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Stable probability measures on Banach spaces

by
A. KUMAR and V. MANDREKAR* (East Lansing, Mich.)

Abstract. In this paper stable probability measures on a real separable Banach
space are defined and several characterizations of these measures are established
using a generalization of the convergence types theorem. These results are used to
identify stable probability measures as limit laws of certain normed sums of independent
identically distributed Banach space valued random variables.  These limit laws
possess a Lévy—Khinchine representation that can be characterized on certain Orlicz
spaces in terms of the representing Lévy-Khinchine measure.

0. Introduction. In this paper, we consider stable probability measures
(laws) on a real separable Banach space. Using a generalization of the
convergence types theorem ([2], p. 174) we establish several characteri-
zation of stable probability measures and deduce as corollaries extensions
to Banach space of known results on stable laws ([2], p. 199; [5], p. 64;
[8], p. 327). These results allow us to identify stable probability measures
on Banach space as the limit laws of certain normed sums of independent,
identically distributed Banach space valued random variables. Finally,
we characterize stable probability measures on certain Orlicz spaces in
terms of their Levy-Khinchine representation given in ([7], p. 71).

In Section 1, following the preliminaries, the convergence type theorem
ig established. Section 2 presents the characterizations of stable laws and
final seetion characterizes the Levy—Khinchine representa,mon of the
stable laws on Orlicz spaces.

The lemmas in Section 2 are suggested by some recent work of Jajte [5].
The proofs in [5] in the Hilbert case treated there are imcomplete and
the main theorem in ([5]; p. 64) which iz extended here to certain Orlicz
spaces, contains a lacuna ([5], p. 70).

1. Preliminarjes and notations. In this section we present notations
needed in this paper. We shall denote by E a real separable Banach space
with norm |-|| and by R the space of real numbers with the usual topolog’y
The elements of B will be denoted by «,y,2, ... and of R by a,b,¢, .
ete. B* will denote the (topological) dual of E. For a probability measure i
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on B(E), where B(H) denotes the Borel subsets of K, the characteristic

functional (ch. £.) of u denoted by £ is a function on B* defined by

a(y) = [ u(da), where (., y)eB". It is well known. ([4], p. 37) that for
B

a real separable Banach space, #(y) uniquely determines the measure M
on B(E). For two probability measures x and » on B (&), we shall denote
by w*» the convolution of x and » ([9], p. 56). For any probability measure
u on B(H) and aeR, T,p is defined to be the probability measure on B ()
given by T,u(B) = 4B for every BeB(H) and for o =0 we define
T, u = 8, where for each BB (H)

1 ifweB,

8,(B) =
- (B) 0 otherwise.

We shall call 8, the probability measure degencrate at z. We need the
following definitions.

1.1 DEFINITION. (a) A sequence {u,} of probability measures on B(H)
is said to converge weakly to a probability measure u on B(F), if for every
bounded continuous real valued function f on B, [fdu, - [fdp and is
denoted by u, = p. z & )

(b) A sequence {u,} of probability measures on B(F) is said to be
compact if every subsequence {»,} of {u,} has a weakly convergent
subsequence.

The following theorem will be used repeatedly and is stated here for
further reference.

1.2. TEEOREM. ([9], D. 88). Let {A,}, {u,}, {v,} be three sequences of
probability measures on B (E) such that 4, = u,* v, for each n. If the sequence
{4} and {u,} are compact, then so is the sequence {v,}.

1.3. Lmvwa. Let {u,} and u be probability measures on B (H) and {@n},
aeR. Then u, = p and a, > o implies Ty tin = Lypie

¢
Proof of the lemma is immediate from [1], p. 34.

Before we prove the main theorem of this section, we need the follow-
ing lemma.

1.4. Lmdwa. Tet jo(-) be the ch.f. of a probability measure om B(H)
such that for some 6>0, |a(y)] =1 whenever Wl < 0. Then w = &,
for some zeH.

Prooﬁ. Let 4 = {yeE": |y|z < 8). Consider the random. variable
.(-, ¥) defined on B for each fixed y in E*. Then by ([21], p. 202, (-, ¥)
i3 degenerate say at 6(y). Hence u(y) = "0 (y).

