

Differentiation of trigonometric series

by

C. J. NEUGEBAUER (Lafayette, Ind.)

Abstract. Necessary and sufficient conditions are given in order that a termwise integrated trigonometric series can be differentiated a.e.

1. Let $\sum A_n(x)$, $A_0(x)=\frac{a_0}{2}$, $A_n(x)=a_n\cos nx+b_n\sin nx$, be a trigonometric series. We write $s_n(x)=\sum\limits_1^nA_j(x)$ and $\tilde{s}_n(x)=\sum\limits_1^nB_j(x)$, where $B_j(x)=a_j\sin jx-b_j\cos jx$. If $\sum A_n(x)$ converges on E, |E|>0, then the termwise integrated series $\sum \frac{B_n(x)}{n}$ is the Fourier series of a function $f\in L^2$ and f has an approximate derivative a.e. in E. This result $[9_I,\,p.\,325]$ has been extended by M. Weiss [7] who has shown that f in fact has at a.e. $x\in E$ a derivative in L^p for every $p<\infty$, i.e., for a a.e. $x\in E$

$$\int_{-h}^{h} |f(x+t) - f(x) - at|^{p} dt = o(h^{p+1})$$

for some a=a(x). There are examples of trigonometric series $\sum A_n(x)$ converging a.e. and for which $\sum \frac{B_n(x)}{n}$ is ordinarily $(p=\infty)$ derivable almost nowhere $[1_{II},\ p.\ 99]$. The purpose of this paper is to present necessary and sufficient conditions on the sequence $\{\tilde{s}_n(x)\}$ so that $\sum \frac{B_n(x)}{n}$ be ordinarily derivable.

2. In this and the following section we will collect some lemmas and remarks needed later.

LEMMA 1. Let $s_n(x) = O(1)$, $x \in E$, |E| > 0. Then

- (1) $\varrho_n = \sqrt{a_n^2 + b_n^2} = O(1).$
- (2) $\tilde{s}_n(x) = O(1)$, for a.e. $x \in E$.
- (3) $\sum \frac{1}{n} A_n(x)$, $\sum \frac{1}{n} B_n(x)$ are Fourier series of functions in L^2 which converge to these functions a.e.

Proof. The assertion (1) can be found in $[9_I$, p. 317] and (2) is a special case of a general theorem in [3]. That the two series in (3) are Fourier series of functions in L^2 follows from the Riesz–Fischer theorem, and the convergence a.e. is a consequence of their (C,1) summability and the fact that the terms are $O\left(\frac{1}{n}\right)$ by (1) $[9_I$, p. 78].

THEOREM 1. Let $s_n(x)=O(1), \ x\in E, \ |E|>0$. Let $x\in E$ be a point at which $\sum \frac{1}{n}A_n(x)$ converges. Then there exists a measurable set Q(x) having at 0 positive lower density such that $L(x+h)-L(x-h)=O(h), \ h\in Q(x),$ where $L(x)=\sum \frac{1}{n}B_n(x)$.

The proof is, with only obvious modifications, the same as the one in $[9_I, p. 324]$.

For a.e. x we have

$$\begin{split} \frac{1}{2h} \, \varDelta^2 L(x,2h) &= \frac{1}{2h} [L(x+2h) + L(x-2h) - 2L(x)] \\ &= -2 \, \sum \, B_n(x) \, \frac{\sin^2 nh}{nh} \, . \end{split}$$

Summation by parts gives

$$\frac{1}{2h} \Delta^2 L(x, 2h) = -2 \sum \tilde{s}_n(x) \left\{ \frac{\sin^2 nh}{nh} - \frac{\sin^2 (n+1)h}{(n+1)h} \right\}.$$

The expression in $\{\ \} = \frac{\sin^2 nh}{n(n+1)h} + \frac{\sin^2 nh - \sin^2(n+1)h}{(n+1)h}$ and $\sin^2 nh - \sin^2(n+1)h = -\sin h \sin(2n+1)h$.

LEMMA 2. If $s_n(x) = O(1)$, $x \in E$, |E| > 0, then

$$rac{1}{2h} arDelta^2 L(x,2h) = -2 \sum rac{ ilde{s}_n(x)}{n(n+1)h} \, \sin^2 nh + rac{2 \sin h}{h} \sum rac{ ilde{s}_n(x)}{n+1} \sin(2n+1)h$$

for a.e. $x \in E$. The same formula holds a.e. if $\sum A_n(x)$ is the Fourier series of a function in L^1 .

Proof. The first part is a consequence of the above calculations, and the second part follows from the well-known fact that both $s_n(x)$ and $\tilde{s}_n(x)$ are $o(\log n)$ for a.e. x.

