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Action of topological semigroups, invariant means, and fixed points

‘ by
ANTHONY TO-MING LATU (Alberta, Canada)

Abstract. It is the main purpose of this. paper o establish relations between
fixed point properties on compact convex subsets of a locally convex space and the
existence of an invariant mean for certain actions of.a topological semigroup on an
arbitrary topological space. Our results generalise some recent fixed point theorems
of M. M, Day and T. Mitchell.

1. Introduction. Consider the following fixed point properties for
an action -of a topological semigroup S on-a Hausdorif topological
space X such that the mapping 8§ XX — X is continuous in the second
variable: '

(P,) Whenever S acts affinely on a compact convex subset Y of
a Le.s. (locally convex linear topological space) for which the mapping
Sx Y — Y is continuous in the second variable and there exists a continuous
mapping I7 from X into ¥ such that II(s %) = s-II() for all se§ and
zeX, then Y has a fixed point for 8.

(P,) Whenever § acts affinely on a compact convex subset ¥ of
a Le.s. for which the mapping Sx Y — Y is separately continuous and
there exists a continuous mapping I7 from X into ¥ such that II(s-x)
= g-II(z) for all s¢8 and z<X, then ¥ has a fixed point for S.

(P;) Whenever § acts affinely on a compact convex subset Y of
a Le.s. for which the mapping S X ¥ — Y is jointly continuous and there
exist a continuous mapping I7 from X into ¥ such that II(s-@) = s-II (%)
for all seS and zeX, then ¥ has a fixed point for 8.

T A is & norm closed S-translation invariant subspace of m(X)
(the set of bounded real functions on X) containing constants, and

(P) Whenever & = {5(s); s<8} is a homomorphic representation of
8 as continuous affine mappings from a compact convex subset ¥ of
a Le.s. into ¥ and there exist a linear transformation I from &/ (Y) (the
set of affine continuous real functions on Y) into 4 such that (1) =1,
T(f)>0 for f>0 and T (h) = T(,uh) for all sef, hes?(Y), then ¥
has a fixed point for &. .
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We show in this paper that 4 has an S-invariant mean iff (P). Fur-
thermore if WIUC(S,X) [LUC(S, X)] denotes the set of all fe0(X)
(the set of bounded continuous real funetions on X) such that the mapping
from & into C(X) defined by s — .f for all se§ is continuous when C(X)
has the weak [sup norm] topology, then we prove, by applying Property
(P), the following:

THEOREM.

(a) O(X) has' a S-invariant mean iff (By).

(b) WLUO(S, X) has a S-invariant mean iff (Py).

(¢) LUC(S, X) has am S-invariant mean iff (Ps)

When S = X, then part (a) of this theorem becomes Theorem 4
in Day [4], and parts (b) and (¢) becomes Theorem. 4 and 2 in Mitchell
[22], respectively.

‘When A is in addition an algebra, and n is & positive .integer, we
have obtained a Property (Q(n)), an analogue of (P), which is equivalent

. k

1 .
to A having an S-invariant mean of type% > v, 1 < k< n, and each ¢;is
1

multiplicative.

The relation between invariant means on space of functions and
fixed point properties was first introduced by Day [3]. We shall show
in Section 5 the relation of Properties (P) and (Q(#n)) with the fixed point
properties in"Argabright [1] and Mitchell T21]. '

2. Some motations. All topological spaces consulered in this paper
are assumed to be Hausdorff.

Z* denotes the set of positive integers.

For any set 4, |A| will denote the cardinality of A If A iy a subset
of a linear space B, then Cod is the conves hull of A in H.

Let 8 be a semigT011p of transformations from a set X into X, and
m(X) be the space of bourided real functions on X. For any subset I'< X,
" 15 will denote the characteristic function on I' and f|Tem(T) is the re-
striction of f to T for any fem(X). Furthermore, if fem(X) and seS,
then [If] = sup If(@)], of (@) = f(sw) for all weX.

xe

If 4 is a norm closed, S-translation invariant (i.e. ;fe.4 whenever
fed and seS) subspace of m(X) containing constants, then for any seS,
define I;: A — A by (If) (@) = f(@) for allwe X and fed, and L,: A" —4*
by (L,,(p)(f) = g(,f) for all fed and ped™ (4* is the conjugate space
of 4). Au element ped™ is a mean if ¢(f) > 0 for all f> 0 and ¢(1x) =1;
@ 18 S-invariant if L = ¢ for all seS. As well-known, Lhe set of mea.ns
on A is compact in the w*-topology of A* (i.e. o(A*, 4

For weX, let p,em(X)* be the point measure at 1e pw(f) = f(w)
for all fem(X); an element in Co{p,; weX} is called a finite mean on

N
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m(X). Furthermore, peA™ is a (point measure) finite mean iff ¢ is the re-
striction of some (point measure) finite mean of m (X) to A. As well-known,
the set of finite means is ¢(A*, 4)-dense in the set of meang on A.

I A is in addition an algebra, then ged* is multiplicative it p(fg)
=o(f)p(g) for all f; geA. Furthermore, the sef of multiplicative means
on A, A(4), is o(A*, A)-compact, and the set of point measures on A
is o(4%, A)-dense’'in 4(4). A mean u on A is the average of k multiplica-

1k
ZZ @iy 9ied(4).
1

‘We shall denote by:

A X = the set of means on m(X).

BX = the set of multiplicative means on m (X) (Whlch is the Stone—
Cech compactification of X).

If X is a topological space and Y is a compact ‘convex subset of a
le.s. (locally convex linear topological space), then C(X) and «/(X)
will denote the Banach algebra of all bounded continuous real functions
on X and the Banach space of all real affine continuous functions on ¥
respectlvely

Remark 2.1. The follovwngs are known and will be useful for our
purpose:

(a) Let X be a set,- A be a norm closed subspace of m (X) eontammg
constants and M (4) be the set of means on A. Then for each peM(4),
4 has an extension x4~ ¢ # X to m(X) ([2], p. 513, Lemma 1). Furthermore,
the mapping p: f—f", where f (4} = pu(f) for all fed, pe M(4) is an
isometry mapping A onto /(M (A)) (y is onto follows from an application
of the separation theorem [6] p. 64 Corollary 13; see for example [12],
Corollary 2.4).