Let 4,, =*{w: (#,9) = 6(y)}. Then 4, is closed and ud,) =1, for
every y in E". Consequently, the support 6, of u (see [23], p. 27) is

contained in M 4,.
YeB*
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Suppose there exist two points #, and , in ¢,. Then (z,,y) = (29, ¥)
for every y<E*. Hence , = ,. Thus the support of # containg only one
point. This completes the proof of the lemma.

1.5. THEOREM (CONVERGENCE OF TYPES THEOREM) Let {u,} and u be
probability measures on B(H) such that p, = p, and there emist positive
constants a,’s and a sequence {x,} in E such that Lo, tin*8;, = u'y where p
and u' are non-degenerate probability measures on B(E). Then there emists
an ack and an zell such that u' = T,u%68,, a,->a and |v,—z|—0 as
n—+ oo,

Proof. Suppose lima, = oo. Then there exists a subsequence {m} c {n}
such that a,,— oo. Let ¢,, = a;,". Then u,, = e (T tiom* 8 V}%0_ o = e
Since Ty, pp*d,,, = u', therefore by Lemma 1.3 T, (To, pm*0y,) = Bq.
Hence by Theorem 1.2, {—¢,,a,} being compact on B converges to some
2, belonging to B by ([1], p. 37). Hence u is degenerate, contradieting
the hypothesis. Hence,—ltuza,n < oo, : . '

Suppose now {a,,} and {#} be two subsequences of {a,}, such that
@y — @y & — o', where a # a’. We note that neither a nor a’ can be zero,
since u' is non-degenerate. Also, we have
1 T M

~Zmm

M == {Taﬁl (Tam,um* éxm)}* é
and
= {Ta;hl(Tal:“l*aaq)}*‘s,xlal—l = .

Now by Lemma 1.3 and the hypothesis we get
#o=Top*dy = Tou'*d,,,

where z; = lim —z,,a;", and 2z, = lim —x;57
M—>00 l+00

Therefore

(1.6) ' (ay)| = i (@)l for every  yeB*.

a . .
Without loss of generality we can assume b = y < 1. Hence, by iteration

&' @) = &' (by)] = ... = |a’(0"y)|. Letbing n— oo we get |a'(y)] =1,
for every y<E*. Hence by Lemma 1.4 u' is degenerate, ‘contradicting the
hypothesis. This proves that @, — ¢ and 0 < a < co.

Now it follows that Ty, tin = Top by Lemma 1.3, and from hypothesis
T, pn*0;, = u'. Therefore, by Theoremi 1.2 {m,} is compact in B and
hence by ([1], p. 37) «, converges to some z in E. Hence, Ta,n:“'n* 6% =
T,pu*d,. Thus u' = T,ux8,, which completes the proof.

2. Stable probability measure on a Banach space. In this section we
define a stable probability measure on a real separable Banach space
following Loéve ([8], p. 326). (See also ([2], p- 199), ([5], p. 64).
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9.1 DErINITION. Let u be a probability measure on the Borel subsets
B(F) of a real separable Banach space B. We say that x is a siable proba-
bility measure if for each positive real number o and b there exists a posi-
tive real number ¢ and an xel, such that

(2.2) ToprTyp = Topu*d,.

Our main effort in this section will be to prove various characterizations
of the stable probability measures which will be useful in studying stable
probability measures as limit laws of the sums of independent random
variables. For this we need the following lemmas.

2.3. LEMMA. If u is a stable probability measure on B(H), then there
exists o sequence {a,} of positive numbers and a sequence {x,} of elemenits
of B such that T, p*™é, = .

Proof. We shall prove the lemma by showing that for each n, there
exist 4, and , such that u = &, *T, u™ .

Forn =1, take #; = 0, and a, = 1. Suppose that we have u,, ..., @,,_,
and a,, @y, ..., 6, such that

po=0xTy ™ for i=1,2,..,m-1.
Dhen 5™ = Tega vt ). Honce,

*m o .
po= Ta.n—zl_l K *6‘”‘5m—1'“m1_1 *i
Now we use-the fact that x is stable to conclude that

‘u*m = Tmu*ﬁz; 1

for somec>0 and @H.
“71»—-1’mm—1

Consequently
=T uxs

-1 .
. Oy %)

pefine? Uy =¢"Y 4, = o"l(aél_lwm,_lww). . Thus- we have shown by
induction that u = 8T, @™ for every m. This completes the proof
of the lemma.