3. We have occasion to use the following results on the differentiability of a measurable function $f: [a, b] \rightarrow \text{reals}$.

THEOREM 2. Let $E \subset [a, b]$ be a measurable set such that (1) for $x \in E$ there is a measurable set Q(x) having 0 as a point of positive lower density

Proof. Since $2[f(x+h)-f(x)]=f(x+h)-f(x-h)+\Delta^2f(x,h)$, we have f(x+h)-f(x)=O(h), a $h\to 0$ on a set having positive lower density at 0. Application of [6, p. 295] shows that the approximate derivative of f exists a.e. in E. Blumberg's upper boundary of f [2] defined by

$$g(x) = \inf\{y : |E_y \cap I| = O(|I|), \text{ as } |I| \to 0, x \in I\},$$

where $E_y = \{x \colon f(x) > y\}$, possesses the desired properties. The proof of this is in [5].

4. Let C^{∞} be the space of infinitely differentiable functions φ of period 2π with the usual topology. We let c_n be the distribution $c_n(\varphi) = \frac{1}{\pi} \int\limits_0^{2\pi} \cos{(2n+1)t} \varphi(t) \, dt$. If $s_n(x) = O(1)$, $x \in E$, or if $\{s_n(x)\}$ is the sequence of partial sums of the Fourier series of a function in L^1 , we can consider the distribution

$$\tilde{S}_x(\varphi) = \sum \tilde{s}_n(x) c_n(\varphi).$$

For $0<\eta\leqslant\pi$ we let $C_{\eta}^{\infty}=\{\varphi\epsilon C^{\infty}\colon \operatorname{supp}\varphi e[-\eta,\eta]\}$, and we introduce in C_{η}^{∞} the norm $\|\varphi\|=\|\varphi\|_{1}+\|\varphi'\|_{1}$. The completion of C_{η}^{∞} with respect to $\|\cdot\|$ is the space W_{η} of all absolutely continuous functions of period 2π supported in $[-\eta,\eta]$.

THEOREM 5. Let $s_n(x) = O(1)$, $x \in E$, |E| > 0. Then $L(x) = \sum \frac{1}{n} B_n(x)$ is equivalent with a function differentiable a.e. in E if and only if for a.e. $x \in E$ there is $\eta = \eta_x > 0$ such that $|\tilde{S}_x(\varphi)| \leq M_x ||\varphi||$, $\varphi \in C_n^{\infty}$.

Proof. By Theorems 1 and 2 we only need to show that $\varDelta^2L(x,h) = O(h), \ h \notin N_x, \ |N_x| = 0$, a.e. $x \in E$, if and only if for a.e. $x \in E$ there is $\eta = \eta_x > 0$ such that $|\tilde{S}_x(\varphi)| < M_x ||\varphi||, \ \varphi \in C_\eta^\infty$.

Let $x \in E$ such that $|\tilde{s}_n(x)| \leq M$, n = 1, 2, ..., and at which the formula for $\frac{1}{2h} \Delta^2 L(x, 2h)$ of Lemma 2 holds. This is true for a.e. $x \in E$.

By
$$[9_I, p. 10 (4.17)], \ \left| \sum_1^\infty \frac{\hat{s}_n(x)}{n(n+1)\hbar} \sin^2 n\hbar \right| \leqslant K < \infty \text{ for all } \hbar.$$

We assume now that there is $|N_x|=0$ such that $\Delta^2L(x,h)=O(h)$, $h \notin N_x$. Then there is $\eta=\eta_x>0$ such that $\sum \frac{\tilde{s}_n(x)}{2n+1} \sin{(2n+1)}h$ = f(h) is essentially bounded on $[-\eta,\eta]$, and $f \in L^2$. As a distribution, for $\varphi \in C^\infty_\eta$, $f'(\varphi)=-f(\varphi')=\sum \tilde{s}_n(x)c_n(\varphi)=\tilde{S}_x(\varphi)$. Since $f(\varphi')=\int f\varphi'$ we

see that $|\tilde{S}_x(\varphi)| \leqslant M_x \|\varphi'\|_1$, where M_x is the essential bound of f on $[-\eta,\eta]$. Conversely, let f be the distribution in L^2 whose Fourier series is $\sum \frac{\tilde{s}_n(x)}{2n+1} \sin(2n+1)h, \quad x \quad \text{fixed.} \quad \text{Then} \quad f'(\varphi) = \tilde{S}_x(\varphi) = -f(\varphi'), \text{ so that } |f(\varphi')| \leqslant M_x \|\varphi\|, \quad \varphi \in C_\eta^\infty. \quad \text{If } \varphi \in C_\eta^\infty \quad \text{and } \int_{-\pi}^\pi \varphi = 0, \text{ then } \psi(t) = \int_{-\pi}^t \varphi \text{ is in } C_n^\infty \text{ and hence } |f(\varphi)| \leqslant M_x \{\|\varphi\|_1 + \|\varphi\|_1\}.$

We will show that f is essentially bounded on $(0, \eta)$. Let $t_0 \epsilon(0, \eta)$ be a Lebesgue point of f and let $|f(t_0)| = L$. Let $t_1 \epsilon(0, \eta)$ be another Lebesgue point of f, say $t_0 < t_1$, and finally let $\alpha = \min\left(\frac{t_1 - t_0}{3}, t_0, \eta - t_1\right)$.