When A is also an algebra and A4(4) is the set of mu1t1phcat1ve
means on A, then any ¢eA(4) has an extension ¢~ ¢fX to m(X). In fact
if {p,} is a net of point measure on m(X) such that limp, (f) = ¢(f)
for all fe A, then any cluster point q? in {p, }is suchan extension. Further-
more, the mapping f —f" where f~ (tp) = (p( f) for all ped(A) and fed is
an isometry mapping 4 onto O(A (4)) (see [6], p. 274).

(b) If X is a compact space, then any multiplicative mean ¢ on O(X)
is a point measure ([6], Lemma 25, p. 278).

(¢) If Y is a compact convex subset of & le.s. E, then functions of
the form %|Y +¢-1p where heB* and ¢ is real are uniformly dense in
o (Y) ([24], p- 31, Lemma 4.5). Consequently ./(Y) separates points.
Furthermore, any mean ux on «(Y) is a point measure ([1], Lemma 2.
See also [5], Lemma 6.2).

A semigroup (8, -) can be regarded as a semigroup of transformations
from 8 into § defined by s(t) = s-% for all s, <8, In this case, S-invariant

tive means if p =

4 — Studia Mathematica'XLIIT.2
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means and S-translation invariant subspaces are also referred to as left
invariant mean (LIM) and left translation invariant subspaces. A sub-
space A of m(8) is right translation invariant if r,(4) = 4 for all a<g,
where #,(f)(s) = f.(s) =f(sa) for all se8 and fed; A is translation in-
variant it A -is both left and right translation invariant. A left translation
invariant subspace A is left dntroverved if I7,(4) = 4 for'all gpeAd™, where
I7,(f)(s) = ¢(sf) for all se8. If 4 is also an algebra, then A is left M-intro-
-verted it IT,(A) = A for all multiplicative mean ¢ on A. It is known and
easy to see that left M-introverted (and left introverted) implies right
tranglation invariant ([21], p. 121).

3. Semigroup of transformations and fixed peimts. In this section
we shall prove two theorems which are basic to the rest of our
work.

Let X, ¥ be sets and .4, B be norm closed subspaces of m(X), m(¥)
respectively containing constants. Denote by '

K[A,B] =the set of all linear transformations 7T from A to B
such .that T(ly) = 1, and T(f)> 0 if f> 0.

. If A, B are algebras, then T'«K[4, B] is multiplicative it T'(fg)
=T(f)T(g) for all f,ged.

TueorEM 3.1. Let 8 be a semigroup of transformations from a set X
into X and A be a norm closed S-translation invariant subspace of m(X)
containing constants. Then A has an S-invariont mean iff

(P) whenever & = {n(s); s<8} is a homomorphic representation of
8 as continuous affine mappings from a compact convem subset ¥ of a lLc.s.
into Y and there exists TeK [/ (Y), A] such that JT'(h) = T(,qh) for all
seS, hest (Y), then Y has o fived point for &. ‘

Proof. Let ¢ be an S-invariant mean on 4 and ye¥ such that
the restriction of p, to 2/(¥) coincidé with the mean T™(¢p) on &/ (Y)
(Remark 2.1 (c)). If se8, then

h{n(s) y) = gT () = T (1))

for all he(Y). Since M(Y) separates points (Remark 2.1 (¢)), ¥ is a
fixed point for &. !

Conversely, if (P) is satisfied, consider the homomorphic representation
& = {L,;; s<8} of § ay continuous affine mappings from the o(4*, A)-
compact convex subset ¥ of A* into ¥, where Y is the set of means
on A. Define T: «(¥)—>m(X) by T(h)(x) = h(p,) for all hes/(Y)
and weX. It is easy to see that T is linear, T(1y) = 1y, T'(h) = 0if R > 0
and T(n(s)h = JT'(h) for all hes/(¥) and seS, where #(s) = Ls Fur-
thermore, if he.s7(Y) there exists fed such that h(p) = p(f) for all pe¥
(Remark 2.1 (a)). Consequently T(h)(s) = h(p,) = p,(f) = f(w) i.e. T(h)

= @(T{h)) = h{y)
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= feA. It follows that TeK[(Y), A] and Y has a fixed point ¢ for 9’
@ is in S-invariant mean on A.

Remark. If 4 is a norm closed left translation invariant subspace
of m(8) containing constants, where § is a semigroup, then Theorem
2.1 furnishes us with a fixed point property which is equivalent to .4
being left amenable i.e. A has a LIM. (See [1], Theorem 1, 2 and also
Sectioxn 5A of this paper). The idea in using the fact that a mean on &7 (Y),
where Y is a compact convex subset of a lLc.s., can be represented by
2 point measure on &/ (Y) in the proof of Theorem 3.1 is from Argabnght
[1] (Lemma 2, and Theorem 1).

THEOREM 3.2. Let 8 be a semigroup of tramsformations from a set X
into X, A be a norm closed S-tramslation invariant subalgebra of m(X) -
containing constants and neZ*t. Then A has an S-invariant mean which
is the average of k-mulliplicative means for some ke Zt, k< n iff

(Q(n)) whenever & = {n(s); se8} is a homomorphic representation
of 8 as continuous mapping from a compact space Y into. ¥ and there ewists
a multiplicative T <K [C(X), A] such that /T(h) = T{(,qh) for all se8
and heC(X), then there ewists a non-empty finite subset F < ¥, |[Fi<n
such that n(s)F = F for all se8.

. N ‘
Proof. Let ¢ =}7;Z @; be an S-invariant mean on A, where each
5 .

