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Differentiation of trigonometric series
by
C. J. NEUGEBAUER (Lafayette, Ind.)

Abstract, Necessary and sufficient conditions are given in order that a termwise
integrated trigonometric series can be differentiated a.e.

1. Let }Ad,(x), Ay(2) = —0-;"—, A, (x) = a,cosnz+Db,sinne, be a tri-

gonometric series. We write s, (2) = 3 4,(x) and Su(2) = D B;(x), where
1 1

Bj(#) = a;sinjo—b;eosje. If 4, () converges on K, |B| >0, then the
z)

termwise integrated serlesZL(— is the Fourier series of a function
n

feI? and f has an approximate derivative a.e. in . This result [9;, p. 3251
has been extended by M. Weiss [7] who has shown that f in fact has at
a.e. xeH a derivative in I? for every » < oo, i.e., for a a.e. z¢E

n
[ 1f@+0—f(@)—at?dt = o(h"*)
~ —h
for some a = a(z). There are examples of trigonometric series >4, (2)
B
converging a.e. and for which Z——’;’(ﬂ is ordinarily (p = oo) derivable
almost nowhere [1,;, p. 99]. The purpose of this paper is to present

" B,
necessary and sufficient conditions on the sequence {5, ()} so that 2—"—”‘(56)—

be ordinarily derivable.

2. In this and the following section we will collect some lemmag
and remarks needed later.

LevmMA 1. Let s,(x) = 0(1), weE, |B} > 0. Then

(1) o =Va+b} = 0(1).

(2) §,(®) =0(@), for ae xech.

1 1 .
(3) il A, (2), —B,(®) are Fourier series of fumctions in L*
n n

which converge to these functions a.e.
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Proof. The assertion (1) can be found in [9;, p. 317] and (2) is a
special case of a general theorem in [3]. That the two series in (3) are
Fourier series of functions in I follows from the Riesz—Fischer theorem,
and the convergence a.e. is a consequence of their (C, 1) summability

1
and the fact that the terms are O (7;) by (1) [9;, p. 78]
THEOREM 1. Let s,(x) = O(1), wel, |B] >0. Let mell be a point at

1

which Zq—An(m) conwerges. Then there ewisis a measurable set Q (x) having
n

at 0 positive lower density such that L{z-h)—L{w—h) = 0(h), heQ(a),

1
where L(z) = Zan(m).

The proof is, with only obvious modifications, the same as the one
in [9;, p. 324].
For a.e. ©# we have

L (L(@+2h)+ Lo—21) — 2T (z)]

2h
sin?nh
= —22;3“(00) ——.

Summation by parts gives
{ sin2nh

o= AL (w, 2h) = “22

1
2 e
W A2L(x, 2h)

sin2(n —|—1)7i
(n+41)h }

in2 in2 —in2
The expression i { } = sin®*nh sin®nh — sin?(n~+1)h and
n(n-+1)h (n-F1)h
sin?nh —sin?(n+1)h = —sink sin(2n4-1)A.
LeMmA 2. If s,(z) = O(1), weB, |E| >0, then

- Zsmh (m) .

»—A L(z, 2h) = ~22 - gin? Sul0) +1)h

n(n I—l - gin%n, h+ n~] 1 8in(2n4-1)h

for a.e. zeB. The same formula holds a.e. if DA, (@) is the Fourier series

of a function in L'.

Proof. The first part is a consequence of the above caleulations,
and the second part. follows from the well-known fact that both 8, (%)
and §,(x) are o(logn) for a.e. x.

~ 3. We have occasion to use the following results on the differentia-
bility of a measurable function f: [a, b] - reals.

TeroREM 2. Let B < [a, b] be a measurable set such that (1) for wel
there is a measurable set Q (x) having 0 as a point of positive lower density

icm
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and f(z-+h)—~f(w—h) = O(h), heQ(x), and (2) for x<H there is a set N,
such that |N,| =0 and 4°f(2, b) = O(h) as h — 0, h¢N,. Then f is equi-
valent with o function which is differentiable a.e. in E.

