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Some metric and topological properties of certain linear spaces
of measurable functions

by
STEVENS HECKSCHER* (Cambridge, England and Swarthmore, Penn.)

Abstract. Locally convex spaces of measurable functions, which are projective
limits of the normed function spaces of Zaanen and Luxemburg, are studied from the
topological point of view. Some duality results are obtained, in which topologies
of uniform convergence on families of solid sets of functions are important. In the
case in which such spaces are metrizable, a completeness condition can be: given,
and it is then often possible to represent the metric dual explicitly as a funetion
space. :

1. Introduction. Tt is the purpose of this note to communicate some
results concerning topological vector spaces whose elements are measur-
able functions. These results are in part an extension of some older work
of Dieudonné [1], and are related to the papers of Welland [6], [7].
‘We make use also of the recent work of Luxemburg and Zaanen on
normed Kéthe spaces [4].

The function spaces which we consider are all projective limits, by
linear mappings of a very natural type, of a family of normed Kéthe
spaces (which need not be complete).

The term “locally convex space” will be used to mean “locally con-
vex topological vector space”. An “absolutely convex” set in a vector
space will be a set which is both convex and balanced, and a “neighborhood”
in a topological vector space will always be, unless stated otherwise,
a neighborhood of the origin. @ will stand for the scalar field which wa
now assume to be held fixed; & may be either the real or the complex
number system. We assume from now on that 4 18 a non-trivial, non- .
negative, countably additive, (totally) o ~ finite measure on the non-
void set X; we assume that the Carathéodory extension procedure has
been applied to u, so that ux cannot be further extended by this proce-

* This research was carried out in part while the author held a U. 8. National
Science Foundation Science Faculty Fellowship at Cambridge University, 1966-1967.
Part of this research was supported by funds from grants to Swarthmore College
by the IBM Corporation and by the Alfred P. Sloan Foundation.
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dure. “Measurable” will always mean u-measurable; “a.e.” will always
mean u-almost everywhere. Let A be the family of measurable subsets
of X. M will stand for the set of all measurable functions on X of the
form f = a-bi where o and b take their values in the extended real
number system (and b = 0 if @ is the real field); see the remarks concern-
ing such functions in [4], Note L. M™ is the set of all (a.e.) non-negative
elements of M. Without further comment, we will identify elements
of M which are a.e. equal, as is usual in the theory of Kothe function
spaces. If f, geM and have real (possibly infinite) values, f < g will mean
fl#) < g(@) ae. f =0 means f(w) =0 a.e. If ¥ = X then gy is the char-
acteristic function of ¥, and [du means Yf du. Without further mention,

whenever a vector space B oceurs whose elements are members of I,
we will assume that the algebraic operations of & are the usual oneg of
pointwise addition and multiplication by a scalar. A subset K of M will
be called solid if [fi| < |ful, foeK implies fieK. Note that K ig solid if
and only if (1) 0 <u<veK implies uekK, and (2) feK if and only if
IfleK.

2. Saturation and spaces in duality. Let ¥ be a solid vector space

over @ of elements of M ; agsume that for all feH, [f(z)] < o« a.e. We uge '

the Kothe notation E* to denote the set of all gelM such that [jfgdu
exists for all fell. We will extend slightly the mnotion of saturation
([4], Note IV) to obtain a simple condition that # and B* be a pair of
vector spaces in duality under the bilinear form. [fodu.

LmvmA 1. Suppose @ = I'c A where I' has the following prop-
erties: .

(1) If Ael then u(A) > 0 and every subset of A with positive measure
belongs to I

" (2) I' is closed under the taking of countable wnions.

Then there ewists o mawimal element X, of I'; that is, no subset of
X—X, belongs to I The set X, is u-uniquely determined; thdt is, if
X, eI and X —X., has mo subsets belonging to I', then X, u-almost
equals X . :

The proof of this lemma, which makes use of the o¢-finiteness of g,
is omitted since it follows that of [4], Note IV, Theorem 8.3 (i).

We extend the terminology of [4], Note IV, with

DEFINITION 1. Any set 4 with positive measure such that cvery
JeB vanishes a.e. on 4 will be called H-purdy infinite. It there are no
E-purely infinite sets then B will be called saturated.

CoroLLARY, If B s not saturated, then thers exists a mawimal B-purdly
infinite set X3 i.e., X — X, does not have any B-purely infinite subsets.
X, is u-uniquely determined.
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It is no loss of generality, therefore, to assume that ¥ is saturated,
for we can always consider the set X —X,, in place of X (since every
‘f<E has the property that f = Fux- x.,)- Throughout most of the remainder
of this note we will be dealing with saturated spaces.

LemMA 2. If B is saturated then every element of E* is finite a.e.

Proof. If geB* and |g(2)] = oo on A where u(4) > 0, then every
fe¥ vanishes a.e. on A. For if this is not so for some fel, let f(z) #0
on 4, < A with u(4,) > 0. Then [ |fgldy = oo and hence Jifgldu = oo,

A

whieh contradicts the fact that DgeE". Therefore F is not saburated,
contradiction.

CorOLLARY. If B 45 saturated then E* is a solid vector space over .