@; is a multiplicative mean on A. For each 1 < k, pick y;¢Y such
that the restriction of the point measure p, to (1’) coincides with the
multiplicative mean T*(¢;) on 0(¥) (Rema.rk 2.1 (b)). I seS, then

k
—olrw) =2 D haw)

for all heC(X). Since C(Y) separates closed sets, it follows that 5 (s)F = F
for all seS where F is the set of distinet elements from {y, ..., ¥x}.
Conversely, if (Q(n)) is satisfied, consider the homomorphic repre-
sentation & = {L,; seS} of § as continuous mappings from the o(4*, 4)-
compact subset ¥ of A* into ¥ where Y is the set of multiplicative means
on A. Define a multiplicative linear transformation T: C(Y) — m(X)

k
) |
. 2 hn(6)-93) = olT (o)) = o T (M)

by T(h) (%) = h{p,) for all heO(Y) and w<X. It is easy to see that T'(1y)

=1y, T(h)< 0 if 1> 0 and ,T(h) = T(yq (k) for all heC(Y) and s,

where 7(s) = L;. Furthermore, if heC(Y), there exists feA such that
hip) =o(f) for all pc¥ (Remark 2.1 (a)). Consequently T'(h) = fed
and T'«K[C(X), A]. Hence there exists a non-empty subsetF {@1yeevs O}

< ¥, k< n such that 5(s)F = F for all seS. If <p = ——E @;, then @
is an S-invariant mean on. 4.
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REMARK 3.3, (a) When n =1, then the element in F of (Q(1))
becomes a fixed point for &.

(b) When S is a semigroup and 4 is a norm closed leff translation
invariant subalgebra.of m(8) containing constants, Theorem 3.2 (n = 1)
yields a fixed point property on compacta which is equivalent to 4 being
extremely left amenable i.e. A has a multiplicative LIM (see [21], Theorems
1, 2 and also Section 5B of this paper). The idea in using the fact
that a multiplicative mean on C(Y), where Y is a compact space,
can be represented as a point measure on O(Y), is from Mitchell [21]
(Theorem 1).

(¢) (See also Theorem 5.1). If §, X, 4,5 are as in Theorem 3.2 and

A hag an S-invariant mean of the type ¢ = iz ®;, where each g, is
amultiplicative mean on 4 and & <, we may assume ¢ = Z‘ A, where
Hy = {pyyeees o} 18 the get of dxstmeb elements from {p,, ..., 99,0}, A >0.

Then for each ae¥, Zﬂz,f o) Z‘ Y flo) for all feO(A(4)) (4(4) is

the set of mulmpheatwe means on. A) Since 4(A) separates closed sets,
it follows that L,H, = H, for all aeS. Define on § the two-gided stable
equivalence relation E (i.e. ¢(E)b implies ac(B)be and ca(B)ch for all
a,b,c,e8 [19], p. 39): a(E)b ift Lo = Ly for all peH,. If S/H, is the
factor semigroup of § defined by E, then 8/H, is a finite group. Further-
more, & non-empty finite subset Fy < Y in (Q(n)) can be chosen such
that 5(s)F, = F, for all se¢S and

(*)  ISIH| = || [V ()]
for all yeF,, where N(y) is the subgroup of S/H, defined by N(y)

= {G<S[H,; n{a)y =y}, and @ denotes the homomorphic image of
aeS in 8/H,. To see thig, let F be the non-empty finite subset of ¥ such
that n(s)F = I for all seS chosen as in the proof of Theorem 3.2 (and
we ghall from now on use the notation in there). For any a,bed, if
Lyp = Lyp for all geH,, then h(’?(“)'?/rz) =T"(p) (naf) = () ()
= h{n(b)-y;) for all he(O(Y) and 1< ¢ < k. Since O(Y) separates points,
it follows that ay = by for all y<I'. Consequently, S/H, may be regarded
ag a finite group of transformations from ¥ onto I detined by @(y) = 5 (a)(y)
for all ye I and aeS. Let y,eF be fixed, and Iy = {@y,, @S /H,}. Then
n(s)Fy = F, for all seS and |S/H,| = |F,||N|, where N = {@eS/H,;
@Yo = Yo} ([18], p. 22). Since ¥, = {@y; BeS/H,} for any y<F,, (*) follows.

Exameres. Let 8 be a semigroup of transformations from a set X
into X.

(1) I per' X and

p = {fem(X); p(f) = p(f) tor all se8}.

icm®
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Then 4, is norm closed, S-translation invariant linear subspace of m(X)
containing constants. Furthermore, the restriction of ¢ to 4 is an S-in-
variant mean. Consequently 4, satisfies property (P) in Theorem 3.1.
Conversely, if 4 is a norm closed S-translation invariant subspace of
m(X) containing constants admitting an S-invariant mean @, then for
any extension ¢~ t0 ¢ to m(X) (Remark 21 (a)), 4 € 4,-~

(2) If pefX, then A, in (1) is even an algebra and the restriction
of ¢ to 4, is a multiplicative S-invariant mean. Consequently, A, satisfies
(@{1)) in Theorem 3.2. Conversely, if A is a norm closed S-translation
invariant subalgebra of m(X) containing constants and has a multipli-
cative S-invariant mean @, then ¢ has an extension ¢~ ¢fX to m(X)
(Remark 2.1 (a)) and 4 < 4,-. (See also [17], Theorem 1).

