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Fractional powers of closed operators
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P

Abstract. In case of closed operators 4 in a Banach space such that the resolvent
R(A; A) exists for A > 0 and satisfies |AR(1; A)|| < M,y(A> 0), the fractional power
(—4)* (0< a< 1) ig defined as the strong limit of the family of integral operators

N

() I'(1— )]~? jza—l[z—zR(z~A)]dz for N—> co. This definition enables one ' to

study  the funda,menta.l properties of powers such as (—A4)%+8 = (— A)*(—4)5,
((—4)%)# = (— A)°A. The methods are natural and elementary and depend on several
cha.mcteﬂstic identities involving Stieltjes transforms. )

Introduction. The most general clags of operators in a Banach space
for which fractional powers were constructed is essentially that which
we will call the class o#". It consists of those operators A which are defined
and closed on a subset of a Banach space X with range also in X, and
whose resolvent E(4; A) exists for each 1> 0 and satisfies the fo]lowmg
condition of uniform boundedness with respect to 4 > 0:

IAR(A; A< My, (2> 0).

. For a rather wide subclass.of &7, namely the negatives of infinitesimal
generators of uniformly bounded strongly continuous semigroups of
operators, E. Hille [4], R. 8. Phillips [12] and A. V. Balakrishnan [1]
developed an operational calculus of fractional powers in the framework
of semigroup theory. Many other authors also worked in this field, as for
ingtance B. Nelson [10] who studied fractional powers as a particular
cage of a more general functional calculus, furthermore K. Yosida [17],
P. L. Butzer, H. Berens and U. Westphal [3], U. Westphal ([14], [15]) and
others. In all of these investigations concerning fractional powers of semi-
group generators Laplace transform methods play a more or less important

role. Fractional powers for other subsets of o were examined for instance

by M. A. Xrasnogelskii and P E. Sobolevskii [9], T. Kato [7] and J. Wa-
tamabe [13].

The study of fractional powers of operators: of class A in genera,l was
started about 1960 by A. V. Balakrishrian [2]. For 4deX and 0 <.a<il
he defined the fractional power (—A4)% (B stands for Balakrishnan) ag
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smallest closed extension of the operator J° given on the domain of
A by : .

a . 1 3 a— . \
0.1) Jif —m(fﬂ [T —AR(%; 4))f da.

In 1966 H. Komatsu [8] published the first of a series of papers about
fractional powers of operators. He intended to summarize and generalize
the results already known in that field from a unified point of view, Hig
definition of fractional powers, just as Balakrishnan’s, is a “process of
closed extension”, i. e. the fractional power in question is first defined
by an integral representation on a certain subset and it then shown to
have an extension which is a cloged linear operator. In contrast to Bala-
krishnan’s work, Komatsu’s investigations depend upon the theory of
intermediate spaces which may be the reason that his calculus is somewhat
intricate. For the equivalence of various definitions of fractional powers
see e. g. V. Nollau [11].

, In the present paper we want to define and study fractional powers
of operators of class & from a different point of view. It may roughly
be'characterized by the slogan: “limit process and transformation method?.
For fractional powers in connection with semigroup operators this program
was carried out by U. Westphal [15] and turned out to be an elementary
way in dealing with the problem. In [15] the power (—4)%, 0 < a<1
4 being the infinitesimal generator of a uniformly bounded semigroup’
{Z(®);t> 0} of class (%,) in a Banach space X, is defined by

a 3 1 3
(0.2) (—Ayf = s—hm——fu‘l‘“[I—T(u)]fdu,
&0} Ka‘ .

'K, a,-eonstant, whenever this limit exists in the norm of the space X. As
ment}oned above, the transformation which is the most important tool
of this calculus is the Laplace transform.

