {a,} (independent of i) and
3‘ o2 < -+ oo, where o} are the variances of corresponding Vimit distributions.
. (b) The sequence of distributions T, P™ is shift-compact.
, Proof. The necéssity.of these conditions is obvious.

To prove the sufficience we prove the weak convergence of the se-
quence T,,nop”* 5 by (b) it suffices to prove the convergence of the sequence

P N Bl f

of characteristic functionals T, °p™ (f) to the functional ¢, where B
is S-operator.

Define the S-operator B as follows:
(13) (Bg, b) = >'(g, &) (b, &) o}

1=
By assumption
(14) lm [P (a1 6)™ = e~ ¥ for every ¢ and for i =1,2,...
1~00

_Let &, stand for a random variable with the values in H and with

the distribution p, = T%Op"*. Let f be an arbitrary element of H,

icm

Domain of atiraction 205

fi =(f, &) and let N be an arbitrary natural number. Consider a sequence
of random vectors in RY :

Xy = [(&n; fr61) 5 (Ens Fal) s ooy (&ns T 1

Let 5 be a random variable in H with the normal distribution determiﬁed
by the S-operator B. Consider the random vector in RY

X = [(7, f161); (1, fa6), ooy (15 Fvew)]-
The characteristic function of the random vector X, is

N

(15) Fultas -y t) = Ba Dt-f;0)

=1

and the characteristic function of the random variable X is
N
(16) Vit oy ) =exp| —} Y #:;(Bs;, 6)].
F=1

The sequence of distributions of random vectors X, is compact, by (14)
the boundary distributions of the sequence of vectors X, converge weakly
to the corresponding boundary distributions of the random vector X.
From (16) it follows that the distribution of the vector X is uniquely
determined by its boundary distributions. Thus every weakly convergent
subsequence of the sequence of distributions of the vectors X, converges
to the distribution of the vector X. Thus we have '

(17) Hm g, (b .oy 8y) = p(tyy -nny ty)
and hence
.2 N N
(18) ~ lim p.(fy) = exp[—}(Bfx,fx)l, Where fy = ;.
=1
Simultaneously we have
(19) ;rim Pulfw) = Dulf)-

Employing Theorem 1.3 and the fact that the sequence of distribu-
tions p, is compact, one may easily show that the convergence in (19)
is uniform and thus

lim 2, (f) = ¢ ¥)  for every fe H.

Assign to a distribution pe M the family of S-operators Sy defined
by the bilinear form

(20) (8x9,1) = | (@,9) (@, 1)°p(da).
Jelx


GUEST


206 M. Klosowska

THEOREM 3.4, A non-degenerale distribution p belongs to II®® if and
only if there exists an element ¢ < H satisfying the conditions

X* [ °p(dw)
lim =X =0
@ o B
. o (Sxei) &) B L
(b) lim sup XU L =0, where {¢} i8 d basis in H,
Now X A (8x9"5 97) v

(8xf, f)
~xh D p
lim (Df, f)

Proof. Sufficiency. If condition (6) is satisfied, then p € II™), Thus
let [|@|fp(de) = + co. Define the sequence X
b4

0n(8) = int{X: m [ °p(dw) < 3}.
fel=x
For every 6>90, lim C,(8) = -+ oo because Hfﬂwl\zp(dw) = o0,
N—>00 i

(0) for every feH.

Making use of (a) in an analogous way to that followed in the proof of
Theorem 1, § 34 in [2], we find

Jim —:l—~ (@, g*)? °p(dw) = 400 for every d >0;

oo U3 (0)

ll=l<0n(®)

thus there exigts a sequence 6,0 as n—> co such that

ey lm [ (@) = e, where O} = 0,(0,)

N—00 -
lell<0y,
and
(22) lim » f °p (dw) = 0.
R
Define the sequenceé
(23) d=[ [ @@
l=fl=<Cy,
From (21), (22) and (23) we obtain
(24) lim = °p(dw) = 0 for an arbitrary & >0.
0 al=elay,

For an arbitrary fe H, an arbitrary s >0 and sufficiently large n we
have
nak [ (a,f)°p(d)

el <e/ay,
=nay [ (2f)pdo)+n-a; (@, ) °p (dw).
G <lel<elay,
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By assumption (¢) and (23) we find
(28) [ (@,f7°p(de) = (DFf,f)

lel<ela,

lim 7n-a?
N~>00

for every fe H and arbitrary >0,
(26) (Dg*, ¢ =1.
It follows from assumption (b) that

© nea, [ (@,6)°p(dw)

n
lim su Izh<elon = f i .
e np‘ nas | (@9 °p (@) 0 or arbitrary & >0
=N Tzl <s/an

Hence and from (25) and (26) we get

(27 lim sup ) n-al (2,6;)* °p (dw) = 0
Nooo m z‘gf; nxﬂi/an ’

for arbitrary > 0.

Basing on Corollary 3.2 and also on (24), (25), (26), (27), we find that
pelltd,

Assume now that there exists a sequence of positive numbers {a,}
such that conditions (24), (25), (27) are satisfied and the S-operator D
is such that (Dg*, ¢*) # 0 for some g*¢ H (the limit distribution is non-
degenerate). We do not reduce the generality of our argument if we
assume that (26) holds. It follows from (1) that for X sufficiently large
there exists such an » that

1

1
— < X< .
Oy,

Fyi1

Employing (2) and the above argument, we can easily find that
conditions (24), (25), (26), (27) imply conditions (a), (b), (¢) of the theorem
for an element g*e H.
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Ou the trace of some operators
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Abstract. Let ¥ and ¥ be Banach spaces and 1< p < . We consider the
space TR, (Y, X) of all bounded linear operators 4 from ¥ to X, for which the func-
tional N — trace(4XN) is continuous for the p-nuclear norm on the space of all finite-
dimensional operators from X to ¥. Each sueh A defines in a unique way a cont.
linear functional Try on Np(X, ¥) — the space of all p-nuclear operators from X
to Y. It is shown, that every p’-integral operator (1/p + 1/p’ = 1) from ¥ to X belongs
to Trp(Y, X), and that every element of this space is p’-absolutely summing. This
result is used to prove that if n > 3 is such that p < p’(n—1) and 4,, 4,, ..., 4, are
p-integral operators on X, then Try (dy, 4g, ..o 4n) = TrAiI(A,;z, -wey Ay ) for each
cyclic permutation 4y, s, ..., % of 1, 2, ...,n. This trace formula was conjectured by
R. Sikorski. It should be mentioned that X is not assumed to have the approximation
property.

Introduction and background. Let X be a Banach space. If N: X - X

v is a finite dimensional operator, i.e. there are finite sets {;, #,, ..., 13} = X,
{#, @), ..., %4}  X* such that

k
Nz =Zw:(w)wn for all xe X,
n=1

then it is well known that N has a unignely determined trace Tr(N),
defined by

k
Tr(N) = D' (@,),
n=1 -
ie. Tr(¥) does not depend on the actual finite dimensional represen-
tation of N.
If ¥ is a nuclear operator on X with nuclear representation N =

=) % ®,, we shall say that N has a uniquely determined trace Tr(N),
n=1 0
if the sum Y a(x,) depends only on N and not on the actual representa-
n=1
tion, and in that case we put
Tr(N) = > o ().

= . n=1
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