(3) Let G = {g,, ..., g,} be a finite group of order n, T = § X@G be
the product semigroup with coordinatewise multiplication and ¥ = X x&
be the product set. Consider T as a semigroup of transformations from ¥
into Y defined by #: (=, g) — (s, g;9) for each teT, t = (s, g;) and all
(2,9)eY. Let A be a fixed norm cloged S-translation invariant subalgebra
of m(X) containing constants, and A4 has a multiplicative S-invariant
mean ¢. Define

Ag = {hem(Y); II,(h)eAd for all geG}

where (IT,h)(%) = h(x, g) for all 1 X, ge@. Then it can be easily verified
that 4, is a norm closed T-translation invariant subalgebra of m(Y)
containing constants. For each ¢ =1,...,7n, define y;efY by w(h)

1 n

= ;p(ﬂgih) for all Zem(Y). Then the restriction of p = %2 p; to Ag
) 1
is a T-invariant mean since if ¢ = (sy, go) T and heAg, then

1w 1 v
W) == 3 ol h) == Y o) = p(h).

i=1

Consequently A satisfies (Q(n)) in Theorem 3.2.

4. Action of semitopological semigroups and fixed points. A mapping
II: XxY —~Z, where X, ¥, Z are topological spaces, is separately con-
tinuous if p is continuous in each of the two variables when the other
one is kept fixed; y is jointly continuous if y is continuous when X XY
has the product topology. ’

A semitopological semigroup is a semigroup § with a topology such
that for each a¢S, the mapping from § into § defined by s — as for all
sef is continuous. A topological semigroup is a semitopological semigroup

-such that the mapping from §Xx§ into § defined by (s, t) — st for all

s, teS iy separately continuous.
An action is an order ‘pair (S, X), where S is a semitopological semi-
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group and X is a topological space, with a mapping y»: §XxX - X ,
denoted by (s, ) - s-z such that

(1) 81:(85°@) = (548,) @ for all s;, 8,¢8, 0 X,

(2) the mapping X — X, # - s-2, s<X i3 continuous for each fixed

sef.

Furthermore, (8, X) is separately continuous (jointly continuous)
if  is a separately continuous (jointly continuous). When X is a convex
subget of a l.c.8., then (8, X) is affine if for each s 8, the mapping from X
into X defined by @ — s+ for all < X is affine. If (T, Y) is another action,
then (7', Y) is a continuously homomorphic to (8, X) if T is a continuous
homomorphic image of § with homomorphism 7, and there exists a con-
tinuous mapping II: X — Y such that II(s-») = n(s)-H(w) for all se8
and zeX.

Examvpre. Let T be a discrete semigroup and § be the set of means
on m(T). Then § with the Arens product © defined by u©@(f) = p(,f)
where (I1,f)(t) = ¢(;f) for all u,pel8, fem(T) and teT is a semigroup.
Furthermore, the dual semigroup (S, *), where u*p = pQu for all u, peS,
with the w*-topology on-S i§ a semitopological semigroup but not neces-
sarily a topological semigroup (see Day [2] pp. 526-531). Some examples
of actions are given in Lemma 4.3.

Let (8, X) be an action. We shall denote by WLUC(S, X) [LUC(S, X)]
to be the set of all those feC(X) for which the mapping from § into C(X)
defined by s — ,f for all se§ is continuous when C(X) has the weak
[sum norm] topology, or equivalently, feWLUC(S,X) [LUO(S, X)]
iff feC(X and whenever s, —$, ,, se8, then |u(, f) — u(,f)| -0 for
all peO(X [sup If(8q @) —F(sm) [ - 0]. I‘urthermore, LMO(S, X) will

denote the set of all those fe((X) such that whenever s, — s, §,, se8,
then ¢(, f) — @(.f) for all multiplicative means ¢ on O(X).

" Greenleaf [10] congiders jointly continuous action (8§, X) where §
is a locally compact group and X a locally compact space for which
LUC(8, X) has an S-invariant mean.

Certainly any semitopological semigroup 8 can be considered as
an action (8, 8) defined by the mapping (s, ?) — st for all s,teS. In
this case, LUC(S,8), WLUO(S, ) and LMC(S,8) will be denoted
by LUC(8), WLUC(S) and LMO(S) respectively.

Namioka [23] considers topological semigroups § for which LUC(S)
has a LIM and Mitchell [22] recently shows that certain fixed point prop-
erties are equivalent to the existence of a [multiplicative] LIM on LUC(8),
WLUC(8) [LUO(S8), LMC(8)]. Topological semigroups & for which

1 n
LUC(8) has a LIM of type —n—z @; where each ¢; is multiplicative hag
=1
been studied by the author in [16] and [18].
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REMARK 4.1. For any action (8, X)

(a) C(X) =2 LMC(S, X) 2 WLUC(S, X) 2 LUC(S, X),

(b) Tt is easy to verify, or arguments similar to those given by
Mitchell [22] (Lemmas 2, 3) for LMC(8) and WLUO(S), and Namioka
[23] (p. 64, 68, 72) for LUC(S), will show that each of the spaces ligted
in (a) is norm closed, S-translation invariant and contains constants.
Furthermore, LUC(S, X) and LMC(S, X) are subalgebras of o(X).

(¢) If fem(X), the condition: “whenever s, s, s,, se§ then
sup I (8a*@) —f(s-2)] - 0" does not imply that feO(X) since any fem(X)

such that ;f = ¢-1x for some fixed ¢ and all s e8 will satisfy this condition
(see [11], p. 299, footnote).

(d) I 8 is a semitopological semigroup; then. C(8) is left translation
invariant but wof necessarily right translation invariant. When 8§ has
a completely regular topology and aeS8 such that 7,((8)) = C(8), then
the mapping from § into §, s - sa for all se8, is continunous. In factif
8y =8, 85y 8, then p, ,(f) = ps,(f) for all feC(S). Consequently s,a — sa
([6], Theorem 22, p. 276). In particular, if § is a completely regular semi-
topological semigroup, then €(§) is translation invariant iff 8 is a topol-
ogical semigroup. However, the subspaces ZUC(8), WLUC(S) are left
introverted, and LMC(S) is left M-introverted (which already implies
that they arve right translation invariant) for any semitopological semi-
groups §. Furthermore, it follows from [25] (Theorem 1) that WLUG(S)
is the unique‘maximal left-introverted subspace of €(8); and it can be
shown that LMC(8) is the unique maximal left M-introverted subalgebra
of O(8) (this observation is due to Mitchell [22] when § is a topologlcal
semigroup).