Proof. Since 2[f(z+h)—f(2)] = f(z+h)—f(z—h)+ 42f(2, k), we
have f(z+h)—f(x) =O0(h), a h—0 on a set having positive lower
dengity at 0. Application of [6, p. 295] shows that the approximate deriv-
ative of f exists a.e. in B. Blumberg’s upper boundary of f [2] defined by

g(w) = inf{y: |B, nI| = O(|I}),

where B, = {x: f()
of this is in [5].

as |I| -0, zel},

>y}, possesses the desired properties. The proof

4. Let C™ be the space of infinitely differentiable functions ¢ of
period 2= with the usual topology. We let ¢, be the distribution e¢,(p)

2n

——1~f cos(2n+1)te(t)di. If s,(z) = O(1), zeHE, or if {s,(#)} is the

sequence of partial sums of the Fourier series of a funetion in I', we can
consider the distribution

Y‘s %), () -

For 0 <y <= we let O = {qoeG°°. suppge[ — 7, 11}, and we introduce
in €7 the norm |jgf| = ]|qa|11+ﬂ<p ll;- The completion of C7 with respect
to || |] is the space W, of all absolutely continuous functions of period 27

supported in [ —q, 77].
Z‘ =B,

is equivalent with a function differentiable a.e. in E of and only if for a.e.
zeE there is n = 0, > 0 such that jgw(ql)[ < M lgll, 90y,

Proof. By Thecrems 1 and 2 we only need to show that A2L(x, &)
= O(h), h¢N,, |N,| =0, a.e. zeB, if and only if for a.e. z<E there is
5 = 5, >0 such that le(tp)| < M_lloll, peC.

Let w<E such that |s,(z)|< M, »n=1,2,...

THEOREM 3. Let s, (z) = O(1), x<H, |B| > 0. Then L(x

, and at which the

1
formula for i A2 L (z, 2h) of Lemma 2 holds. This is true for a.e. wek.

By [9;, D 10 (4.17)], 27%(%%

We assume now that there is |N,| = 0 such that AzL(w, h) = O(h),

)l sin (2n-+1) A

sin?nh| < K < oo for all a.

h¢N,. Then there is n =n,>0 such thatz o

= f(h) is essentially bounded on [—=#, 5], and feL% As a distribution,
for geOY, f'(9) = —flp') = Z5.(@)en(p) = S;(¢). Since f(¢') = [fo' we
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gee that [67,((;0)] < M,|\¢'ll,, where M, is the essential bound of f on [ —y, 5].
Conversely, let f be the distribution in L? whose Fourier series is

~f(¢"), so0

Zi&)—sm@nﬂ)h, @ fixed. Then f'(p) =48,(p) =
2n+1 ) ,
that [f(¢')] < Mlgll, ¢<0F. It peCP and [ ¢ =0, then y(t) = [ ¢

is in O and hence |f{p)| < M {llvl,+ llo).}.
We will show that f is essentially bounded on (0, 7). Let #,¢(0, 4)
be a Lebesgue point of f and let |f(f,)| = L. Let #,¢(0,%) be another

[t
Lebesgue point of f, say ¢, < ¢,, and finally let a = min {2 #,, y— t,.).

3
™

We introduce the collection @ = {peC?: 20 and [ ¢ =1}, and for
k] -7

pe® we let p(t) = p(t—1t,)—@(t—1). Then [ ¢ =0 and pe0P. Hence

[ feWa< K < oo, ped.
From this we obtain

, | fnlﬂ(u)(p(u)dujg K,  where F(u) = f(ty+u)—f(t, ).

For g «® we denote by ¢, (t) = ne(nt). At every Lebesgue poinf Toe(—a, a)
of F' we have

fn F(t) ;]oﬂ‘(ro—t)dt - '(7,),

so that |7 (7,)] < K. If we apply this to 7, = 0 we obtain | f(¢) —F(¢,)| < K
from which |[f(¢,)] < L+ XK. The proof is now complete.

5. The hypothesis that s,(») = O(1), @B, in Theorem 3 is not
satisfied for Fourier series of functions in L. However, in this case the
sequence {c, ()} of (0, 1) means is bounded a.. (in fact converges to f
a.e.). We shall present a version of Theorem 3 in terms of Ty

We assume that {o,(#)} is bounded for ze¢F, |B| >0. Then [3],
{6.(®)} is bounded for a.e. weH, and hence §,(z) = O(n). Consequently
we can consider the distribution. '

85 = N6,(@)+5, (@)1
B, (»)
THEOREM 4. Assume that o, (x) = O (1), w<B, |B| > 0. Thefnzwﬁ—ﬂ

15 (C, 1) summable to L(x), and L is equivalent with a function differentiable
a.e. in B if and only if for ae. xeB there is 1 = n, >0 such that

185 (9 < Mligll, peC2.

icm®
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Proof. The boundedness of {7,(»)} implies the (C, 2) summability
- N . 1

of } A, (x), and this in turn implies the (C, 1) summability of 2— B, (z)
n

[8]. The proof now is the same as before if one first applies an additional

1
summation by parts to the formula for e A2 L(x, 2h) of Lemma 2.
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