Proof. Since the elements of B* are (a.e.) finite, B is closed under
the algebraic operations. The rest is obvious.

Suppose {X,} is an increasing sequence of measurable subsets of X
whose union is X. Following [4], we will call a measurable set 4 bounded
relative to {X,} if 4 = X, for some %, and a function feM locally summ-
able relative to {X,} if [ |f]du < oo for-all =.

X,

Leyya 3. If B s sZturated, then there is a sequence X, < X, < ...
of finitely measurable subsets of X such that X = UZX,, and for every A
bounded with respect to {X,}, we have y,<E.

Froof. Since u is o-finite choose a sequence {¥,} such that Y. tX
and u(Y¥,) < co. Let IT be the collection of measurable sets B such that
xzpeE. If now, A has positive measure and is bounded with respect to
{¥,}, then since 4 cannot be H-purely infinite we can find some feE
such that f(z) #0 on A,< A, u(4,) > 0. We may shrink A, a bit if
necessary 8o a8 to have [f(z)] > 6> 0 (6 constant) on all of 4,. Then
04y < |fl B s0 %aycE and Agell; what we have shown is that 4 has
@ subset of positive measure belonging to I7. By [4], Note IV, Lemma 8.6,
we can find a sequence {X,} with the required property.

CoROLLA®Y. If H is saturated, then for every geE™ with g # 0, there
s some feB with [fgdu #0. _

Proof. If 4 is the set on which g(x) % 0 then 0 < u(AnX, )< oo
for some m. But AnX,,is bounded with respect to {X,}so0 g 4nx,,<F. Bince
9%4~x, 7 0 there is some measurable B = X such that ) J! 9Xunx,, 0 # 0.

Leb f = yp.snx,; then feB and [fydu # 0.

TomoREM 1. Suppose B is saturated. If every feH is locally summable
relative to some fived sequence, then (B, B*) 4s a dual system under the
bilinear form < f,g> = [fgdu.

Proof. Suppose 0 5= feH. Let A be the get of all x for which f(@) £ 0;
then p(4)>0; there is an X,, belonging to the given sequence {X,},
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guch that u(4NX,)> 0. Since every element of B is summable over X,,,

we have yx eB*. Since fy,.x, 7 0 there iy some measurable set B
M

such that
ffXBnAndeM = Bff%xxnxmd/’ #0.

Bub E* is solid, 0 § = gpnsnx,, B ; Wwe have shown that < frg> #0.
The rest follows from the preceding corollary.

3. Solid topologies. We continue our study of 131}@ gpace B of Seetion 2;
throughout this section we will assume that B is szntu.m'ted, and that
there is a fixed sequence {¥,} relative to which every feB is locally sum-
mable. Hence (H, EX) is a dual pair under the bilinear f01jm <fi9>
of Section 2. We are going to intreduce a class of topologies on E of
uniform convergence on families of solid subsets of . Terminologér
will always be referred to the dual pair (F, B*); for examplxe, weak”
will pertain to one of the weak topologies o(H, B*) or o(H ,E), a?ld
a barrel will always be a barrel in one (and hence all) of the topologies

ual pair, unless otherwise specified.
. ﬂis;@ime Ii)shad; &% i3 2 non-empty set of weakly bounded, solid sub-
sets of B* having the following well-known properties:

(BL) If AX esr®, B* co/™ then there exists 0% e&7™ such that 4*UB*
c 0%,

(B2) & is closed under multiplication by a scalar.

(B3) U A* spans H*.

AXeggX

For each 4™ ea/™, let
Pax(f) = sup Kfy |, feH.
gedX

Then the set {p,x: A*es*} of seminorms determines the .topology
on F of s*-convergence, i.e., of uniform convergence on the sets of «/*.
DerINITION 1. Any topology of «/*-convergence, where &% is ag
above, will be called a solid topology.
Thus, a solid topology is merely a topology on I of &*-convergence
in the usual sense, where the sets belonging to «7* are solid subsets of I,
and the underlying duality is that of B, B* determined by {f, ¢> = [fodu.
LeMmA 1. (A) Suppose  is the solid topology of &£ -convergence.
(1) Given A*ex™, we have

Pax(f) = Slll‘.:(ﬂfg[du, feB.

(2) If A* er™, the seminorm Dax is solid; that is, if fi,f. are mea-
surable functions such that | f;| < |fal, fac B, thenfre B and p_ix (fi) < pax(f2)-
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(8) The polars A*" in B of the sets A* et form a nesghborhood base
(at 0) for ¢ consisting of absolutely convez solid sets.

(B) If A is a solid subset of B (or E*) then its polar in B* (or E) is
solid.

Proof. (A) (1) All we have to show is that
sup [ |fgldp < px(f)-
gedX

Given ged™, set g, = |g|/sgnf, where we define sgnf = 1 wherever
Ifl =0 or co. Since 4* is solid, we have g;e4*, and |[fa1du| = [|fgdu;
thus [1fgldu < pax (f).

(2) follows from (1).

(3) All we have to prove is that each 4*° is solid; the rest is well-
known. Assume |f;| < |fu| and freAX?. Then fiel since F is solid; by
(2) and the fact that f,e4*° we have Pax(f1) < pax(fo) <1, which says
that f,ed*°.