Lemua 4.2. Let (8, X) be an action.

(a) If (8, X) is separately continuous and X is compact then LMC (8, X)

J=0(X).

b) If (8, X) is separately continuous and affine and X is a compact
convexr subset of a l.c.s., then WLUCO(S, X) = «(X).
. ) If (8, X) is joimily continuous and feO(X), then the mapping
Jrom 8 to C(X) defined by s — .f for all se8 is continuous when C(X) has
the topology of wuniform comvergence on compacta, In pmtwulow, if X 8
compact, then LUC(S8, X) = ((X).

Proof. (a) For any multiplicative mean ¢ on O’(X) , let zeX such
that the restriction of p, to ¢(X) coincide with ¢ (Remark 2.1 (b)). Then
for any feC(X), if 8, > s, 5., $<i8, then ¢(, f) = f(s. ) = f(s @) = p(,f).

(b) If  is & mean on C(X) and #¢X be such that u(h) = h(z) for all
hes? (X) (Remark 2.1 (¢)). If hes# (X) and s, — s, 8,, s¢8, then j, s e (X)
for each a and u(, h) = h(s, 2) = h(s-w) = u(h).
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(¢) Let feC(X), 8, 8, 8;,8¢8 and K be a compact subset of X,
For each a, pick @,¢K such that the continuous real function |, f—f|
attaing its maximum on K. If sup |f(sq-2)—f(s-@)] does not converge

to 0, then there exists &> 0 and subnets {s,}, {»,} of the nets {s,} and
{x,} respectively such that |f(s, ®,)—f(s-z,)| > ¢ for all y. By compactness
of K, we may assume that x, converges to some @l . Consequently we
arrive a contradiction that -

|f(s,2,) —f(s @) +|f(s-2) —f(s-m,)| >0

since s, @, - s-o and s, —s-@ by jointly continuity of (8, X).

Remark. Lemma 4.3 (c) hag been shown by the author in [18]
(Lemma 2.1) for the case when § is a topological semigroup, and the proof
given there can be carried to our cage. However we give a (different)
proof for the sake of completeness.

Lemma 4.3. Let (8, X) be an action, A be a norm closed S-iramslation
invariant subspace of O(X) contaiming constants amd ¥ be a o(A*, A)-
" compact subset of the set of means on A containing the set of point measures.
Let P: 8XY — Y be defined by (s, 9) — Ly for all se8 and peX. Then

(a) P defines am action (8, Y) which is continuously homomorphic
to (8, X).

(b) P defines a separately continuous action (8, Y) iff for each feA
and 8, > 8§, 84y 88, then @(y flep(sf) for all peX.

(c) P defines a jointly continuous action (8, ¥) iff A < LUC(S, X).

Proof. (a) Define a continuous mapping II from X into ¥ by
II(%) = p, restricted to A, ze¢X. Then (s-@) = L,p, for all seS and
. weX.

k (b) is trivial; to prove (b), if (8, X) is jointly confinuous, let fed
and define feQ(Y) by flg) = ¢(f) for all pe¥. Now if s, >§, 8, 8¢S,
then

0< o< If(s, m) —f(5°0,) <

llsf —sp 1l < —of(p) =0

since feLUO(S,Y)=0C(Y) by Lemma 42 (c).

sup |, f(g)
el

Conversely, if A

S LUOR, X), let fed, s, 38, 8y, 88 and (]7/9 —~@, @5, peX, then
\ 98 (o) = @ ()] < N@p (s ) = Pp (N |95 (of) — 2 ()]
< oo f =ofll 4 1o (o) = 9 (o) | - 0.

Congider the following properties for a given action. (§, X)

(P,) Whenever (T, Y) is affine and continuously homomorphic to
(8, X) and Y is a compact convex subget of a l.c.s., then ¥ has a fixed
point for T.
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(P2) Whenever (T, Y) is affine, separately continuous and continuously
homomorphic to (8, X) and ¥ is a compact convex subset of a le.s.,
then Y has a fixed point for 7.

(Ps) Whenever (T, Y) is affine, jointly continuous and continuously
homomorphic to (8, X) and Y is a compact convex subset of a lec.s.,
then ¥ has & fixed point for 7.

THEOREM 4.4. For amy action (S, X)

(a) O(X) has an S-invariant mean iff (Py);

(b) WLUC(8, X) has an S-invariant mean iff (P,);

(c) LUC(S, X) has am S-invariant. mean iff (P,

Prqof. For each of (a), (b) and (e), let I7 be a continuous mapping
from X into ¥ such that I7(s-@) = 9 (s).J7(z) for all se§ and #X, where 7
is a continuous homomorphism from § onto 7. Define II: ¢ ( Y) - C0(X)
by (Hh)(J) = h(ﬂ(y) for heO(Y),er Then I7 is linear, H(lX) =1y,
H(h) 0 for >0 and II (aah) = ,sﬂ(h) for all s¢8, heC(Y).

. (a) Since II{«/(X)) 2 O(X), it follows that ¥ has a fixed point
for 7' whenever C(X) has an S-invariant mean (Theorem 3.1). Conversely,
if (P,) holds, consider the action of § on ¥ the set of means on 0(X)
defined by (s, ¢) = Lyp for all s¢8 and p<¥. Then (8, ¥) is affine and is
continuously homomorphic to (8, X) (Lemma 4.3 (a)). Since ¥ is a w*-
compact convex subset of O(X)*, it follows that ¥ has a fixed point v
for §; and u is an S-invariant mean on 0(X).