2.4. LemMA. If for some sequence of positive real mumbers {a,} and
a sequence {z,} of elements of the space B, we have '

v = lin * .
n—»o)(;(ém" T”’n‘u )

where v is non-degenerate, then Uy >0y Ay [0y, —> 1 as n— oo,

Proof. Suppose a,+> 0. Then there exists a subsequence {a,,} of
{@.} such that a.' - a < co. Therefore by Lemma 1.8

-
Oy 2" = Tawozl(axm*Tam HM =Ty,

ivl'lere Ym = B Henfze, [ (R)]™Wm® s 3 (ah) for every hel*. Since
¥ 18 continuous at the origin, therefore [ (ah)| >0 for those & with A} < &
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for some 4 > 0. Consequently,

a(h)étmmt 1 on b < 6.

Thus |a(k)| =1 on |al < é and hence by Lemma 1.4, u is degenerate.
Consequently, » is degenerate which contradicts the assumption and
hence a, — 0.

Suppose a,/a, ., + 1. Then there exists a subsequence {m} of {n} such
that ap,/a,., —~a where a 1.

If a = oo, Then ¢, = @y.;/a, -0, and

* *,
63’m+1*Ta'm+1’u "= {T”m(é‘”m*T“m” m)}*axmi—l'cm‘”m'
<e{(zm+ 1’h)(ﬁ (dn+1h))m+1
) 4ty q1h)
because for every h, [(@p.h)->1 and eCmttP(i(a, . )" -3 (R). '
Since T, (8, *T, #™™) — 0, by Lemma 1.3, we conclude that p(h)] =1
for every hel. Hence by Lemma 1.4, » is degenerate which contradicts
the assumption. . . '

Now suppose a < co. Then d,, = /@y, — a, and

25) O ¥, W () = = 5()

*mtl +1
¥ Tap " = Ty, (e * Ly g B )3* Oyt 41

T T gi(zm,h)*[" (a h)]m .
ot Lo ™ ) = = 30

with reasoning similar to one following (2.5). But Ty (8, *Ta, 4
—T,», hence |7 (k)] = |»(ah)] for every heE*. Without loss of generality
we can assume a << 1. Hence by the same argument as in (1.6) we conclude
that » is degenerate which contradicts the hypothesis. Hence a,/a,,,~ 1.

2.6. LEMMA. Let for every positive integer m, ,€E, a,cR, and

*m+1)

*n
axn*Tanl" =V

where u and v are probability measures on B(F). Then there exists an r >0
and a function z of two variables defined for every pair of non-negative numbers
a and b with values in B, such that

(ah)p (bh) = C@OM((qr + bTVh)  for every  heE.

Hence in particular, v is stable.

Proof. If v is degenerate, then there is nothing to prove. So assume
v is non-degenerate. Now by Lemma 2.4, for any arbitrary pair of positive
numbers a and b, there exists subsequences {a, } and {@m,} of {a,} such
that

O D N
W) =———>— (Logve [7], p. 323)

'my, .
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Suppose 1ima,, /@, ,m, =$ = o Then the sequence {g}, where
O = Oy imy [0y, Will have a subsequence {¢,} such that ¢, — 0.
©°.7)

H9ger gy
6xnk,+mk,fkT“nk/+mk//" l %

= {T,, (0zy,,* Loy, /’”MID')}*{T%/ ’ wk’(axmra/*T“mk/ /"*mkl)}*ézm

for suitable 2. By the hypothesis we conclude that
Bt Ly gy ™0™ — . The terms in the parenthesis of (2.7) con-
verge weakly to d,. Hence, [v(y)| = L for every ye<B*. Thug by Lemma
1.4, v iy degenerate, which is a contradiction. Hence s < oo.

