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STUDIA MATHEMATICA, T. XLI (1972)

Products and convolutions of vector valued set functions
by
JAMES E. HUNEYCUTT, Jr.* (Raleigh, North Carolina)

Abstract. Let & be a topological semigroup and X, ¥, and Z be Banach spaces
with a bilinear function from X x T into Z. Let # and v be countably additive functions
from the Borel sets of & into X and ¥ respectively. The notions of product and
convolution of x and » are defined and some properties of these are investigated.

I. INTRODUCTION

The concept of the convolution of scalar valued set funetions plays
an important role in harmonic analysis of scalar valued funections on
a semigroup. It would seem natural to investigate a concept of convolution
of vector valued set functions in hopes that a similar analysis of vector
valued functions would be facilitated. This paper is an attempt in that
direction.

We rely heavily on previous results concerning vector valued set
functions and Bochner integration [1-4, 6] as well as well-known results
concerning the convolution of scalar valued set functions (see, for example,
(8.

Chapter II is concerned with the problem of beginning with two
countably additive vector valued set functions on the Borel o-algebras
of two topological spaces and generating a countably additive set function
on the measurable rectangles. We then treat the same problem in the
case the set functions are regular; in this case, the “product” can be
extended to the Borel sets. Chapter III yields a Fubini-type theorem for
the product and Chapter IV considers the notion of convolution when
the topological spaces are topological semigroups.

The author wishes to express his appreciation to Professor I. Kluvanek
for his comments and encouragement on a previous version of
this paper. In particular, the proof of Theorem IL.5 was pointed out
by him.

* Part of this research was partially supported by a grant from the North
Carolina Engineering Foundation during the summer of 1969,
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II. PRODUCTS OF VECTOR VALUED SET FUNCTIONS

Let X, ¥, and Z be normed linear spaces with a bilinear map (w, y)
> gy from X x ¥ into Z such that there is a k > 0 with |o-y|| < Jlla|| - [ly|
(X, ¥, and Z will be said to form a bilinear system). Let S and T be locally
compact, Hausdorff spaces with Borel o-rings J(.S). and 4 (T') respectively
(the Borel sets foxrm the smallest o-ring containing the compact sets).
The following is trivial.

LemMA IT. 1. #(8) X #(T)
([8]; p- 22) and, moreover, if (A X B)
N (0x D) =@, then either

(a) AnC =0 and B =D or

b)yBnD =0 and A =C.

={A X B: Ac#(8), Be#(T)} s a semiring
U (00X D)=1 X F, where (A x B)n

The members of #(8)x #(T) are sometimes called measurable

rectangles. We are now ready to define a product.
DerrNITION II. 2. Let p: #(S) X and v: #(T) - Y be finitely
additive. Then for Ax BeZ(8)X #(T), we define

(X )(AX B) = u(A)-»(B).

TEROREM II. 3. uX v is findtely additive on B(8) X B (T) to Z and has
a unique finitely additive extension to the smallest ring 9’9(3?(6’) xﬂ(T))
containing B (8)x #(T).

Proof. Since #(S)x #(T) is a semiring, it is sufticient to prove

that pxv is 2-additive. Let A X B, 0 x D, and B x F be members of
B(8)x B(T)and (A x B) U (0 x D) = B X F with (A X B) n (CXD). =
then either (a) or (b) of Lemma II. 1 must hold, say (a) (the proof for (b)
i similar).

(pxv)[(A X Byu (ux»)[(AuC)xB]

(CXD)]=(ux»)[{Ax B)v
=u(4d v 0)v(B)
= [p(4)+p(0)]-»(B) = p(4) »(B)+pn(0) »(B)

= (X »)[4 x B]+ (X »)[0 X D].

(Ox B)]=

DrrINITION II. 4. Let & be a semiving of subsets of set U and X
a normed linear space, and p: & - X. For A = U, we define the variation

7 (u) by
7 (u, 4) = sup{ 3 lu(B)l},
i=1

W
where {B;}T 18 a pairwise disjoint collection in & and (JB; < A4;
1

luli = sup{#"(u, 4)|A < U} = ¥ (u, U).
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We recall that if x4 is finitely (counta,bly) additive, and |u| < oo,
then ¥"(u) is a finitely (countably) additive, non-negative get function.
If |Jull < oo, then “ is said to be of bounded variation. If u is finitely
additive on & and z is its uni que finitely additive extension to the ring
generated by &, then ¥ (u) = ¥ (n).