. In analogy with (0.2) and in contrast to Balakrishnan’s and Komatsu’s
method of closed extension” the purpose of this paper is to define
(—A)",O<a<1,Aex’, by

N
0.3 A e 1 a—

03) (—ayf qugmmof I —1R (45 A)]f a2
whenever this limit exigts (the integrand having a singularity at infinity).
Instead of the Laplace transform the Stieltjes transform will turn out
tf’ be thfa appropriate one in our present investigations. Therefore the
fu'st section of this paper deals with the Stieltjes transform, in particular
"V.Vlﬂl @ -convolution theorem which does not geem to be {reafued in the
literature. It is mainly used for proving some identities which are charac-
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teristic in our caleulus, for ingtance the identity (2.11) of Section 2..This

~ identity gives a certain correspondence between the “differential quo-
N

tient” [ 4~ [I—2AR(2; A))f @4 and the integral [ p, (u)R(u; A)f du which
S0

0 .
is an element of D((—4)%). By means of (2.11), the fractional power defined
by (0.3) is shown to be closed. Section 3 is concerned with a type of inver-
sion formulae for (— 4)%, the study of which seems to be new in principal
(compare [9]). Section 4 is devoted to the properties of additivity and
multiplicativity of fractional powers.

The authors wish to express their sincere gratitude to Professor P. L.
Butzer for suggesting this paper and many helpful discussions. The con-
tribution of the first-named author was supported in part by a DFG
research grant.

1. The Stjeltjes transform. Let the function f be defined on the interval
0 <3< oo and let f belong to L(0, r) for every positive ». Its Stieltjes
transform (cf. D. V. Widder [16]) is given by -

(1.1) : | SIf1(s) =f£—i‘:)? w

whenever this integral exists, s being any positive real number (for the
purpose of this paper it will be sufficient to restrict oneself to these values
of s). If (1.1) converges for a point s =s,, $, > 0, then it converges for
every s > 0. The uniqueness theorem reads: If S[f](s) =0 for s> s,
then f(z) = 0 almost everywhere on (0, o). Moreover the Stieltjes trans-

" form may be regarded as an iteration of the Laplace transform.- Indeed,

denoting the Laplace transform of the function f by

e - L1 =7 0) =[ e (2) A,

~one has: If S[f](s) converges for s> 0, then L[fI(¥) and Q[L(f)1}(s)

= Q[f"1(s) exist for t>0 and s> 0, respectively, the converse being
also true under an appropriate additional assumption, as for instance
L[f]1(#) shall converge also for ¢ =0 or 2[f]({) shall converge absolute-
ly for ¢ > 0. In these cases one then has

(1.3) Gfls) = 88N (s> 0).

In the theory of Laplace transforms the concept of “convolution”
plays an important role. But the results obtained there don’t have their
exact analogs for the Stieltjes transform. In case of Laplace transform
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one has: If f, g €L.(0, r) for every r > 0 and f " (1), ¢ (3) converge absolutely
for i > 1,, then the convolution of f and g defined by

[F*91(a) = [f(w—u)g(u)du

belongs to L(0,r) for every » >0 and its Laplace transform converges
absolutely for > i,, satisfying

(1.4) [F*91" () =f" (g (¥)-
In particuiar, it f, geL(0, co); then its convolution also belongs to L (0, o),
Fulfilling

If<gl < Al Tlglle

and (1.4) holds for ¢ > 0.

For the Stieltjes transform, however, one has the following result
due tio I. I. Hirschman and D. V. Widder [5]: If a,(®), ay(®) are mono-
tonely increaging and

F1 Cf 1
4() =fsJ—w B(s) =of s
0 .

converge for s > 0, then there exists a monotonely increasing function
y(x) such that

day ()

day (2),

-3

o 42) = _.L
A" B(s )—Df )

(s >0),
where i, 4, > 0 and ;- 4, < 1. This last condition. is essential. It means
that the case A, = A, =1, which would give the desired convolution
theorem, is not valid.

But even if a;(s) is absolutely continuous with a~'a(z)eL (0; o)
(¢ =1, 2}, there may not exist a function y(x) having the same propertleg
a8 o;(z) and satisfying .

Slu](8)8[a](s) = S[y'1(s)-

Indeed, consider the following example kindly communicated by
D. V. Widder to P. L. Butzer: Let ¢(®) = (2—a)~* for 1< o< 2 and
@(z) = 0 elsewhere; then & 'p(s)el (0, co) and

(s+2)" 41

T T (8= 0).