(B) is now obvious.

Our aim at present is to obtain several characterizations of a solid
topology. We will use freely the terminology and results of Luxemburg
and Zaanen in [4], especially Note I. We will deal with 2 family of function
seminorms g,. See [4], Note I, Definition 3.1 and the following results,
which we will assume known. If f is a measurable function and 2.(f) < oo,
we will denote by [f], that element (equivalence class) of the normed
linear space L,, which contains the funection f.

Leyua 2. Suppose B under the topology £ is Hausdorff locally con-
vew space with a neighborhood base {8,: ael} at 0 consisting of convem,
solid sets. Then there emists a family {o,: ael'} of function semimorms swuch
that (1) if f < B then g,(f) < oo for all ael’; (2) if we define the linear mapping
v, of B into Lo, by v,(f) = [fl., then B under & is the projective limit by
the mappings v, of the normed Sfunction spaces Lo,.

Proof. For each ael, §,, being solid, is balanced; being a neigh-
borhood, it absorbs every element of . Let p, be the gauge or Minkowski
functional in & of the set §,, and define 0a(f) = () i feB, 0,(f) = oo
otherwise. Then g, is a function seminorm, and {f: e.{f <1} 8,
< {f: 0.(f)<1}. We have now proven assertion (1). Next,

' ﬂp 2;1(0) = {0}.

For, if feRH, f + 0, then f¢8, for some q, since & is a Hausdortt topology;
therefore g,(f)> 1 and so v,(f) = [f]. is not the zero element of Lg,.
Thus we may define £, to be the projective limit topology on F of the

normed spaces L, by the linear mappings »,. We now have to show
that & = &..
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First, every v, is é-continuous. For, suppose the net {y —fin B
relative to & Given s> 0, choose v, such that if » > », then e ™ (f, —f) ¢8§,.
Hence, for » =,

0alv(f) — 0a(f)) = eulfy —f) < &3

thus v,(f,) - ve(f), and v, is &-continuous. Since &, is the weakest topol-
ogy OIuL F under which every v, is continuous it follows ﬂ.l&t &, < &
We will prove the converse by showing that every 8, is a &;-neighborhood.
The sets

V, = {{fleL,, 0.{f) < e}, &>0,

form. a base of (absolutely convex) neighborhoods in Lg_u, and v;l(Vm),
< 8,. Therefore v;(V,,) is a &, meighborhood and S0 is S,-

The normed spaces L, of Lemma 2 are not necesr.sarlly Bun‘a.da spaces,
but it may be of interest to note that we can obtain a condition, using
known properties of normed function spaces L,, that I under the topol-
ogy & be the projective limit of Banach function spaces I/%a, so that each
function seminorm A, has the Riesz—Fisher property ([4], Note I, Dei-
inition 4.8). We will use the notation |S,| for {|f|: feS8,}. Suppose ea.ch
IS, has the property that, whenever {u,} is a sequence of non-negative
measurable functions such that u, (@)}« (@) a.e. a8 n — oo, and eu,e|S|
for every scalar ¢ >0 and every m, then sue|S,| for every smlar.e > 0.
(This property was called “null-monotone elosure” in [2], Section .3.)
Suppose, moreover, that for all ael’, the gauge p, of §, has the following
property: If {u,} is a sequence such that 0 < u,<H for all n, and u, (%)} 0
8.6, a3 n > 00, and Po(Uy,—uy) =0 a8 m, n > oo, then p,(u,) 0 as
n — co. Then there exists a family {A,: ael'} of function seminorms
such that each L, is a Banach function space and F is the projeetiwfe
limit by linear maf)pings w, of the spaces L, . Indeed, L; is the metric
space completion of L, . To prove this, we note that every o, has the
Fatou null property ([4], Note II, Definition 5.1 and Section 4 below)
by what we are agsuming about |8,], and every g, has the properbynof The-
orem 6.8 (iii) of [4], Note III. From this it follows that there ox.m;,'s, for
each ael’, a function seminorm 2, < g, such that I, is the metrm‘ﬂpac)e
completion of I, . The reader is referred to [4], Note ILI, Section (T’
for a full discussion of this matter. If g, (f) < oo then 4,(f) < oo, 8o leti 4,
be the natural imbedding of L, in L, given by [4], Note III, f[‘hgorem
6.8; 4, is an isometry and an algebraic isomorphism. Let w, = 1,00,.
Then, again,

N w*(0) = {0}.

ael’

‘We may thus write down &, for the projective limit topology on F of the

spaces L, by the mappings w,. Since every w, is £-continuous, we have
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& < £. On the other haud, suppose the net f, —f in F relative to &
then w,(f,) > w,(f) for all a, and hence since each %, 18 bicontinuous,
we have v,(f,) - v,(f). Thus every v, is &.-continuous and therefore
§ = & < &. Hence I under the given topology £ is the projective limit
of the Banach function spaces L;, by the linear mappings w,.

The next lemma is the converse to Lemma 2. ‘

Lemwa 3. Suppose that {p,: ael'} is any collection of fumction semi-
norms (with domain M), and {v,: ael'} is a collection of linear mappings
v,: B — L, such that each v, has the property thut if 8 is a solid subset
of L,, then v;'(8) is a solid subset of E. Suppose moreover, that

N v:1(0) = {0}.

ael’
If & is the projective limit topology on E of the spaces L,, by the mappings
Vo, then E under & has a neighborhood base at 0 consisting of solid
conver sets.