Suppose there exists two subsequences {¢;'}, {6;'} of {;''} converging
to b and b respectively where b’ s b, Making use of the following
equality

(2'8) [Ta(amnk*T“nkﬂ*nk)]* [Tu Wy, (6“’1nk*T“mh/”'*mk)]

_ s gt _ *ng,-lmy,
= T“ank;u BT oy 63;‘, = [Tack—l(axnk—l—mk*T"%k—l-mk# i Hn]”)]* 6.@]’5
for guitable 2, and z, we conclude that

[#(ah)|- |7 (BR)] = |5 (wb'h)| = [»(wb"' k)|  for every el
Since ' " and both are finite, we can conclude by the same reasoning
af in (1.6), that » is degenerate. This contradicts the agsumption. Hence,
§ = lhnank/ank+,nk .

Now we make use of equation (2.8) and Theorem 1.2 to conclude that
there exists a function 2(q, b) which is the limit of 2 = a,

~a»(ca,%/(;z,%,,%)-a:mkﬂm,c and satisfies the equation
v{(ah)p (bh) = ¢HE@II; (o)

g, + a’n;c/ am/cmmk -
for every b in E*.
Define a funetion ¢(.,.) on [0, 00) X[0, co) as follows

9@ Y) =y, 8,y > 0 g@,0) =2,2>0;  g(0,y) =g,y > 0;

then the equality

(2.9) »(@h)p (yh) = dE@DMy (g(q, 4)- ) holds for all b in I,

and for all w, 4 > 0. We shall prove in this part that ¢ is the onlv £ i
: 2 8tk k i
which satisfies (2.9). P ! ‘o only unetion
Suppose not. Then there exigt 9, and g, satistying (2.9) and for some

Ty and ¥, g, (2, ¥o) < 92(%q, Yo)- Lot u = 91(@; o) Thy ;
y : i a—— en w < 1. Using
(2.9) for g, and g,, we get g2 (%, Yo) Sing

¢Hel@a o) hios(zoa);, (uh) = ¢Helmpup)hinaa,ug);, )

Thus |3 (uh)| = |5(h)|. Hence the same argument as in (1.6) yields that »
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is degenerate. This contradicts the. assumption. Hence the uniqueness
of g has been proved.

The function ¢ so defined is continuous. Let #,—>x; ¥, —>vy. Then
we ghall prove that ¢ = limg(s,, ) is finite. Suppose not, then there
exists a subsequence {n’} of {n} such that g~!(%, ,¥.)—>0. Therefore
bt = T 0 @y Ynr) DA K = Y g™ (B, Ype) = 0. Hence from (2.9) we
get )

9 (6 B)] 19 (B - B)| = [ (B)] h in E.

By letting #» — oo, in view of Lemma 1.4 we get » is degenerate. Thus
t < oo,

To conclude that ¢ = limg(#,, ¥,), we shall show that no two distinet
subsequences of g(#,,y,) can converge to two different limits. If not,
let ¢ =limg(z,., ¥,) and ¢’ = limg(@,..y,-), where ¢’ = t’. Congsequently,
from (2.9) we get [»(t'h)| = |»(t"'h)| for every h in B*. Since ¢’ = 1", there-
fore from the same reasoning as in (1.6) we conclude that » is degenerate.
Hence, t =limg(x,, ¥,). Now we make use of (2.9) again to conclude
that

for every

»(wh)» (yh) = =R Ry for every b in B

Since ¢ is unique, therefore ¢ = g(z, ¥). Thus ¢ is continuous.
It can be verified that the function g satisfies the hypothesis of Theo-
rem 4.1 of ([3], p. 632). Hence by ([3], p. 632)

g(@, y) = (@ +y")"  for some 0 <7< oo,
and

¥ (ah)y (bh) = @RS (a7 4 B7)ir R)
where a, b are positive real numbers. This completes the proof.

2.10. THEOREM (CHARACTERIZATIONS OF STABLE PROBABILITY MEA-
SURESR). Let F be a real separable Banach space and u be a probability measure
on B(H). Then the following are equivalent.

() p is stable.

(b) There emists a sequence a, of positive real mwmbers and {x,} < B
such that 8, *T, p™ = u. :

for every heH,

(e) For each integer n, there exists a y,<E and ¢, >0 such that u*"
= 5”n*Tc He
n
Proof. The equivalence of (a) and (b) follows from Lemma 2.3 and
Lemma 2.6. We note that for each n,

u = Tc;n_l (lu*n* 5—11”) — Tcilﬂ*n*a—ﬂﬁll’n‘
Hence (¢) implies (b). Also if 4 is degenerate clearly (b) implies (¢). Assume
that (b) holds and u is not degenerate. Then for every & = 1,2, ...