Slp(®)](s) = (s+2)~% [log +2 are tan

(s —‘:2)”“]

Moreover, if

Cle@))(s) Sle@)](s) = S[w(@)](s),

icm

(1) (s+2)
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then
(@) =2¢(m)PVf 24 g
v Y

which can be calculated explicitly to

0 (02 <),
14 (2 —a)# -1
w(x) = 3§ 2[p(x) ]2[103"1”% +2a,reta,n(~2tm—)m] I<e<2),
0 (x> 2).

This implies that

lim o(z)-¢7*(@) =2z or z'w(z)=0(p@)]) (z—>2-),
T>2—
and therefore 4w () cannot be of elass L (0, o).
Nevertheless we have the following convolution theorem which is
a generalization of a particular example treated by Balakrishnan [2].
TEEOREM 1.1. If two funciions g, and g, have the follow'mg properties

for every s >0

—lgi(m)EL(O’ ) (1=1,2),

gy (zu)|

2) (s+a)” g(m)f L gJ(',‘Du_ duel (0, oo) (t,j=1,2,4 #3),

() (s+au)™ [g:(20) g2 (#) + g1 (2) g2 (@u) 1€ L (0, o0) for almost all u in (0, 1),
then the fumction

u” gy (wu) — gy (wu)
1—u

wlgs (wu) — gy (wu)
1—u

90) =00 [ au+gs(o) [ au
0 9

exists for almost all o in (0, o) and (s+2)" g(#)eL (0, o) for every s > 0.
Furthermore

Glyl(s) = S[g:1(s)-S [g.1(s)
g (@) is called the convolution of g,(z) and g,(x), denoted by

(s >0).

g(@) = (g1 b 9)(2).

Proof. For s > 0 we have

dw dy,

O R e
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where the double integral is absolutely convergent on account of asgump-
tion (1) and can be rewritten as follows, the domain of integration Dbeing
decomposed into two parts, one for which # >y, the other for which
<Y

oo z . )
f o [ i [ 99(8) + 0 @9 (o]

0

Slg.1(s)Slg21(s

1 oo
rodu 1
=ufl_uof [ P Hm][m(wu)m(w)-<|-g1<m)gg<wu)1dm (s> 0).
By means of property (3) we obtain

o

1
fm[gl(ﬂm)gz( )+ g1(%) gu(wu) ] doe
0

S YA FNC I

1 o .
S0 8100 = [ 175 [ 135 {5 0a[ 2] —autom

0

which gives for s> 0

+

+ga(2) [% 01 (%) —g, (‘mu)]} dm.

Ag one may interchange the order of integration because of assumption
- (2) the theorem is proved.

Remark. Trivially the statement of the preceeding theorem is also
true if assumptions (1)-(3) are fulfilled for s = 0; we then even have
&g (#)eL (0, co). Furthermore, in case s = 0. we ma.y replace the lower

integral limit, namely 0, in assump‘nlon (2) by any (0 < &< 1) because
of the estnna,te

1

r g; (%)

g, ()] 1+s

1
1z — (@)

@

du <

f l%g«;(m) i f [ (o) —

1—wu

2. Fractional powers. Let X be a complex Banach. ypace with norm
[, and. 4 a closed linear operator with domain D (A4) dense in X and

range in X. Moreover, suppose that the resolvent R(A; A) of A exists
for each 1> 0 and satisfies

{2.1) IAE(2; A)| < M, ~ (2> 0),

icm
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M, being a constant independent of ‘1. The class of these operators 4
shall be denoted by . Let us mention first that for 4 4 property (2.1),
i. e. the uniform boundedness of the family of operators {AR(1; 4); 1 > 0},
can be sharpened to an assertion of convergence for 1-— oo, namely,
if Aet, then

(2.2) s—HmMARM; A)f =f (feX);
A—>o0

this is obvious for feD(4) since AR(1; A)f—f = R(}; 4) Af, and follows
for each feX by the theorem of Banach—Steinhaus.