THEOREM II. 5. Let u: #(S) - X and v: B(T) - Y be SJinitely additive
with lull < oo and {v]] < co; then |ux 4| < oo and P {uxv, AX B)<

EY (u, A)-7 (v, B). Moreover, if u and v are countably additive, so is p X v.
Proof. Define A B(BYXB(T) [0, ) by AAXB)=
¥ (u, A)- ¥ (v, B); then 1 is flmtely additive and countably additive

whenever x and v are. Now let 1 be the umque finitely additive extension
of 1 to the ring generated by %(8)x IE{C; >< D7 is a finite, pair-

wise disjoint collection in #(8) x #(T) such that UC’ X D; & A X B, then

2 Mux») (O Dy = PRZCARIER
< b
<k-2AXB) =k (u, A)-¥ (v, B).

Thus, *(uXv, AXB)<k-?(u, A)-¥ (v, B). Let u and » be countably
additive; then 2 is countably additive. Let {;}3° be a sequence in % (.8) x

X #(T) such that U B;cZ(8) X Z(T). Let (X »)" be the finitely additive:
1
extension of xx» to the ring generated by %#(8)x #(T). Then

n

< D e u(CD)- I (D)

1

K3 R n ’
)7 (v, D) = Y -A(C;x D) = k-a(U C;x D)
1 1

13 10— 0 B = xS B~ x (O |
= [wx») (,H Bl < (uxW,glE,-)<k~i(MLJ1Ei)—>o

DerrNitioN II. 6: Let & be a semiring of subsets of the topological
space 8 and p: & — X. u 18 said to be regular provided that for each ¢ > O
and A e, there exist B, CeS” such that B is compact,

BcBcAsO™c0 and ¥ (u, ONB)<e.

It is well known that a regular, finitely additive set function is.
countably additive and that if 4 is finitely additive and |ju|| < oo, then u
is regular if and only if ¥ (u) is regular.

TugoreM IL. 7. If p: B(8) — X and v: B(T) - Y are finitely additive:
and regular, then uxv: B(8)X B(T) —Z is finitely additive and regular
(and thus countably additive).
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Proof. We have oniy to prove that u X »is regular. If A X B< 0x D,
then (Cx D)\ (4 X B) = [(ONA)x D] U [0 X (D\B)]. Let 4 X Be#(8)x
x #(T) and & > 0; let

8, = minfs- [2(#" (v, B)+1)| 7% 1),
8y = min(e- [2(#" (1, 4)+1)]7, 1)
Then there exist 0, Be#(S) and D, FeZ(T) with C and D compact such
7 L)
that = Ccs A s ﬁj;m cB,DcDcB gfﬂ‘ﬂ"-g Fand ¥ (s, E\0)<_7;1.,
and 7" (v, F\D)<‘k—2~. Then xD < OXDcAxBs (B cHxF,

Ox D is compact, and
V(X v, BXEINCX D)< # (X v, (ENO)X D)+ (uX v, 1 X (F\D))

8
<kV (uy BNC)-7 (v, D)+ k¥ (u, B)- ¥ (v, FND) < 767;1— (v, D)+

+ k—'f/'(/.t, B 6 (v, BY+1) 465+ (¥ (4, A)+ 1) < /2422 = 2.

The preceding theorem shows that if w and » are ‘‘nice” functions
on #(8) and #(T), then ux» is “nice” on #(8) X #(I). We now show
that ux» has a unique ‘nice” extension on #(8 X T).

ToaeoreM II. 8. Let u: #(8) - X and v: #(T)— Y be countably
additive, regular, and of bounded variation; then there exists a uwique A:
(8% T)~Z such that A is countably additive, regular, .and of bounded
variation and (A X B) = u(A)-v(B) for all A<#(S) and BB (T).

Proof. u X v is countably additive, regular, and of bounded variation
on #(8)x #(T). Arsene and Stratila [1] have shown that there exists
a unique countably additive, regular extension ¢ of bounded variation
on the smallest o-algebra containing #(8)x #(T); this o-algebra contains
the Baire subsets [5; 51.E]. Dinculeanu [3] has shown that there exists
a unique countably additive, regular extension of ¢ of bounded variation
on Z(8xT).

When we speak of “the extension of uxy to #(SxT)’ we shall
mean the unique extension described in Theorem II. 8; this extension
will be denoted (somewhat ambiguously) by u X .

III. A FUBINI - TYPE THEOREM

Let X, Y,Z, U, V, and W be Banach spaces and suppose that there
exist bilinear maps from X x ¥ into U, from ¥ X Z into V, from X X V
into W, and from U X Z into W (all denoted by *-? and such that ||a-b||
< k- jafj-||b]| for some % > 0) such that (#-y)2z = x-(y-2) for weX, ye¥,
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and zeZ. As in the preceding chapter, let § and 7T be locally compact
Hausdortf spaces with Borel o-rings #(8) and #(T). Let u: #(8) > X
and y: Z(T) — Y be countably additive, regular, and of bounded variation.

