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Projective and inductive lLimits of Banach spaces
by
ED DUBINSKY (Warszawa)

Abstract. We consider the projective and inductive limits of sequences of maps
of Banach spaces. New results are given on when these are, respectively, reduced
and Hausdorff. Applications are made to the guestion of the density of a countable
intersection of dense subspaces and to the problem of constructing a Fréchet space
with a given sequence of canonical maps. Also, an application to the theory of Z-nuclear
spaces is indicated.

Let T,: Py —~Fpyn =1,2,... be a sequence of continuous linear
maps of locally convex spaces. The projective limst of the sequence (T,)
is the locally convex space F = F[7] where F is the vector space of all
sequences & = (@,) ¢ [ F, with the property that each &, = T, #,,, and ©
is the induced product topology. We have the canonical projection maps
P,: F > T, defined by P,z =,. Obviously P, = T,P,,, for all n.
We say that the projective limit is reduced if each P,(F) is dense in F,.

Let 8,: B, By, » =1,2,... be a sequence of continuous linear
maps of locally convex spaces. Let @,: B, - @E, be the usual injection
map which sends ze B, into a sequence whose nth coordinate is # and
all other coordinates are 0. Let H be the vector subspace of @ F, generated
by the elements Q% —@, 18, .0 ... 08,2, k< n, zeB;. Then the in-
ductive limit of the sequence (§,) is the topological vector space E[r]
= @ B,/H. Tt is Hausdorff (and locally convex) if and only if H is
closed.

Let T,: Fppy =~ F,y Ryt Guuy > Gy, m=1,2,... be two sequences
of continuous linear maps of Banach spaces. We say that (7,,), (R,) are
equivalent if theve exist isometries U,: F, — @, such that U, 'Ry Upiy
= 7u.7"=1y2;"' v

Let F be a Fréchet space and let (p,) be a fundamental sequence
of seminorms defining the topology. Consider the seminormed space
(F, p,) and let F, be the normed space formed by taking the vector

space F/kerp, Wlth the norm induced by p,,. Let F be the completion
of F, . There is no loss of generality if we assume that D) < Dya ()
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for all » and «e¢ F. In this case the identity map on F induces a contin-
uous linear map F, - F, and its extension to the completions,
ﬁ’pn 1 —>ﬁ’p is called the nth canonical map of the sequence (p,).

If ¥ is a Banach space we shall sometimes consider more than one
topology on E. In this case, for simplicity of notation, we adopt the
convention that if no topology is mentioned then the norm topology is
understood. Thus, B, B” will stand for the first and second Banach
space duals of E. :

LemmA. Let T,: By » Fpyn =1,2,... be o sequence of linear con-
tinuous maps of Banach spaces with dense range. Then for each k, the set
{be Fy: A(wy,), with @, = T,0,,, and z, = b} is dense in Iy.

Proof. Choose %, &> 0 and acFy,. There is no loss of generality
if we assume that [|T,] < 1 for all n. We construct two sequences (zf+/-1),
@), j=1,2,... as follows. Take af = Ty(2}*!) with |o%—a|< /2.
Then for each j > 1 take aj*/~" = Ty(af™) with ||uft 1 —ali /1) < o2/,
It follows that for each n > %, the sequence (27); is Cauchy in F, and
hence convergent to "< F,. By continuity we have 2™ = T, 2" for all
nzk and |of—a|| < |of—af]|+|of —a] <ef2+6/2 =5 We define
& =T,0...0T ,4" for k<mn and it follows that (#") is the desired
sequence. W

Using this lemma, we now obtain two results; one on the density
of an intersection of dense subspaces and the other characterizing reduced
projective limits of sequences of Banach spaces.

ProposITION 1. Leét X be a Banach space and (X,), o decreasing se-
quence of subspaces > for each n 3 a linear continuous map A,: F, —X
of Banach spaces with A, (F,) =X, and A;'(X, 1) dense in F,. Then
() X, is dense in the closure of X,.

Proof. First suppose that 4, is not 1-1. Then we can replace it by
4,: F,kerd, - X. Clearly A, (F,[ker A,) = A, (F,) =X, and if
II,: F, -~ F,[ker 4, is the guotient map, then AN X ) = T A7NX,.,)
which is dense because I7,, is onto. Thus we may assume that A, is 1-1.

Now we define T,: F,.,—~F, by T,(y)=A;"4,,,(y). This
map is defined becanse X,., < X,; it is obviously linear and its
continuity follows from the closed graph theorem. Moreover, T,(F,.,)
=AM A (B = AN (X ,00) S0 T, has dense range. If we define
Tyt F, > X, by Ty(s) = A,(w), then T, also has dense range. Applying
the lemma, with & = 0 we conclude that N Ty... T, (F,.,) is dense in X,.

But this intersection is clearly equal to N4y (Fop) =N X0 W
n n

Remark 1. Proposition 1 is a slight generalization of an unpublished
result of W. Wojtyriski who assumed that X was a Hilbert space, and
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each A, was a fixed map, 4: X — X where 4 was 1-1 and had dense
range. The converse of our result is clearly false for we can take each X,
to be a fixed dense subspace which is not the image of any Banach space.

On the other hand some hypotheses are necessary for it is true that
in every infinite dimensional separable Banach space there is a decreasing
sequence of dense subspaces whose intersection is {0}. Indeed we need only
take a dense sequence (z,) and perturb it slightly so that it remains dense
and becomes linearly independent. Then if X, is the linear span of #,,
Xpyyy-++, bhe sequence (X,) has the desired properties.

PRrOPOSITION 2. The projective limit of a sequence of linear continuous
maps of Banach spaces is reduced if and only if each map has dense range.