DEFINFTION 2.1. Let A A and a be a real positive number with 0 < «
< 1. We define the fractional power (—A)* of (—A) by

N
(2-3) —A)f =s—1lmC;* [ 17 [I-AR(1; 4)1f 44,
- N—oo °

whenever this limit exists, the constant C, being given by C, = I'(a)I'(1—a)
——f 274A+1)71dA The domain D((—A)) of (—.A)* is the set of those

eleme_nts feX for which the limit (2.3) exists.
One readily sees that (—.4)" is a linear operator, furthermore the

domain D((—A4)%) cannot be empty. Indeed, for feD(4) the integral
07t [ 2 I—AR(2; A)1f d2
0

.

exists in the sense of Bochner and by definition is equal to (—.4)°f.
In analogy to [15] we now wish to verify the formula

o N .
24) (4P| [ . WRG; A)f &3] = [ #HI—AR(; A)f a4 (N >0)

for each feX, where p.(4) is a numerically-valued function independent
of the operator A. To calculate the function p, (1) we will choose a partic-
ular A4, namely that which is defined on the real number system by
multiplication by a fixed negative number; i. e. let X = R, and

Aof = —sf
Then the resolvent of 4, is given by

R(2; A)f = (A+8)"Y (42 # —s).
Obviously, 4, is of class & with M, =1 and
(—40)f=5f, D((—40) =R

(2.5) (s > 0, fixed; feR,).
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' Replacing 4 by 4,, in case N =1 the integral on. the left-hand side of
equation (2.4) (if it is valid) turns out to be the Stieltjes transform of p,
(multiplied by f). Thus we. want to prove

Lemma 2.2, If 0 <a< 1, then
(2.6)

[rt 497 ar = s S [p(s) (5> 0),

where © [_fpu]fs) is the Stieltjes tmnsfwm of the fractional integral
= [I"°h, =

[~ ] (o) m
of order (1—a) of the function

2.7) po(®) f(w w) " b (w)du (x> 0)

1 -
o) = T 7Y O<e<1),

0 : (w=>1).
Furthermore, x*p, () belongs to L(0, o) and

2.8) lim &[p,1(s) = [ pa(@)ado = C,.
804 H

Proof. Since h,el (0, ), p,(@) =
where on. (0, co
t>0, satlsfymg

P. () =7 () =t7Mg() (1> 0).

Here g(t) = [I°¢""](#), i. e. the fractional integral of the fumnction
~* of order e, the Laplace transform of which is given by

g (@) =7+ (z>0).

The function g~ (v) is Lebesgue integrable on (0, oo) with respect to z,
and thus we have for every s = 0

[I*°h,](#) exists almost every-
) and its Laplace transform converges absolutely for every

L)

2.9  [v(w+1) e ~f 9" (v)dr = &[T g(1)1(s)

8§

= 8[p. (11(s).

Substituting sjz = A and 1/r = 4, respectively, in the first integral of
(2.9), we have

a=1

® 1
f—r‘“(r—i—l)‘ldv: = s““f/l““(l—i—s)“‘dl =[ Fa+1)da (s> 0)

0
which tends to C, for s 0. The lagt term m (2.9) turns out to be the
Stieltjes transtorm of the function P,. Thus s~ f 2HA+8) " aA =S [p.]1(s),

cm
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and (2.6) is proven. As (2.9) is also valid for s = 0 and p, () is non-negative
on (0, co), it is obvious that 27 p,(#)eL(0, c0), and (2.8) is satisfied.
Another representation of the function p,(z) easily follows by the
substitution % -y = (x—u)(1—«)~* on the right-hand side of (2.7),
giving o
z
Cfy(l—y) 7y (0<a<),
palo) =1 . ‘
0 ¥y (y—1)"dy
z

From (2.6) it is clear that for A = A,, defined in (2.5), the formula
(2.4) is fultilled. We now want to establish it for any operator A4 of class
2. For this purpose we need the fundamental identity given in Lemma
2.4; this is preceded by Lemma 2.3, generalizing the convolution Theo-
rem 1.1. :

TEMMA 2.3. Let At and let gy, g, be two funciions in L(0, r) for every
r > 0. such that the following conditions are satisfied for am element feX

(2.10)
(v >1).

(1) 0@ [R(@; A [ lga(@)l[Bu; A)f|ducl (0, o),

1

“lgi(wut) — g, (wu)]
1—u

@) sl 4] v duel (0, %) (i, i=1,2 i #5)

(3)  [g1(mu) gs (%) + g1 (@) g2 (zu) | B (2u; A)fllel(0, o0) for almost all u im
(0, 1).