Proof. For all ael’, let ¥, be the collection of all subsets of L,

of the form {[f1,: 0,(f)< e}, e> 0. The collection of all sets of the
form

V =N V), VieV oy {oa; - e} s T
is a neighborhood base at 0 for the topology &, consisting of convex sets.

Since every V, is a solid subset of Lgui it follows by hypothesis that the
set V, above, is also solid.

Levwva 4. If B under the topology & is a Hausdorff locally conves
space and there is a neighborhood base al the origin for & consisting of solid
convex sets, then there is a neighborhood base af the origin for & consisting
of solid &-barrels. '

Proof. Any solid, convex set is absolutely convex, 50 let ¥ be a
neighborhood base at 0 for £ consisting of absolutely convex, solid sets;
for each Ve let p, be the gauge or Minkowski functional of V. The
family of all sets of the form {feB: p,(f) < &} where Ve¥", &> 0, is
then the required neighborhood base.

We are now ready for the main theorem of this section. Recall that
we are assuming that ¥ is saturated and that there is a fixed sequence
relative to which every function in B is locally summable, and that in
consequence, B and F* are in duality under the bilinear form (f, /)3
= [fydu.

TarorEM 1. Let & be a locally conzev topology on B which is stronger

than the weak topology o(EB, E*). Then the following conditions are equiv-
alent:
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(ST 1) & s o solid topology.

(ST 2) & has a neighborhood base at O consisting of solid o(E, B*)-
barrels.

If & has one and hence voth of these properties, then & has the following:

(ST 3) £ has a neighborhood base at 0 consisting of solid sels.

(ST 4) There emists a collection {o.: acl} of funclion seminorms
(with domain M) such that B under & is the projective limit by the linear
mappings v.: B — L, of the normed Kothe spaces L, , me () = [fla,
and for which (Naepva' (0) = {0}. If, moreover, the topology & 4s a topology
of the dual system (B, B*), then (ST 1) — (ST 4) are oll equivalent.

Proof. Assume (ST 1). Then & is a topology of .&/*-convergence,
where «/* is a family of weakly bounded, solid subsets of H* having
the above properties (Bl), (B2), and (B3). By Lemma. 1, the family #
of sets U*X°, where U*es/™, is a &-neighborhood basis at 0, consisting
of absolutely convex, solid sets; every element of %, being the polar of
a set in B, is automatically o (%, B*)-closed, and is therefore a o (B, B*)-
barrel. This proves (ST 2). Now assume (ST 2). Let % be a &-neighborhood
base at 0 consisting of solid, ¢ (&, B*)-barrels; add to # also all the sets
6T for 6 >0, Ue¥, and the set F itself. % is now closed under multi-
plication by positive scalars. Let «* be the collection of all polars in B*
of the sets in #. Then &% has (B1)-(B3) and every set in &> is woakly
bounded. For, (B1) and (B2) are trivial; we will prove (B3) by showing
that B* = (J U°. Given geE*, let N = {feH: [Kf, ¢>|<1}. Since
o(B, B) < g,%the linear functional f — {(f,¢> is &-continuous on X,
Therefore N is a &-neighborhood, and there is some Ue% with U < N;
then geU’. This proves (B3). Now if Ue% then U absorbs the points
of F; hence so does U"; hence U ig a weakly bounded subset of H*.
By Lemma 1, the sets in «* are solid. Hence, if we let &, be the topology
of &*-convergence, then &, is a solid topology and we are to prove that
& = £, thus showing that (ST 2) implies (8T 1). Suppose the net f, —~f
in ¥ relative to & Take any Ue%; then it is straightforward to prove
that

o g = Fr 0D

Therefore f, — f relative tio &, and & <= &. Again let Ue% be arbitrary.
If 4 is any subset of B and » is any topology on K, s (4) will stand for
the absolutely convex hull of 4 and A" will stand for the -closure of A.
In this notation, we have

uniformly for geU°.

T — ('U")u(E,EX) - OB

by a basic result of duality theory (see, e.g., [5], Ch. II, Theorem 4) and
the fact that U is absolutely convex and weakly closed. Therefore U
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is the polar of a seb in &/ and so is a £,-neighborhood. Therefore & < &,.
‘We have established (ST 1) and have thus shown that (ST 1) and (ST 2)
are equivalent.

That (ST 2) implies (ST 3) and (ST 4) follows by Lemmsa 2.