*nk — *n
aznk*T‘lnk‘u "= gy, = p, Where p, = 6:::%*1711,1/" .
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Hence, . ni
n.he
(8, ¥ T 1) % ek (8 ¥ Ty ") = by #T, 4
& factors
= (‘T“n/ 0y o) ¥ 6"""11("1;/"71%)%7.:
= (T dnh/'&nk) * 50” i’

where d, = a,/a,, and Gy, = ey, —( @ [ Qpz) @y, LGt 0 —> 00 above. Then,
Ty iy *Oey, = ™. Since u i not degenerate by Theorem 1.5 we conclude
that d,, —d, 2, —zel, as n— oo, and u* = T uxé,. Thus (b) = (a)
which completes the proof of the theorem.

2.11. CororLARY (Proposition 9.25) of ([2], p. 199)). Let Xy, X,, ...
be identically distributed, non-degenerate, independent, random variables

X, + ...+ X,
taking values in BE. Then u = limug , where 8, = i——L}lmll Ty,
. n n
Jor some sequence A, of positive real mumbers and {¥n} = B iff for each

non-negative integer n, there ewists a ¢, > 0 and 2y <l such that p" = dzn*Tcn,u.

Proof. Follows from the equivalence of (b) and (¢) in Theorem 2.10.
In particular this shows that limit laws of the normed sums given in (h)
of Theorem 2.10, are infinitely divisible @d.d.). :

-2.12. COROLLARY ([8], p. 327). Class of stable probability measures
on B(E) coincides with the limst laws of mormed sums of independent and
identically distributed random variables taking values in .

Proof. Follows from the equivalence of (a) and (b). The following
corollary is mow obvious.

2.13. CorOLLARY ([5], p. 64). Hvery stable law on a real separable
Banach space is i. d.

Oorf)llaries 2.11,"2.12 and 2.13 relate stable probability measures to
4 certain subelass of i. d. measures. Recently, J. Kuelbs and V. Mandrekar
([7], p. 71) have obtained Levy-Khinchine representation for i. d. mea-
sures on certain orlicz spaces extending the work of 8. R. 8. Vardhan ([11],
. 227) on Hilbgrt space. In the next section we obtain a characterization
of stable probability measures as a gubclass of thege i. d. measures in terms
of the ;[;evy-—Khinchine representation of their ch. f. g, This regult will
generalize the recent work of Jajte ([5], p. 64) to these Orlicx sypaces.

3. Levy-Khinchine representation of stable measures on certain Orlicz
sp‘aces. The Levy-Khinchine representation for the characteristic func-
tional .of a stable probability measure on Hilbert spaces has been studied
by Jajte in [5]. In thig section we shall obtain, similar representation for
stable probability meagures on cerbain Orlicz spaces. Wo remark that

the' proof of the main theorem in [511is incomplete and containg a lactna
which can be corrected (Cf. Lemma 3.6).
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We recall for further reference some mnotation and results on Orlicz
spaces. The function « used in this section will have the following prop-
erties.

(a) «is defined on [0, o) into [0, o),

(b) a(0) =0, a(s) >0 for s> 0,

(¢) ais convex and strictly increasing on [0, o),

(3.1) (d) a(2s) < Ma(s) for all se[0, o), where M is a finite positive
‘ constant independent of s,

(e) [ a(u?)dv(u)<ecalf udy(u)]for all Gaussian measures » on

(—oc, co) with mean zero, where ¢ is a constant.

3.2. DEFINITION. The space of real sequence z — (@1, Boy 25, ...)

satistying 3 a(#}) < oo is denoted by F,.
=1 ) :

The Orlicz space S8y given by I'(f) = a(#?), te[0, oo), i isomorphically
isometric to E,. Throughout this section we use this identification for
B,, ([7], p. 61).