Then (g:% g) (@) ewists almost everywhere on (0, co) and (g% ¢:) (@) | R(z; A)fIl
el.(0, o). Furthermore,

[ (0220 @) B(w; A)f @ = [ g (o) B(a; A)da [ ga(w) B(u; A)fdu.

Proof. In view of the first resolvent equation
zR(x; A)R(xu; A) = (1—u) ' [R{zu; A)—R(z; 4)]
the proof of Theorem 1.1 can be carried over 1:0 this lemma by replacing
(+8)"! by R(z; 4).
LEMMA 2.4. For each feX, 0 < a <1, M, N being real positive numbers
there holds the identity
(2.11)

M =)
[ #I-2R(; A)wf o (/N Rlug A)F du

N
= [ FI—2AR(%; A)]d}.f Do (/M) R (u; A)f du.

0
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Proof. First of all we mention that the integral
[ pu(w)B(u; A)fdu
0

exists in the sense of Bochner for each fe X because of (2.1) and %™ *p,(u)
L (0, o). Furthermore, the iterated integrals in (2.11), say on the left-
hand side, define a family {J, »} of bounded linear operators from X
into itself with norm |7y x|l < Mo(My+1)a™ M*0,. Thus we have to
ghow that

JM,Nf = JN,Mf (fEX)~

Introducing the auxiliary function by (3) = (0 <A< M), By (h) =0
(A > M) for every positive M, Jy; » can be rewritten in the form

T = (@M T— [ by (WR(; A)aR} [ p,(u/H) Blu; 4)fiu.
[ 0 ’

As proven in detail by Hovel [6], a rather lengthy caleulation shows
that the functions by, (u) and p,(w) satisfy the conditions of Lemma 2.3,
such that

(2.12) T f = [ Pan(w)B(u; A)fdu,
0

where {Py v} is the family of numerically-valued functions given by

Paunt®) = 3 () = [oat )i ()]0

and w™ Py y(u)eL(0, o). Of course from (2.12) we see that for 4 = Ao
the operator Jy,  means multiplication by the Stieltjes transform of the
function Py, and

M
SPae) = [ 7 [1- 2| arstwaem

M 2‘“—1 N o1

o
coe [ [ s
‘ J s+4 J s—l—udu (5>0)
The last term of this equation shows that G[Py Nj (s) is symmetric in M
and W, i.e. ’
G[PM,Nj(S) = S [Py,u1(s)

im?lying Py,x =Py y by the uniqueness of the Stieltjes transform.
This proves the identity. '

(s> 0),

icm°®
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PROPOSITION 2.5. Let 0<a<1. For each.element feX the integral
fpu(l)R(l;A)fdl
belongs to D ((—4)%), and for N >0
(2.13) (—Ay[ fw PAIN)R(1; A)fda] =fz°~1[1—ua(x;,4.)]fm.

Moreover, if feD((—A)), then

0 N )
@14) [ pAINVR(A; A)(—AYfar = [ 27 [I—2R(; A))f d2.
0

0

Proof. We first show that

(2.15)

Moo

s—lim [ p,(A/M)R(2; A)fdh = Cof  (feX).
1]
Indeed, in view of (2.8), we have
COf— [ P RIMR(; A)fdh = [ 27 'pa (M) I - AR (A; 4)1fdA,
0- 0

where the integral on the right-hand side can be split into two parts, one

from 0 to r, the other from 7 to infinity. For fixed r, the first integral
/M

in norm can be estimated by (My+1)|fll [ |27 p.(4)|dA which tends
0

to zero ags M — oo. The second integral being estimated by

sup ||f—AR(4; 4)f||C.

. r<i<oo
also converges to zero because of (2.2). Now using Lemma 2.4, equation
(2.13) follows immediately. Indeed, a§ M — oo the right-hand side ofl

N

(2.11) converges to C, [ A*'[I—AR(4; 4)]1fdA for each feX, implying .
0

the existence of the limit on the left of (2.11). Thus by definition (2.1),

Afmpa(u/N)R(u;A)f du belongs to D ((—A4)°) for each .N‘> 0 and (2.13)

is valid. To complete the proof of the proposition note that in (2.11)
the order of integration may be interchanged giving (2.14) as M — co in
case that feD{(—4)).