Now suppose the topology £ is consistent with the duality (B, BX).
Assume (ST 4). By Lemma 3, F under the topology & has & neighborhood
basis at 0 consisting of convex solid sets, and hence, by Lemma 4, of
solid &-barrels. But £ is a topology of the dual pair and hence every
¢-barrel is a o(H, B*)-barrel. Therefore (ST 2) is established. That (ST 1)
implies (ST 3) follows by Lemma 1. Assume (ST 3); we will prove (ST 1).
‘We may assume, by adding to % appropriate sets, that & has a neighborhood
base % (at 0) consisting of solid sets, that # is closed under multiplication
by apositive scalar, and that Fe%. Let «* = {U’: Ue%}. Since every
U"(Ue%) is absorbing, the sets in =% are weakly bounded ; the proper-
ties (B1)-(B3) for «/* are easy to establish in the usual way. Since £ is
the topology of uniform convergence on the. &-equicontinuous subsets
of BX, & is the topology of «7*-convergence. The sets in 7% are solid
(by Lemma 1), so £ is a solid topology. We have shown that (ST 3) implies
(ST 1), and the theorem is proved.

4. Metrizable function spaces and completeness. In this -section we
will continue to study furction spaces with the kind of projective limit
structure determined in the last section, but in most cases the family
{0q: @eI'} of function seminorms will be countable, and the spaces under
consideration will in consequence he metrizable. We will develop a cri-
terion for the completeness of such spaces. It will not be assumed in the
present section that our functions are a.e. finite; indeed, we will obtain
a generalization of the spaces L, considered in [4], Note I for the case
where ¢ is a function seminorm, as well as of certain well-known metriz-
able, non-normable function spaces.

Let {¢,: ael} be any non-empty collection of function seminorms
(over ). We will write f =g (f, geM) if and only if ¢,(f—g) = 0 for all
ael'. Let Mp = {feM: g,(f)<< oo for all ael}. Then M4 is solid, and it
follows from [4], Note I, Section 3, that = partitions M into equivalence
classes [-]. The first lemma generalizes and follows at onee from [4], Note I,
Lemma 3.4, and is needed for the same reason as is that lemma.

Levva 1. If feMy then there emists geMy such that f =g and g is
finite everywhere.

Proof. Let B be the set on which |f(2)| = oco. Then g,(f—frx_p) = 0
for all ael’, and g = fyx_z is finite everywhere.

Let F be the set of all equivalence classes [f], feMp. Define, for
fy9eMy and Aed,

1+ =0f+91,  ALA1 = X1
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It follows from [4], Note I, Lemma 3.2 that if f=7f, g=¢, Ae®,
then

fro=f+d, =
8o these definitions arve unambiguous; it follows from Lemma 1 that F
with these operations is a vector space over @.

Let p.([f]) = e.(f) for feMp, ael’. This definition is independent
of the representative element of [f]. (In the usual vector space sense)
P, s a seminorm on F, and:

Luvnta 2. Under the topology determined by the family {p,: aeI}
of seminorms, F is a Hausdorff locally comvex space. If I' is oou'nmble, r
with this topology 1s metrizable.

Proof. To show that F is Hausdorff, suppose [f] =4 0. Then f s£ ¢
50 p.(f) > 0 for some ael.

For reference, we record two properties which an arbitrary function
seminorm ¢ may ov may not possess; these properties have been ex-
haustively studied in [4], and we will make important use of them in
the next theorem.

DeriNiTION 1 (Riesz—Fischer property). We say that o has the
Riese—Fischer property if for any sequence {u,} of non-negative functions

in M, }e(u,) < oo implies the existence of functions wup(n =1,2,...)
1 )
with o(u,—u,) = 0 such that ¢(3u,) < co.
1

The normed space L, is complete if and only if ¢ has the Riesz—
Fischer property ([4], Note I, Theorem 4.8).

DeriNTTION 2 (Fatou null property). ¢ has the Fatou null property

if, whenever 0 < u, }u pointwise (u, M) and o(u,) = 0 for all n, we have
e(u) = 0.

We return now to the space F of Lemma 2.

TeEOREM 1. Suppose that I' is countable and that each o, (oel’) has
the Fatou nwull and Riese—Tischer properties. Thon, under the topology deter-
mined by the family {p,: a<l'} of seminorms, ¥ is o Fréchet space. Moreover,
there ewists a measurable subset X, of X such that [1x,] = 0, and having
the following property: If the sequence {[ful} s B converges to [glell in
this topology, then every subsequence of {f,} has a subsequence which con-
verges pointwise a.e. to g on X — X5 and therefore {f,} comverges to g in
measure on every finilely measurable subset of X — X,.

Proof. That the second measure-theoretic property follows from

the first is well-known. We will give a proof of the theorem which, demon-
strates simultaneously the completeness of F and the existence of X,
having the first measure-theoretic property. )

Write I = {1, 2, ...} and suppose that {{f,]} is a Cauchy sequence
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in F. Then, for each %, ¢, (f,—f,) = 0 as m, n - co. We will denote the
element (equivalence class) of L, 5, containing f by [f],. With this notation,
{[f.]i} is a Cauchy sequence in the normed space L, which is complete
(04 has the Riesz—Fischer property). Let the limit in L of this sequence
be denoted by [¢,];. Since g, has the Fatou null property, there is & maximal
o;—null subset X, of X. (o,-null means g, (xy,) = 0; this set X is u-unique;
see [4], Note II, Theorem 5.10.) The mapping which carries the element
[fhLeL, onto the restriction of f to X — X, is an isometric isomorphism
of I, onto the space L, (X~ X;) of all such restrictions, this space being
given the norm g,; on this space, g, is a function norm having the Riesz—
Fischer property. Therefore {f,} has a subsequence {f;,} such that
fin(®) = g, () pointwise a.e. on X —X; (part (a) of the proof of [4],
Theorem 4.8). Now 0s(fin—fin) =0 as m,n — oo, 50 we can choose
[geleeL,, such that gy(fi,—gs) >0 a8 # - co. Let X, be the maximal
o,-null subset of X, and pass to a subseguence {f,,} of {fi,} such that
fan(®) = g2 () point-wise a.e. on X —X,. Continue inductively in this
o0

manner. Let X, = (MX;. For each ¥ we have from the properties of
1
the funetion seminorm. g, that
enlzx) < oalrx,) =0, 50 gp(yx) =0.
Since F is Hausdorff, [yx,] = 0. Now consider the sequence {fy.}me:-