Proof. We have the maps T,: F, ;, - F, and projective limit F
with canonical projections P,: F —F,, » =1, 2, ...

Clearly if each P, has dense range, then the relation P, = T,P,,,
implies that T,(F,.,) > T,P,.,(F) = P,(F) so T, has dense range.

Conversely, if each T, has dense range, the lemma immediately
implies that each P, has dense range. M

Next we apply Proposition 2 to obtain a general method for con-
structing a Fréchet space so that it has a fundamental sequence of semi-
norms with preassigned canonical maps.

THEOREM. Let T,: P, —~F,, n =1,2,... be a sequence of linear
continuous maps of Banach spaces which are 1-1 and have dense range.
Then 3 a unique (up to isomorphism) Fréchet space F which has a funda-
mental sequence of seminorms for which the sequence of camonical maps is
equivalent to (T,),. Moreover F admits a continuous norm.

Proof. Given (T,), let F be the projective limit. A fundamental
sequence of seminorms for F is given by the sequence (p,),, Where

Pa(@) = [P, @)l, @cF
and P,: F — F, is the canonical map. Since T, is 1-1 and p,, (z) = L Py (@)1
it follows, for a given k, that if p,(x) = 0, then P,(x) = 0 for all n so
2 = 0. Thus each p,, is a norm. In particular ¥ admits a continuous norm.
Also, F,, is just the normed space (¥, p,) and the canonical map ﬁ'pn o f‘pn
is the extension of the identity on F. Moreover, by definition, the map
P, F, —F, is norm preserving so its extension U,: ﬁ’p — F, is also
norm preserving. By Proposition 2, P, has dense range so U, is an iso-
metry of ﬁ‘pn onto F,. Finally, the map U,'T,U,,;: i?’ﬂM . —»Fﬁn equals
the identity on F,,  so it is the canonical map and F' has the desired
properties.

Since any complete locally convex space is isomorphic to the pro-
jective limit of its canonical maps, the uniqueness of F follows from the
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easily checked fact that any two projective limits of two equivalent
sequences of maps are isomorphic. B

Remark 2. It would be interesting to know if this theorem hag
a converse. In [2], Proposition 1, a converse is proved for the case in
which F is a Fréchet space whose topology is defined by a sequence of
norms which come from inner products (the assumption of nuclearity
in that result is obviously irrelevant), but we are unable to prove a more
general result. ‘

Remarlk 3. The theorem has an application which actually provided
the motivation for these considerations. If 1< p < g< oo and &el, Iy,
let 2'be the Banach space of all sequences & = (#;) which can be repre-
sented x = s-§&f, sel,, teq, (coordinatewise arithmetic) with norm
inf (||s| 4 |{ll) where the inf is taken over all representations. Then
l,= Acl, and it can be shown that with an appropriate choice of
£, 3 a continuous linear map 7': 4 — A which factors A —1I, 4 A with 4
diagonal, bubt no power of T is absolutely summing. Along with the above
theorem, this leads to an example of a A-nuclear Fréchet space which
is not nuclear. Details will appear subsequently in a joint paper with
M. S. Ramanujan. . i

Finally we dualize Proposition 2 to obtain a new sufficient con-
dition for an inductive limit to be Hausdorff. The dualization is obtained
via the following well known result ([3], p. 139).

Dusriry tegoreMm. If T,: F,,, — F, is a sequence of linear contin-
uous maps of locally convew spaces whose projective limit is veduced, then
the inductive limit of the maps Ty: F [Ty (F,)] = Fy [ T3 (Fpyy)] s Haus-
dorff. (Here T, refers to the Mackey topology.)

PropostTION 3. Let 8,: B, > B, ;, n =1,2,... be .a sequence of
li’:ﬂ;ﬁa’}" gontinuous maps of Banach spaces > for each n, the second adjoint,
8.: By ~ B, is 1-1. Then the inductive limit of (8,) is Hausdorff.

Proof. Let F[r] be the projective limit of the maps of Banach
spaces, 8,: H,,; - H, with projections P,: F — H,. Now & is 1-1 if
and only if S, (Z, ) is dense in E, so by Proposition 2 each P, (F) is

“dense in H,. .

Now from the fact that §, is the adjoint of §, it follows that
each map 8,: B, ,[7,(H,.)] > By[7,(B,)] is continuous (here
re'fers Ito the weak topology) and hence ([3], p. 158) each of the maps
Bt By [53(Bny1)] — By [7,(B,)] is continuous.

Let F[7;] be the projective limit of thiy lagt sequence of maps.
Notice that the vector space ' and the canonical projections P,: F — B,
are the same as before. Since the Mackey topology 7, (B,) on B, is weaker

- than the norm topology, it follows that each P, (F)is dense in B, [7,(B,)] —
that is, the projective limit Fl7] is reduced. e
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Finally we apply the duality theorem to this last projective limit
and conclude that the inductive limit of the maps S,: B, [t.(Z,)]
~> By 1 [1(By)] is Hausdorff. Since the Mackey topology, wx(%,), on ,
is exaetly the norm topology, we are finished. M

Remark 4. The best previous theorem on this question is that of
De Wilde [1] who shows that if each §, is 1-1 and maps the closed unit
ball of B, onto a v (E,.,)-compact set, then the inductive limit is
Hausdorff. This hypothesis and the hypothesis of Proposition 3 do not
compare in either direction as is easily seen by considering, respectively,
the two maps S: ¢ — ¢, S: 1, > 1, where each map is defined by the

relation,
1
— 2.
"

8((,) = (

It would be interesting to have simple necessary and sufficient
conditions for the inductive limit of continuous linear maps of Banach
spaces to be Hausdorff — even in the case when each map is 1-1.
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