(b) Let feWLUC(T,Y). If ueO(X)* then IT*(u)eC(Y)* and hence

(o JT1f) — p (I = 1T* ey ) = IT* )l = O

whenever s, — s, s,, seS. Hence JI(f)eWLUC(S, X). Since WLUC(T, Y)
2 #(¥Y) (Lemma 4.2 (b)), it follows that If(.d(Y)) < WLUO(S, X).
Consequently ¥ has a fixed point whenever WLTU((S, X) has an S-in-
variant mean (Theorem. 3.2). Conversely, it (8, X) satisfies (P,), congider
the action of S on ¥ the set of means on WLUX(S, X) defined by
(8, p) — Lyp for all se§ and ¢e¥. Then (8, ¥) is affine, separately con-
tinuous and continuously homomorphic to (S, X) (Lemma 4.3 (a), (b)).
Since: ¥ is a w*-compact convex subset of WLUC(S,X)*, it follows
that ¥ has a fixed point y for §; and y iz then an S-invariant mean on
WLUO(S, X).
() If feLUO(T Y) and s, —=>$, 8, se§, then I[Sa(ﬂf LN
lﬂ(n(su)f)-—ﬂ‘(ﬂ(g)f M < lysgf =il 0. Hence IIfeLUO(S X). Bince
LUC(T, Y)=0(Y) (Lemma 4.2 (c)), 1tfollows‘oha;tﬂ(ﬂ(l7))CLUO(S,X).
COonsequently ¥ hag a fixed point whenever WLUC(S, X) has an S-in-
variant mean (Theorem. 3.2). Conversely if (8, X) satisfies (P;), consider
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the action of § on Y the set of means on LUO(S, X) defined by (s, ¢)
— Lyp for all seS and peX. Then (8, ¥) is affine, jointly continuous
and continuously homomorphie to (8, X) (Lemma 4.3 (a), (¢)). Since ¥
is a w*-compact comvex subset of LUC(S, X)*, it follows that ¥ hag
a  fixed point u for §; and g is then an S-invariant mean on
LUC(S, X).

Remark. (a) When 8 is a topological semigroup and {n(s); seg}
2 homorhorphic representation of § as continuous mappings from. a topol-
ogical space Y into Y, then the following are equivalent:

(1) there exists a continuous mapping /7: 8 — ¥ such that II(s,s,)
= n(sy)II(s,) for all s, 8,e8.

(2) there exists y<¥ such that the mapping s —5(s)-y, seS, is
continuous from § into Y.

Consequently Theorem. 4.4 (a) becomes Theorem. 4 in Day [4] when §
is a topological semigroup and § = X. Note that if § is only a gemi-
topological semigroup, then (1) does not imply (2) in general

(b) when § is a semitopological semigroup and (S, 8) is the action
defined by (s, ) —>st for all s,te8, then every separalely continuous
action (T, Y), where T is a continuous homomorphic image of § with homo-
morphism #, is continunously homomorphic to (8, §) since the mapping

II: 8 =Y, II(s) = 5(s)-y for some fixed ye¥ and sef iz continuous

and II(sy ;) = n(s,)M1(s,) for all s, s,¢8. Consequently Theorem 4.4
(b), (e) hecomes Theorem 4, 2 respectively in Mifchell [22] when S is
a topological semigroup and § = X. '

- For a given action (8, X) and neZ*, if

Q:(n) whenever (T, Y) is continuously homomorphic to (S, X)
and Y is compact, then there exists a non-empty finite subset F o ¥
such that |F| < » and ¢ F = F for all teT.

(Qg(n)) whenever (7', T) is separately continuous and continuously
homomorphie to (8, X) and ¥ is compact, then there exists o non-empty
finite subset F' < ¥ such that |F|<n and ¢-F = F for all te7'.

(Qa(n)) whenever (T,Y) is jointly continuous and. continuously
homomorphic to (8, X) and Y is compact, then there exists a non-empty
tinite subset ' < ¥ such that |F| <« and ¢-F = 7 for all teT'.

Then with simple modification of the proof of Theorem. 4.4 and ap-
plying Theorem 4.2, one obtains:

THEOREM 4.5. For any daction (8, X) and neZ+

(@) O(X) has an S-invariant mean which is the average of &k multipli-
cative means for some keZt, k<< n iff (Ql(n)).

A(b) LMC(S, X) has an S-invariant mean which is the average of & mul-
tiplioatm means for some keZ, k< n iff (Qz(n)).
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(e) LUG(S, X) has an S-invariant mean which is the average of %
multiplicative means for some keZ¥, k< n iff (Qs(n)).

Remark. (a) When 8 is & topological semigroup, § = X and » =1,
Theorem 4.5 is due to Mitchell ([21], Theorem 1; [22], Theorems 1, 3).
The author proves Theorem 4.5 (¢) for the case when § is a topological
semigroup and § = X in [18], Theorem 2.2.

"(b) When § is a locally compact group and ¥ is a locally compact
space, R. Ellis [7] has shown that an-action (S, Y) is separately continuous
itf (8, ¥) is jointly continuous. Consequently, for any action (8§, X)
where § is a locally compact group, then (P,) < (P;) and {Qx(n)) - (Qs(n))
for all neZ*. Furthermore, we can prove, using Ellis’s result something
even stronger (the following proposition is due to Mitchell [22], Theorem 7,
for the case when S = X): ' .

PropPOSITION. If (8, X) is an action and 8 is a locally compact group,
then LUC(S, X) = WLUC(S, X) = LMC(S, X).

Proof. In any case

(*) LUC(S, X) < WLUC(S, X) € LMO(S, X).

Let ¥ be the set of multiplicative means on LM (8, X), then the
mapping SXY - ¥, (s,¢) > L, for all seS and geM is separately
continuous (Lemma 4.3 (b)) and hence jointly continuous (Elis [7]).
By Lemma 4.3 (¢), LMC(S,X)< LUC(S, X) forcing equality in (*).