Let o, be the function complementary to « in the sense of Young
([12}, p. 77) and 8,, be the Orlicz space corresponding to a, ([12], p. 79).
Then for each A in the positive cone of 8., (except when B, = 1,), whose

norm is less than or equal to one half, define; [zl = 3 4,4% and if B, = 1,
i=1

then |l = Y«f. The space of sequences with property that llell, << oo

will be denoted by H,. Obviously E, < H, by Young’s inequality ([12],

P. 77). In fact, H, is a Hilbert space containing B, as its measureble subset

(7], p. 62).
3.3 TEEOREM. Let u be a probability measure on the Orlicz space E,,
where o satisfies (3.1). Then u is stable on B, iff either

(3.4) iy) = exp[i(wo, ) —4T(y,y)] for all  yeE:,

where xyel, and T is an a-operator ([7], p. 16) (i. e. @ 8 the characteristic
Sunctional of Gaussian measure) OR

Y]
1+ [lolf3

(3.5) #(y) = explifamy, B+ [ (o' —1 aF (@) +

U

+ N _fv (e@‘w{) -1 —%) aF (),

where 2yel,, |[@llr is the norm of @ in 8p, U = {mel,: ) a(#?) <1}, Fis
. i=1 :

a o-finite measure on E,,‘, finite on the complement of every nbhd of zero in
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©

B, and such that 3 o([#;dF (2)) < oo, and there ewists a r (0 <r<9)
=1 u

such that T, F = 3 for every positive real a. (Stable probability measure
of index 7.)
Proof..Let (3.4) hold. Then.

fe(ay) - (by) = expli(zy, ¥)(@-+b) —4 T (y, y) (a®+b2)]

for every a and b positive and therefore
play)-fa(by) = [i((a*+0%)y) expli(@y, y)(a-+b) ~(a2+0%)H].

Henee Dby ([4], p. 87), T p*Typ = Tuxd,, where ¢ = (a?--b%)i and
@ = ((a+b)— (a*+b*)} @ cH,. Consequently, u is stable. If (3.5) holds
t?lgn by ([7], p. 1), u is i.d. on E,. Hence, there exists a gequence of,
finite measures F, on E, such that F, 4 F and a sequence w,el, such
that e(F,)*d, = u on H,. We can regard F,’s and 4 a8 measures on H
({7, p. 62). A

Since every bounded and continuous function on X » 18 also bounded
and continuous when restricted to B, by [7] (p. 65), we conclude that
¢(F,) %8, = uon %(IA. H)ence by ([11], p. 224) we get /i (y) = exp[¢ (@1, y)+

(2, 4 w! y

-I—Hf/1 (e( V1 — T ol dF ()] for every yeHY, where oy eH,,

2 . P .
”xlégl l#l}dF () < co and F is the o-finite measure as before. Since

o ! ;
I, F =dFonH, theref.ore by ([51p. 65) u is stable on H,. Consequenttly,
forevery a, b > 0 there exists a ¢ > 0 and z <M. 2 Such that T,y T, ,u. = T uxé,
To prove p is stable on B,, it would be enough to show that zJ. . Denotze
= (1) %y 2y .0) , o
Obl?efme #y, = pP;, whe%“e Pu(@) = (@1, 2y, ...,2,,0,0,0,...) on E,.
N wc{us}y #w = p on B, with argument similar to one in ([6] p. 221).

, ow 1t015 easy to see that T',pu,*T, p, = T, Hn¥8y , Where 7, = (21, 2y, ...
:f,.,zn, ,‘0, 0,...). We noté that 1,eE, for every » and u, = u implies
FS')r_ aély real d, Typ, = Tyu. Hence by Theorem 1.2, {z,} is eompzuci: on,

,,.71 oisi?quenﬂy, Tn > 20el, by ([1], p. 37). Hence 17 —2qll; — 0 by ([7]
g}.l K z), Eere:fo;e til =#. Hence, for all ¢ and b > 0 there oxigty a ¢ > 0

€li, Ruce. == i ) N
suffieiue - at T, uxTyu Tny*ézo. This completes the proof of
o Suppose 4 is stable on F,. Then by Oorollary 2.13, 4 is i. d. on £,
¢ lcl)n;eq;lﬁgtly, bﬁr ([M]p. 71), u = v#f where £ is the Gaussian paxt of u
o v —W_)Ige(lf’n)*émn where. 7,8 are increasing sequence of finite