We introduce the collection $\Phi = \{\varphi \in C_a^{\infty} : \varphi \geqslant 0 \text{ and } \int_{-\pi}^{\pi} \varphi = 1\}$, and for $\varphi \in \Phi$ we let $\varphi(t) = \varphi(t - t_0) - \varphi(t - t_1)$. Then $\int_{-\pi}^{\pi} \varphi = 0$ and $\varphi \in C_{\eta}^{\infty}$. Hence

$$\Big|\int_{-\pi}^{\pi} f(t) \varphi(t) dt\Big| \leqslant K < \infty, \quad \varphi \in \Phi.$$

From this we obtain

$$\left|\int_{-\pi}^{\pi} F(u) \varphi(u) du\right| \leqslant K$$
, where $F(u) = f(t_0 + u) - f(t_1 + u)$.

For $\varphi \in \Phi$ we denote by $\varphi_n(t) = n\varphi(nt)$. At every Lebesgue point $\tau_0 \in (-\alpha, \alpha)$ of F we have

$$\int_{-\pi}^{\pi} F(t) \varphi_n(\tau_0 - t) dt \to F(\tau_0),$$

so that $|F(\tau_0)| \leq K$. If we apply this to $\tau_0 = 0$ we obtain $|f(t_0) - f(t_1)| \leq K$ from which $|f(t_1)| \leq L + K$. The proof is now complete.

5. The hypothesis that $s_n(x) = O(1)$, $x \in \mathbb{Z}$, in Theorem 3 is not satisfied for Fourier series of functions in L^1 . However, in this case the sequence $\{\sigma_n(x)\}$ of (C,1) means is bounded a.e. (in fact converges to f a.e.). We shall present a version of Theorem 3 in terms of σ_n .

We assume that $\{\sigma_n(x)\}$ is bounded for $x \in E$, |E| > 0. Then [3], $\{\tilde{\sigma}_n(x)\}$ is bounded for a.e. $x \in E$, and hence $\tilde{s}_n(x) = O(n)$. Consequently we can consider the distribution

$$\tilde{S}_{x}^{*} = \sum \left[\tilde{\sigma}_{n}(x) + \tilde{s}_{n}(x) \right] c_{n}.$$

THEOREM 4. Assume that $\sigma_n(x) = O(1)$, $x \in E$, |E| > 0. Then $\sum \frac{B_n(x)}{n}$ is (C, 1) summable to L(x), and L is equivalent with a function differentiable a.e. in E if and only if for a.e. $x \in E$ there is $\eta = \eta_x > 0$ such that

$$|\tilde{S}_x^*(\varphi)| \leqslant M_x \|\varphi\|, \ \varphi \in C_\eta^\infty.$$

Proof. The boundedness of $\{\tilde{\sigma}_n(x)\}$ implies the (C,2) summability of $\sum A_n(x)$, and this in turn implies the (C,1) summability of $\sum \frac{1}{n} B_n(x)$ [8]. The proof now is the same as before if one first applies an additional summation by parts to the formula for $\frac{1}{2h} \Delta^2 L(x,2h)$ of Lemma 2.

References

[1] N. Bari, A treatise on trigonometric series, 2 vols., New York 1964.

[2] H. Blumberg, The measurable boundaries of an arbitrary function, Acta Math. 65 (1935), pp. 263-282.

[3] J. Marcinkiewicz and A. Zygmund, On the behavior of trigonometric series, T.A.M.S. 50 (1941), pp. 407-453.

[4] -, - On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), pp. 1-43.

[5] C. Neugebauer, Differentiation almost everywhere, P.A.M.S. 16 (1965), pp. 1205-1210.

[6] S. Saks, Theory of the integral, Warszawa-Lwów 1937.

7] M. Weiss, On symmetric derivatives in Lp, Studia Math. 24 (1964), pp. 89-100.

 [8] A. Zygmund, Einige Sätze über divergente Reihen, Bull. Acad. Polon. Sci. (1927), pp. 309-331.

[9] - Trigonometric series, 2 vols. 2nd ed. Cambridge 1959.

Received August 10, 1970 (230)