Remark. Semitopological semigroups S for which

(%%) LUO(S) has a LIM of type%Z%,
- 1

where ‘each ¢; is a multiplicative mean on LUC(S), and yet m(8) does
not even admit a LIM are abundant (see for example [16]). However
the only examples of topological groups 8 which satisfy (**) we can
find are the finite groups. In fact, it is known ([19] Theorem 3) that the
only topological subgemigroups S of & locally compact group which satisty
(**) are the finite groups. Furthermore, it is also known ([8] Theorem 1,
[27] Theorem 3.3.6) that when S has the discrete topology and 8 is right
cancellative, then S satisfies (++) iff S is a finite group. (See also Mitchell
[22] discussion in Theorem 6).

5. Special cases.

A. Fixed point properties on convex compacta and
subspaces of m(S8). Let § be a semigroup, A be a norm closed left
translation invariant subspace of m(S) containing constants and K,
be the set of all means ¢ on 4 such that I7,(A) € A4, where (IIf)(8) = @(.f)
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for all se8 and fed. It & = {7(s); s<8} is a homomorphic representation
of § as mappings from Y into Y, for each y< ¥, define (Tyh)(s) = h(n(s)y)
for all hem (Y} and se§. Consider on the pair §, 4 the following fixed
point properties (see [1], p. 128). .

(B,) Whenever & is a homomorphic representation of S asg affine
continuous mappings from a compact convex subset ¥ of a Le.s. into ¥
such that Ty («#(¥)) < A for some yeX, then ¥ has a fixed point for &,

(B,) Whenever & iz 2 homomorphic representation of 8 ag affine
continuous mappings from a compact convex subset ¥ of a lc.s. into ¥
such that {y; Ty« (Y)) = A} is dense in 'Y, then ¥ has a fixed poing
for &.

(E;) Whenever & ig a homomorphic representation of § as affine
continuous mappings from a compact convex subset ¥ of 4 l.c.g. into ¥
such that T'(s#(Y)) < A for all y<Y, then ¥ has & fixed point for .

In general we have from Theorem 3.1 that:

A has & LIM < (P) = (B,) = (B;) = (1,).

When K, is non-empty (which is the case when § has an identity),
then

A has & LIM < (P) < (By) = (By) = (T,).

To prove (#,) = (P), let peK, and ye¢¥ such that P, coincide. with
the mean T*(p) on &#(¥) (Remark 2.1 (o)), then Tyl (X)) = 4.

When 4 is right translation invariant, then K, includes all finite
means on 4 and it follows from Theorem 1 in [1] that

4 has a LIM < (P) < (H,) < (B;) = (B,).

‘When 4 is left introverted, then X 4 includes all means on 4 and
it follows from Theorem 2 in [1] that

A hag a LIM < (P) < (B;) < (H,) < ().

B. Fixed point properties on compacta and subalgebras
of m(8). Let 8 be a semigroup, 4 be a norm closed left translation in-
variant subalgebra of m(S) containing constants, H, be the set of all
ped(4) (the set of all multiplicative means on. 4) such that IT,(4) < 4
and neZ*. Consider on the pair §, 4 the following properties (see [21]
p. 118):

(Fl(n)) ‘Whenever {5(s); s¢S} is a homomorphic representation of
§ as continmous mappings from a compact space ¥ into ¥ such that
Ty(C (Y)) < A for some ye¥, then there exists a non-empty finite subset
F = Y such that |F| < n and n(8)F = I for all sel.

(Py(n)) Whenever. {n(s); s} is a homomorphic representation of

* ©
Im Action of topological semigroups, invariant means, and fimed points 153

8 as continuous mappings from a compact space ¥ into ¥ such that
{y; .’l’y((}’ (Y)) < A} is dense in ¥, then there exists a non-empty finite
subset F' < Y such that |F| < » and (s)F = F for all seS.

(Fs('n)) Whenever {n(s); seS} is a homomorphic representation of
8 as continuous mappings from a compact space Y into ¥ such that
Ty(0(X)) < A for all yeY, then there exists a non-empty finite subset
F £ Y such that |F|<<n and 7(s)F =T for all se8.

Let (U(n)) stand for the statement that A has a LIM of the type

I

—7—}_7 @; Where each @;ed(4) and k< n. Then in general it follows from
LA

Theorem 3.2 that:
(Um) = (Qn) = (Fu(n) = (Fy(n)) = (Fu(m).

‘When H, is non-empty (which is the case when § has an identity),
then

(U(m)) < (@) < (Fy(m) = (Ba(n) > (Fa(n)-

To prove (Fy(n)) < (Q(n)), let peH , and y ¥ such that the restriction
of p, to C(Y) coincide with the multiplicative mean T*(¢) on 0(Y), then
Ty(C(Y)) s 4. : '

When A is right translation invariant, then H, includes all point
measure on 4; a simple modification of the proof of Mitchell [21] (The-
orem 1, (3) = (1)) shows that (Fy(n)) = (U(n)). Consequently

(T(®n)) < (Q(n)) < (Fo(n)) = (Fy(n) = (Fo(n).

. When A is left M-introverted, then H, = 4(4) and a simple modi-
fication of the proof in [21] (Theorem 2 (4) = (1)) shows that (F(n))
< (U(n)). Consequently  *

(U() < (Qn)) < (Fy(n) < (Fa(n) < (Fy(m).-

C. M-introverted subalgebras. For certain classes of subalgebras,
Theorem 3.2 assumes a stronger form: .

THEOREM 5.1. Let S be a semitopological semigroup, A be a norm
dlosed, left tramslation subalgebra of m(S) containing constawis and neZ*.
If A satisfies either (1) or (2): -

(1) A is left M-introverted;

(2) LUC(S) = A = LMU(8);

Ld , > .
then A has o LIM of type -;'—9-2 @; for some keZ*, k <n and k divides n iff
i

(Q'(m)) whenever {n(s); se8} is a homomorphic representation of S a8
continuous mappings from a compact space ¥ into ¥ and there ewists
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a multiplicative T<K[0(X), A] such that JT(h) = T (,4h) for all sef
and heC(Y), then there ewists a non-empty finite subset F = Y such that
|F| < n, |F| divides n and 7(s)F = F for all seS.