Having established this proposition, we are now able to prove that
the operator (—.4) is closed. :

TEEOREM 2.6. For 0<<a<1 (—A) s a closed linear operator and
its domain D ((—AY) s dense in X. 4
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. Proof. Following upon Definition 2.1 we showed that D(4)
= D((—4)?), and therefore D ((—4)°) is dense in X. To prove that (— 4)
is closed let {f,}m.; be a sequence of elements in D((—A)“) converging
to fyeX with (— 4)°f, converging to hye X. Then by (2.14)

N )
[ AT —2R(3; A))fadh = [ p AN R(2; A)(— A)f,d2,

and passing to the limit in norm as » - oo, we obbain

N o

J 2 I =0R G5 ))fodh = [ pu(M/N)R(3; A)hydi.

0 0

' ?Jetting N > 0o the right-hand side of the last equation tends to O,h,
in nlornil, giving fosD((—A)") and (—4)°f, = hy. Thig proves that (—A)°
is closed. ’

"Rem.ark. Having shown some properties of the operator (—A4)
defined in (2.1) it is now obvious that it coincides with the fractional
power (—A)z of Balakrishnan [2]. Anyhow, this is clear for the restric-
tions of the operators on D(4), and therefore

(—A)BAR(; 4)f = (— AFAR(; A)f  (feX),
giving as A—> oo the desired result
(—A)p = (—4)
because (—A); and (—A)* are both closed.

. .3. Inversion formulae. We defined the fractional power (—A)* ag
limit of a family of integral operators constructed by means of the differ-
ence [z —.ZR(l; A)]. Conversely, we now want to give a representation
of just this difference in case feD((~4)%). This will lead to the inclusion

D((—4y) = D{(—4Y) (<o),
which will be needed for the proof of t for fracti
power, P he additivity law for fractional

Lewmia 3.0, If feX, 2> 0, then

B1)  I—=AR(; )If = (— AP i [ pu(u/d) Rlu; )T —uR(u; A)]fdu
and 0

.(3-2) [I—AR(A,A)]]‘ = (__A)aoa—lf ’M—GR(’LL;A) [I—ZR(/T;A)]fd’LL
0

* ©
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Proof. Replacing the integration variable 1 by % and N by A in formula
(2.13) and then differentiating it with respeet to 1, (3.1) is easily obtained.
Indeed, one deduces for 7 > 0 from (2.13)

Ath
(W/m) [ I —uR(u; A)lfdu

A

= (— A" [ p.(w)R{u(i+h); A) [T — AuR (bu; A)]fdu,

which yields (3.1) a8 h—>0+4.

Concerning the second formula we can prove it by verifying the follow-
ing identity by means of the Stieltjes convolution theorem, namely
Lemma 2.3: .

[I—1R(4; A)] [ pu(a/N)R(w; A)fdw
) N ‘ oo
:%—fw““l[Ime(w; A)]dwf w R (u; A)[I—AR(A; A)Ifdu  (feX).
ap 0 .

This gives the desired representation in (3.2) by letting N - oco.
From both formulae we may conclude an approximation theorem
for the family of resolvent operators {AR(4; A); 1> 0} in case fe D((—4).
ProposITIoN 3.2. If feD((—4)%), 0 < a< 1, then

II—2B(A; A)If| = 0(A7%) (A o).

Proof. As feD((—A)“), the closed operator (—A)* in (3.1) may be
interchanged with the integral sign. Afer having multiplied the identity
by A* we may continue in the same manner as in the proof of (2.18) of
Proposition 2.5. .

Form this result we obtain immediately

ProrostrioN 3.3. If feD((—A)) for some o 0<a<<1, then
FeD((—A)) for each B,0 < f<a, and

(—4)f = 07" [ WP [I—uB(u; 4)1f du.
0
Proof. By Proposition 3.2 the integrand in norm of the latter integral
is of order O(uf~"1) for large w, proving that the integral exists and by
definition is equal to (—.4)'f.
Let us look once more at formula (3.2). Multiplying it by 4 and noting
that [I—AR(2; 4)] = (—A4)E(; A), and that, by definition of (—A)"%

Gilf“_”(—A)RW;A)lR(l;A)fd% = (=AY AR A (feX)
J )