‘E;s::ures on B, and ,¢E, for all n. We can regard F,'8, p, v and f as
. ;:L::)ers on g 2 ([7], p. 62). Since an a-operator on X, is also a trace class
per. on H,, therefore by ([11], D. 226) B i§ Gaussian on K, 2+ ‘Thus
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p=vxp Whefe f is Gaussian on H;, and v = lime(F,)*4, on H;. Since u
n—oa
is stable on H,, therefore by ([6], p. 64), £ =f or u = where »(y)
- exp[i(z, ¥)+ j(ef(m) BRIy ) ) dF(a:)] for all yeH!, and where
H

a 14|l
2eH;, F =1limF,, [ |2|}dF(2)< coandforsome0<r<2,T,F =daF
noeo  lelizst
for all positive a. g

Since » = lime(F, )8, on E,, the result follows from ([7], p. 66). This

-completes the proof of the theorem. .
To correct the proof of the theorem in ([5], p. 64) we need the following

Lemma. .
3.6 LEMMA. Let H be a Hilbert space and F a o-finite measure on H

satisfying for every a and b positive

(3.7) T, F+T,F = T(a1+bl)1/zl’1: 0< A< oo.

Then F is mecessarily of the form T, F = o’ F for every positive a.

Proof. Sinece F is o-finite, therefore it is enough to prove the above
result for finite measure. So assume without loss of generality that F
is a finite measure. :

Let BB (H) such that d(B), the boundary of B, has F measure zero.
Then T,F(B) is a continuous funetion on (0, c0), by Lemma 1.3 and
(191, p. 40). From (3.7) we get

F(a'B)+ F(b7'B) = F((o*+b*)""B) .
for all @ and b > 0. Sinece the above is true for all ¢ and b > 0, therefore,
we get

F(a*B)+ F(b™B) = F((a+b)""*B).
Let F(a™'*B) = g(a). Then ¢ is continuous on (0, co) and g(a)-+g(b)
= g(a+b), for all @ and b > 0. Therefore ¢(a) = ¢-a for @ > 0, where ¢is
a constant depending on B. Hence g(a’) = a*c. Thus F(a 'B) = a'c.
Let a =1. Then ¢ = F(B). Hence F(a *B) = o’ F(B). Since the class
{B: BeB(H), F(0B) = 0} is a field by ([1], p. 16), therefore by Carathe-
odory extension theorem

F(a'B) = a*’F(B) for every BB (H).
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" Unitary representations induced
from compact subgroups

by
MARC A. RIEFFEL* (Berkeley)

Abstract. It is shown, for the case in which the subgroup is compact, that the
induced representations of Mackey and Mautner can be defined in terms of certain
Hilbert module tensor products, or, alternatively, certain spaces of Hilbert—Schmidt
intertwining operators. These definitions are used to derive basic properties of induced
representations, and the connection with Blattner’s approach in terms of positive
type measures is discussed.

Let H be a compact subgroup of a locally compact group & Mackey
([131, [14], [15]) and Mautner ([18], [19]), using definitions involving cer-
tain spaces of measurable vector valued functions, showed how to induce
representations of H up to @. (Mackey, in fact, treated the more general ca-
se in which H need not be compact). In the present paper we show how
these induced representations can be defined in terms of eertain Hilbert
module tensor “products, or, alternatively, in terms of certain spaces .of
Hilbert-Schmidt intertwining operators. Such definitions enable us to give
convenient derivations of the basie properties of induced representations
along lines which follow fairly closely the theory of induced representations
as it is developed for finite groups (for which see [2]). Our approach is also
quite similar to that for induced Banach space represbntations which we
gave in [22].

The exposition is organized in the following way. In Section 1 we
consider the basic properties of the Hilbert space tensor product. The
principal result is that this tensor product provides the left adjoint for
the construction of spaces of Hilbert—Schmidt operators. We believe that
thig result is new, although the interconnection between the Hilbert
space tensor product and Hilbert-Schmidt operators is found implicitly
in a number of papers. In Section 2 the results of Section 1 are extended
to the setting of Hilbert spaces which are modules over sets, and in Section

* This research was partially supported by National Science Foundation grant
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