This is a subsequence of {f,,}; in the same way, {f,.}o; is a subgequence
of {fitnem for i =2,3,..., K. Therefore,

Iim £, (#) = gz(2) a.e. on X—X,.
It follows that
Ix, (@) = Gx, (%)
Hence there is no ambiguity in defining
ge(®) =limf,(2), »eX—X,,
g (.17) == n—>00
0, zeX,.

‘We will prove that geM and that [f,] - [¢] in the metric topology of F.
‘We have for each %,

a.e. on (X—Xkl)n(X~sz) .

ex(9) < exllgl xx—x,) + oxllglxx,)
= &9 xx-x,) = exllgelrx_x,) < 02(lgel) < o0

where we have used the fact that g, has the Fatou null property and X,
is a gz-null set in order to observe that the second term on the right in
the first inequality vanishes. Since k was arbitrary, we see that ge My.

We will complete the proof by showing that g,(f,—g) — 0 as n - .
‘We will prove at first that o,(fi,—¢) — 0 a8 n — co. Since X, is a gz-null
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set and o, has the Fatou null property, we note that, as before, g, (( Frm —
—9) XX;C) = 0. Therefore

05 (fin—9) < 01(fin— o) + 04 (from—
< 0ulfin—Fem) + Qk((f T — 9) % Y~-X]b)+@k((fkm_g)XXk)
= 05 (fin—Jim) + Q/a((fkm Ir) X x— \*,c)
Since {fy,} is a Cauchy sequence in L,

lim Qlc(fm_flcm) =0

M, N->00
Moreover,

Qk( Fim—91) XX--X,C) < 06(Sim— 91

which tends to zero as m — oo since fi, — ¢) in the normed space L,
Therefore gi(fi,—9) =0 as n — oo, as desired. But

06 (fo—Fim) + 06 (fim—9) -

Since {f,} is Cauchy in the normed gpace L,,, the first term on. the right
tends to zero as m, n — co. Therefore g,(f,—¢) — 0 ag n — oco. (See [4],
Note I, Section 2 (a) for a justification of some of the above applications
of the triangle inequality.) It follows that [f,]-[g] in the metric topol-
ogy of F. The existence, for {f,}, and (by the same method) for any
subsequence of {f,}, of a subsequence having the required property,
has also been demonstrated.

We remark that it often turns out that, in the space ¥, f == ¢ if and
only if f(z) = g() a.e. — see the following examples. In this case, the
statement in Theorem 1 that [yx,] = 0 becomes x(X,) = 0; that is, every
subsequence of {f,} now has a subsequence which converges pointwise
a.e. to ¢ on X.

In order to look at some examples, suppose ¢ is & single non-trivial
functlon norm having the Riesz—Fischer property. (To say that ¢ is non-
trivial means that there is some % 2= 0 such that 0 < p(u) < .0, ) Let A,
be a non-empty, countable subset of 4. For all Aed,, define g, by
0.4(w) = o(ux,) (w>> 0 measurable). Then each g, is a fanction seminorm,
having the Fatou null property (since ¢ is a nom) and the I{.ie.s,a»«'[ﬂisoher

Qk(fn'_ 9 <

property; to prove this last statement, assume thab 2@ ,(*u,,)x 00
then by [4], Note I, Theorem 4.2 applied to g, we have QA(Z Uy )\ o0,

We now let Mp(dy) = {fel: g (f) < oo for all Aedy} and let I (A,)
be . the correspondlno metrizable locally convex space of equivalence
clagses [-], as given by Lemma 2. It follows from Theorvem. 1 that F(A,)

is-a Fréchet space. If {o,: Aed,} is total in the sense that, for every
feF(A,) which does not vanish a.e., there is some 4 e, such that o (f)

icm®

Metric and topological properties of certain linear spaces 169

= 0(fyx4) >0, then f =g in F(4,) if and only if f = g, and therefore
the set X, given by Theorem 1 is g-null.