6 — Studia Mathematica XLIL.2
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sinee 0, = ¢,_, and RB(1; A)feD(4) (feX), we have that
3.3) (—A)AR(A; A)f = (—A)(—A)"AR(A; A)f  (feX).
For A-> oo this yields a particular case of the power rule
(3.4) (—A) = (—A)(—d4)ye.
Indeed, feD(4) implies feD ((;-A)]"“) and (3.3) can be written ag
IR (5 A)(~A)f = (— AFAR(; 4)(~ A)~"F,

giving (—A)f = (—AYP(—A)~°f for A—> oo because (-~d)* iy cloged.
Conversely, if feD{(—A)*(—4)"%, B(A; 4) and (—d)*(—A)~e may
Dbe interchanged on the right of (3.3), and beeause (—.4) is closed it follows
that for A-» co (—A)f = (—A)*(—~A)°f.
Next we want to generalize (3.4) to

(5:5) (—A)f* = (—a)(— 4

£0<af and a+f< 1.

) ‘4. Additivity and multiplicativity. To prove the additivity of frac-
tional powers, namely (3.5), we may verify the following identity

N, M 0
ofu““l[I—uR(u;A)]duf oI —wR(w; A)1d0 [ pays(y[P)R(y; A) dy
0 0

P o i
=0fy”+ﬂ‘1[1—yR(y;A)]dyf Pp(0/ M) R(w; A)der [ p,(u/N)R(u; A)fdu

for positive? real numbers M, N and P, and each JeX. Of course
when carrying this out in the wusual manner we have to apply the

Stieltjes _convolution theorem twice to each side of the identity Dbecause
of three iterated integrals being there.

On the other hand we may proceed as in the proof of i it
6 proof of (3.4) using densit;
and the fact that (—4)* is closed. e ; !

Lonwa 4.1, If feD(4%), 0 < a, f, a+f < 1, then
(4.1) (—A)f = (—4)* (- AYy.
Proof. feD (4 implies (—4)’f<D(4) and

oo

(2 1 o
(=AY (~4)Yf = 0.0} W —uR(u; A)1du [ [T —oR(v; 4)]fdv,

which shall be shown to be equal to

e
o] W R (u; A))fau,

atf o

©
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representing (— A)+Pf if feD(A) and therefore all the more if feD(4?%).
But this follows by & direct caleulation already carried out by Balakrishnan

[2, p- 422] ) . )
Now for 4> 0, [AR(4; A)T* is a family of operators from X in D (4%
approximating the identity I for A~ oo. Therefore, applying Lemma

4.1, we have »
(— Ay (— AV [AR(2; A)Tf = (=AY [IR(A; A)TS

for each feX. Continning as in the proof of (3.4), carried out in the forego-
ing section in detail, we obtain the desired power property by letting 1
tend to infinity. Note that the inclusion D((—4)**#) = D((—4)?), which
is clear from Proposition 3.3, is essential in that argument. Thus we have

TmmorEM 4.2. Let a, 8> 0 and a+p < L. An element feX belongs o
D((—A)"(»—A)”) if and only if feD{(— A7) In this event

(—AY(—AYf = (—Ay¥°f.
We now turn to the multiplicativity of fractional powers
(—4y)? = (—4)". ;

For this purpose we must show thab the operator B = —(—A)" I8
of clags . To verify this we need a representation of the resolvent R(4;.B)

of B for A>0. . ) .
First for positive numbers 4,  and 0 < o<1 we define the function .

(w) by : .
8 ) = O P72+ 2 cosmra + ™1™

which has the properties g,(u) =90, ga(u)el (0, 00) for A>0 and
fwu"l g:(w)du = A7, Moreover,
0

Slg](s) = (A9 (82 0,4>0).

Next we introduce the operator E, by
(4.2) Rof = [ ga()Blu; A)fdun (feX;2>0)
0

which is bounded and linear on X to itself and satisfies

(4.3) [Rafll < Mo (1l

Since (—A)* is closed we have for feD ((—AF) EifeD ((—AYy) and
(44) ByTAL+(—A)If = [AT+(—AFIEf  (feD{(—4Y);2>0).
Now A. V. Balakrishnan [2] established the relation

{iI—\—O;lfowﬂ'—l[I——wR(w; A)]d-’ﬂ}f g(u) R (us A)fdu =F (feD(A)§ Z.>,0)
b ?