Proof. Sufficiency follows easily from the proof of Thecrem 3.2.
To prove necessity, let H, be the set of distinct elements from {g,, ..., ity
then as in Remark 3.3 (c), the factor semigroup @& = §/H, of § defined
by the equivalence relation E: a(E)b iff L,p == Ly¢ for all p<H, is a finite
group. Let {S,,..., §8,} denotes the coset decomposition of § by @ It
we can show that

(%)
define a linear mapping u: m (@) —~4 by u(h)(s) = h(5) for all sed,

lged for each 4 =1,...,m

m
where § iy the homomorphic image of ¢ in G. Then (k) = 2h (c‘zf)lsi,
3

where {a,...,a,} i5 a coset representation of @ One readily echecks
that e E[m(@), 41, p(h) = (p(h) for all-seS, hem(@) and y is multi-
plication. Consequently each *(¢,) is a point measure Doy t=1,...,k

1 &
on m (@), g;¢G, and —7;:219% is & LIM on m(@). By uniqueness of invariant
. 1 k 1 :
means on a finite group, %2 Py = - 2, by Hence |G| divides k. By
1 geG

Remark 3.3 (c), there exists a non-empty subset F < Y, |F|<n, such
that 5(s)F = I for all scS and |F| divides |G|. Consequently |F| di-
vides k.

It remaing to show ().

(1) It A is left M-introverted, let S; denote the o(A*, A)-closure
of {ps; p, restricted to A and seS;} in A(4). If § %%y and toeS; N S;,
let {s,} = 8, and {t;} = 8, be nets such that 1%1295”( £ = w(f) and Ii}anplﬂ H
= w(f) for all fed. Let p,cH, be such that Lypy = Lyp, for all seS;,
tel;. Since {L, ¢} < H,, {L,ﬂ(po} < H,, and H, iy finite, there exists
Y1y YaeH, and ay, B, such that Ly, ¢y =y, and Lyypo =y, for all a2 q
and B2 . By our choice of ¢y, v, % v,. On the other hand,

va(f) = limgy (o f) = Hmﬂo(ﬂwof) = li;n/iu(zﬂf) == ya(f)
a a
for all fed, “where (L, 1) (8) = po(of) and seS, which is impossible. Con-
sequently, {S;; 4 =1,...,m} is a collection of disjoint o(A*, A) closed
o .
subset of 4(4) with union (J 8, = 4 (4). Hence each §; is also open
=1 .
and 1g.eC(4(4)). Let fied such that o(f;) =1§£(q:)‘for all ped(4)

(Remark 2.1 (a)). It follows that 1g = fied for all {=1,...,m and
hence (**), ) ‘o
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(2) I LUCS) < A = LMO(8), let 8;¢{84,...,8,} be arbitrary
but fixed and a;e8. If s, >3, s,, 8¢8;, and peH,, let @” be an extension
of @ to a multiplicative mean on C(8) (Remark 2.1 (a)). Then for each
fed < LMC(S),

(Lo 9) () = 0(s, 1) = 0" (o, f) 0" ) =olf) = Lyp(f)-

Consequently L.p = L,,p for all peH, and se8;. Hence {Sy,...,8,,}

m
ig a collection of disjoint closed subset of 8 with union |J S, = §. Tt
i=1
follows that each §; is also open and 1g,«C(8). Let s, —> s, sp, se8; then
s, for some §; {8y, ..., 8,} and there exists f, such that sgel, for
all B2 B,. Consequently {aeS; s;aeS;} = {aeS; sacS;} for all 3> B,,
which implies [, 1, —g)l =0 for all §>8, and 15,cLUC(S) < 4.
Hence (*#) holds. )

Remark. We do not know whether or not Theorem 5.1 will gtill
remain true without impossing that A must satisfy either condition
(1) or condition (2).
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Some metric and topological properties of certain linear spaces
of measurable functions

by
STEVENS HECKSCHER* (Cambridge, England and Swarthmore, Penn.)

Abstract. Locally convex spaces of measurable functions, which are projective
limits of the normed function spaces of Zaanen and Luxemburg, are studied from the
topological point of view. Some duality results are obtained, in which topologies
of uniform convergence on families of solid sets of functions are important. In the
case in which such spaces are metrizable, a completeness condition can be: given,
and it is then often possible to represent the metric dual explicitly as a funetion
space. :

1. Introduction. Tt is the purpose of this note to communicate some
results concerning topological vector spaces whose elements are measur-
able functions. These results are in part an extension of some older work
of Dieudonné [1], and are related to the papers of Welland [6], [7].
‘We make use also of the recent work of Luxemburg and Zaanen on
normed Kéthe spaces [4].

The function spaces which we consider are all projective limits, by
linear mappings of a very natural type, of a family of normed Kéthe
spaces (which need not be complete).

The term “locally convex space” will be used to mean “locally con-
vex topological vector space”. An “absolutely convex” set in a vector
space will be a set which is both convex and balanced, and a “neighborhood”
in a topological vector space will always be, unless stated otherwise,
a neighborhood of the origin. @ will stand for the scalar field which wa
now assume to be held fixed; & may be either the real or the complex
number system. We assume from now on that 4 18 a non-trivial, non- .
negative, countably additive, (totally) o ~ finite measure on the non-
void set X; we assume that the Carathéodory extension procedure has
been applied to u, so that ux cannot be further extended by this proce-

* This research was carried out in part while the author held a U. 8. National
Science Foundation Science Faculty Fellowship at Cambridge University, 1966-1967.
Part of this research was supported by funds from grants to Swarthmore College
by the IBM Corporation and by the Alfred P. Sloan Foundation.
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