Perhaps the most interesting case to consider is that in which the
above function norm ¢ is saturated: that is, for every set C of positive
measure there is a set .D also of positive measure such that D = ¢ and
e(xp) < oo. ([4], Note IV, Definition 8.4.) In other words, the space L,
is saturated (in our terminology), and there exists a sequence {X,} of
finitely measurable subsets of X such that X, < X, < ... and X = (JX,,,
and for every set .4 bounded with respect to {X,}, we have o{xa) < co.
Here lot 4, = {X,.}. Then F(A,) is the collection of all funections f which
are “locally finite” relative to {X,}, ie., of all f such that o(fy,) < oo
for every A which is bounded with respect to {X,}. Since ¢ is a function
norm, we see in this case that f =g in F(,) if and only if f(2) = g(2)
a.6. Moreover, the family of seminorms o, (f) = ¢(fr4), 4 a bounded
set with respect to {X,}, also determines the topology of F(4,). In the
case in which ¢ is the L'-norm: o(f) = [(f|du, F(4,) is the well-known
space of functions integrable on every set bounded with respect to {X,},
under the topology of convergence in the mean on every such set.

5. The duals of the space F. We continue our study of the space F

of Section 4, Theorem 1; we are assuming that I' is countable; say

={1,2,...}, and that each g,(nel') has the Fatou null and Riesz—

FlSGhel properties. We assume further that f =g in F if and only if

f@) = g(x) a.e., so that the element [f]«F contains only functions which

equal f a.e.; we now write f e F instead of [f]eF. From Section 4, Lemma 1,
it is clear that every feF is finite a.e. Moreover, F is solid.

Now suppose that F is saturated. Then, from Section 2 we know
that F'* is a solid vector space, and exery element of F* is finite a.e. If ¢
is-an a.e. finite measurable function such that g, (g) < oo for some nel,
where o, stands for the associate seminorm of g, as defined in [4], Note IV,
Section 9, then for all feF we have by [4], Note IV, Theorem 9.3, that
fg is summable. In other words, geF*. We define ' to be the span in 7>
of the set of all a.e. finite g} such that there exists nel" with g, (g) < .
Let F* be the metric dual of 7. In this section we shall study the relations
among the various dual spaces F', F*, F*. Given geF*, we now let

= ffgd,u (feF); then ¢, is a linear functional on ¥. We are ready
to prove:

THEOREM 1. Suppose F is saturaied. Then the mapping g — ¢, of F
into F* is linear and one-one, hence embeds T as a subspace of F*.

Proof. It ge¥" then g, is (metrically) continuous on ¥, hence belongs
N
to F*. To prove this, we can write ¢ = > a;g; Where |g;(2)] < oo a.e.,
1

g;,i(gi) < oo (1 =1,...,N). Suppose the sequence f; — 0 in the metric
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topology of F. Then, for ¢ =1, , NV, we have On; (fw) =0 a8 & - oo.

The mapping f — [fgdu is a contmuous linear functional on Len ([4], ‘

Note IV, Theorem. 10.1), so f fug:du — 0 as k — oo, from which it follows
that [frgdu — 0 as k — co. Thus @ eF". The mapping g — ¢, is obviously
linear, and we prove it is one-one as follows: Suppose ¢, = ¢, for g, he .
This means that [f(g—h)du = 0 for all fe . Since F is saturated, choose
a sequence {X,} of finitely measurable sets with X, +X such that y, eI
for every 4 bounded with regpect to this sequence (Section 2, Lemma 3).
We will show g(2) = h({z) a.e. on every X,. If B i3 a measurable set,
then ygp.x cF, 80

[z, (90 = [ gpox, (9 —1)du =
B

Since B is arbitrary, this proves that Xxn‘(H' h) vanighes a.e., as desired.

The next definition is taken from [4], Note II, Definition 5.1, and
from [3], Ch. 1, Section 2.

DErFINITION 1. The function seminorm. ¢ has the Faiow property if
0 < Uy, v,tu a.e., implies o(u,)lo(w). o is absolutely continuous (AQ)
it {u,} = L,, 4,{0 a.e., implies ¢ (u,){0.

The Fatou property implies both the Fatou null and Riesz—Fischer
properties.

The next lemma is not new:

LemMA 1. Let ¢ be a saturated function seminorm which has the Fatou
property and is AC. Then the meiric dual Ly of L, is identified by the usual
canonical isometric isomorphism @, — g, where

(f) = [fodp, feL,,

with the associate space L, of L, ([4], Note IV, Section 9). Hvery function
in L, is a.e. finite.

Proof. By [4], Note V, Theorem 12.1, every geL, vanishes a.e.
on the maximal ¢-null set X, Let ¥ = X —X,. Then o(f) = o(fxv)
for every feM, and if we delete X, from X and congider the restriction
of each function to ¥, then p becomes a function norm on the set of all
wmeasurable functions on ¥ ([4], Note II, Theorem 5.10). Lot L,(¥)

be the Bamnach function space consisting of the set of all such restrictions f

such that ¢(f) < co. (L, and L,(Y) are isometrically isomorphic under
the mapping [f] — (f restricted to ¥), where [f] denotes an arbitrary
equivalence class in I,.) ¢ and o’ are now both saturated function norms
and every geL, is finite a.e. Since ¢ is still AC and hag the Fatiou prop-
erty, I (Y)* and L,(Y)" are identified as in the statement of the theorvem.
See [3], Chapter 1, Section 2. It is easy to see that this identification
carries over to I} and L.
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Recall that in [4], Note V, if ¢ is 2 function seminorm and {X,}
is a sequence of measurable sets, then {X;} is said to be p-exhaustive
if X,4X and Q(Zxk) < o0 for all k. We will say that o is saturated if the
space I, is saturated. This is equivalent to the following property: For
any set B of positive measure there is a set F' = F of positive measure
guch that o(yp) < oo ([4], Note IV, Section 8).