GUEST


192 H. W. Hével and U. Westphal

by a direct caleulation, which in our terminology reads

(4.5) [AI+(-Af1Ef =f (feD(4);2>0).
This leads us to
PROPOSITION 4.3. If 0 < a <1, the operator B = —(—A) is of class
A and .
(4.6) . R(A; By =R, (A>0).

Proof. For a given feX we choose a suitable sequence {f,}2., of
elements in D(A) converging to f. Then (4,5) yields [AI —B1R,f, = f,
for 4 > 0, and passing to the limit in norm for # — co we have

§—lim[iI —B1R,f, = f.
00

Now, since s —lim R,f, = B,f and [Al —B] is closed, we obtain R,feD(B)
and oo .
[AI-BlR;f =f (feX;2>0),
implying that !
R,(MI—Blf=f (feD(B);1>0)

because of (4.4). By these two equations it follows that the operator

R, is the resolvent of B for 1> 0, and thus B is obviously of class o

- We remark that Kato [7] defined fractional powers by stipulating

. the operator R, given in (4.2) to be the resolvent of (—.A4)%, 0 < a< 1.

The lemma to follow will again deal with a fundamental identity
from which we may conclude the rule of multiplicativity.

- Lmvya 4.4, In case 0 < a, <1 and M, N >0 we have for each feX

N 00
@7 [ AT -2R (4 —(—A))1d [ Das(w/ MR (u; A)fdu
M w '
= [ W —uR(u; A)du [ py(AIN)R(3; —(—A)fda.
0 0

N oo
Proof. Betting Ry(w) = [ #g,(u)dl, he(u) = [ py(4)N)g;(w)dA and
0 0
V) =270 <A< M), b(A) = 0(A> M), we obtain that tho Stiel-
tjes convolutions H, (u) = [hl(- ) :pnﬁ(-ﬁ)] (w) and Hy(u) = [hy( )xb55( )1 (w)

exist almost everywhere in (0, o) with w='H;(u)el (0, oo) (4 = 1, 2).
A detailed proof of this result is given in Hovel [6]. By means of Proposi-
tion 4.3, Lemma 2.3 and (4.2) each side of (4.7), denoted by I,(f) and
I,(f), respectively, may be rewritten in the form

L) = [ QuR@w; A)f du (i =1,2)

©

TFractional powers of closed operators 193

where

Quu) = B NP0 (u/M) — Hy(w),  Qu(w) = (aB)™ M hy(u) — Hy(u).

1

Moreover, replacing R(u; 4)f by (w+s)"%, it iy easily to be seen that

GlR.1(s) = G[Qe](s) (s> 0),

and the uniquenesy theorem of the Stieltjes transform gives @, = @,.
This proves the lemma.

TueorEM 4.5. Let 0 < a, f<1. feX is an element of the domain of
((—AY)? if and only if it belongs to D {(—A)%). In this event

((—AYPS = (—A4)*f.

Proof. Passing to the limit in norm for ¥ — oo in (4.7) we have
o M
(=AY [ Pop(u/ M) R(u; A)f du = [ w2 [T —uR(w; A)f du  (feX)
[] 0

yielding the desiréd statement for M — occ.

The restriction of our investigations to real exponents « in the intervall
0< a< 1 is not essential. The method may be extended to any real
a>1. Indeed, for n< a<n-+1{(n =0;1,2,... fixed).it is natural to
define (—.A)* iteratively by (—A4) = (—4)""(—A4)" Since 0 <a—n
<1,(—A)*"" is defined by the method of our paper. Thus

. .
(—A)f = s=lm0z%, [ # " [I—AR(1; A)1(—A)'f d2
0

N-roo

whenever this limiﬁ exists. Another method to define such fractional
powers would be
N
(—A)f = s=Um0;" [ 2°7 [I—2R(%; 4)]"" f a2
N-+00 H
Whereas the former procedure is complete as it stands, the latter
approach, considered ab initio, would need a I‘m.rallel treatrqent along
the lines of this paper. In any case, both definitions are equivalent by
the standard closure arguments.

The method of this paper may of course be extended to complex
values of a with Rea > 0.
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