We return now to the space F of Theorem 1.

TaEOREM 2. Suppose the function seminorms oy, gy, ... which deter-
mine F have the Fatou property and are AC; suppose moreover that there
8 a fived sequence which is g,-exhaustive for all w. Then F' is isometrically
isomorphic to I under the mapping g — @g; T.6., this mapping identifies T’
with all of F*.

Proof. F, and each L, , are saturated; we prove this for F. If not,
let 4 De a positively measurable set such that every feF vanishes a.e.
on A. Choose k such that u(AnX,) > 0, where {X,} is the gequence which
is gyexhaustive for all #. Then y,.x < xx,eF, 50 y4.x ¢F but does
not vanish a.e. on A4, contradiction. In view, then, of Theorem 1, it guf-
fices, for the proof of Theorem 2, to show that the mapping ¢ —¢, of
F —F" is onto. It fe M, let [f], be the element (equivalence class) of L,
containing f; let the linear mapping v, of ' — I, be given by v,,(f) = [f],-
Then F (with the metric topology) is the projective limit of the spaces

L, by the mappings v,. Proof: The fact that M v;*(0) = {0} follows
" 1

from the fact that f = 0 if and only if f = 0 (a.e.). Let &, &, be the metric
and projective limit topologies on F, respectively; we are showing that
£ = £;. Bach mapping v, is continuous if F is given & and L,, is given
its norm topology; therefore £, is'weaker than & Conversely: The semmorms
¢, determine £ so a base of &neighborhoods is formed by the sets of the
form

U = {feF: Qn,:(f)ge, i =1:---5’N}7

where £ > 0. We have finished if we can show that U is a £z-neighborhood;
we may assume here that N = 1. The sets

Vﬂ,}, = {[f]nELgn: Qn(f) < A’}}

form a base of absolutely convex neighborhoods in L,,. Hence U = w;ll( Voge)
is a &;-neighborhood.

By the usual representation of the dual of a projective lLimit, an
mbltrfuy element peF™ can be expressed as follows: There are integers
Mgy oeey B > 0 and %eLgn (=1, K) such that

¢ = Z‘Pio'”n,;-
=1

A>0,
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By Lemma 1, choose g@'EI’Z’ni? finite a.e., such that
eillf1s) = [T9:0u,

for all “elements” f of L, . For every feF we now have

® K K K
() = D alo(f)) = meng = ; Jtgip = [£(D) ) du.

d=al

K
Hence ¢ = ¢, where g = 3'¢;eF'.
1

‘We conclude with a condition, different from. that of Seetion 2, which
is sufficient that I and F'* be in duality under the usual bilinear form
fr 9> = [foap.

THEOREM 3. If there ewisis a sequence which is g,-cxhaustive for oll n,
then F is saturated and (F, 'y, (I, F*) are dual systems under {f, g).

Proof. As in the last proof, ' and each Lnn are saturated. Sincé
every g, has the Fatou null property, L;n is a total subspace of the metric
dual L:n of Lgn ([4], Note V, Theorem 15.2). By Section 2, Lemma 3,
Corollary, we know that for all g<F* (and hence for all geF') with ¢ # 0,
there is some feF with (f, ¢> # 0. But if 0 % feF then ,(f) 0 for
some 7, 50 that there exists geL, such that {f, g) # 0. Moreover, g, is
a function norm ([4], Note IV, Theorem 9.7) so ¢ is finite a.e. and
hence belongs to F' and to ™.
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STUDIA MATHEMATICA, T. XLIII. (1972)

A Cantor-Lebesgue theorem for double trigonomeﬁ*ic series

by
A. ZYGMUND (Chicago)

Abstract. Let £ = (&, y) be points of the plane, » = (m, n)— lattice points, and
{v-&> = ma+mny. It is shown that given any et B of positive measure situated in
the square 0 <@ < 1, 0 < y < 1, there is a constant 4 — Ag such that for any trig-
onometric polynomial 7'(£) of the form I ¢, 620 4 we have

v|=R

o< AEf 1T (&)2d8.

In particular, if an infinite series Ye, e2mi(v4) converges cireularly in a set of positive
meagure, then 3 ¢, =+ 0 a8 B — oo. '
=R

1. Let £ = (2,y)eR? and let p = (m, n) denote lattice points in R2.
Consider a double trigonometric series

(T) 2 6, ¥,

where {v-£)> = mx-+ny, and its circular partial sums

Tr(8)= 2 0, 6%,

) PISE .
We shall also write

Ap(8)= D) 0,8,
[[=R
Recently, R. L. Cooke proved the following result (see [lj).
TEBOREM 1. If Ag(£) >0 almost everywhere as R — oo (and, in

particular, if T comverges almost everywhere), then ¢, — 0 as |v] - co. More
generally, we then have

(1.1 Dlaf—=0 (B o).

Pl=R

In thig note we pro've a somewhat more general result.

THEOREM 2. If A7(£) — 0 ot each point & of a set of positive measure,
we have (1.1).
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