1. Preliminaries. We shall consider a Bochner type integration of
vector-valued function with respect to vector-valued set functions. We
shall consider functions from 7' into Z and the set function » from Z(T)
to ¥ but we note that any other s-ring of any set and any bilinear system
‘of Banach spaces would give the same results. The proofs for the un-
numbered theorems listed below, as well as pertinant background infor-
mation may be found in Dineuleanu [4] or Hille and Phillips [6].

DLFINITION A funection p: T — Z is said to be a simple function if
® —E X4;%, Where each A;c%#(T), each z,¢Z and 4,n4; =0 if i #j.
The funcmon @: T —Z is countably valued if ¢ = 2 %.4,%, Where each

- A;eB(T), each #eZ and A4, NA; =0 if {1 £4. A szmple or countably

valued funetion ¢ = 'y 4,% 18 v-’b’)’bteg'? able if 3 (v, A)lle,]| is finite in
which case we define

Joir = [ 3 s = S ea

DeriNirioN. Let f: T —Z; then f is

() strongly measurable if there exists a sequence {p,} of coun-
tably valued functions on 7T to Z sueh that ¢, —f a.e. [7 (¥)];

(b) weakly measurable if for yeZ*, yof is a sealar valued measurable
function.

A strongly measurable function f is y-integrable if there is a sequence
{p} of countably valued functmns on T to Z such that ¢, — fa.e. [#(v)]
and hm S lewm—a,lld? (») = 0. In this case {fe, @} is a Cauchy

My N

sequence in Z and we define [fdv = hm Jp.dv. We note that [(-)dv is

a linear function from the linear spame of v-integrable functions into ¥V
and ||[fdvl| < [Iflld7" (»)
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TaeoREM. [6] Leét f: T — Z; these are equivalent:

a) f is strongly measurable,

(b) f is weakly measurable and there exists B <% (T) such that ¥ (v,B)=0
and f(I\B) is separable (f is said be to almost separably valued).

We also note that if f is strongly measurable, then there is a sequence
of countably valued functions converging to f uniformly a.e. [¥'(»)].

TaEOREM. Let ft T —Z be strongly measurable, these are equivalent:

a) f 18 v-integrable.

(b) 1Ifll 28 »-integrable.

c) f is ¥ (v)-integrable.

(d) |fll €8 ¥ (v)-integrable.

DoMINATED CONVERGENCE THEOREM. Let {f,} be a sequence of strongly
measurable functions on T and f, —f a.e. [V (»)]. If there ewist a non-

negative, ¥ (v)-integrable function g on T such that |f, (1) < g(2) a.e. [7"(»)]
for all n, then f and each f, are integrable and lim [f, dv = [fdy.
N—>00

We shall also use the following result which we are unable to find

in the literature and whose proof is due to Fred B. Wright. This result
allows us to apply the dominated convergence theorem in many cases.

THEOREM (WRIGHT). Let f: T —Z be v-integrable. Then there exists
a sequence {@,}T of countably valued v-integrable fumctions and a non-
negative, ¥ (v)-integrable function ¢ and T such that ||p,t)|| < @) ae.
[7(v)] for all n and @, —f uniformly a.e. [V (v)]

Proof. Let A = {teT': ||f(?)] > 0}; then A «#(T). For each pair j, k
of positive integers, let &, = [k-2°(¥ (v, 4)+ 1}]‘“1; then for each F,

Zeyk IHZGNXA )‘rl]ld

note that v, () > p,(t) = ... and that each v, is ¥ (» )mtegmble Since
f is strongly measurable, there exists a sequence {h,}° of countably valued
functions on 7' such that &, — f uniformly a.e. [#"(»)]. Then for each
pair j, & there is an integer N; ;, such thmt ifn =N, x, then ||, ( t) —f<ep

a.e. [ 7" (v)]. For each k, define @, (t) = Z‘ lzN] (0 2.4 (). Bach g, is countably

(7, 4) < 1/k < oo and we define y, (1) = || f(¢

valued, integrable, and ||o,(t) —F ()| < /Io a.e. [ (v)] s0 ¢, — f uniformly

ae. [7(»)]. Let p(t) = y,(¢); then
llpw @ < 1))+ 2 s xa(t) = wilt) < (1) = p(0).
2. ‘The Fubini theorem. For BeZ(Sx T) and sef, let B, = {teT:

(s, ) eB}; for teT, let B = {seS: (s,1)cB}; then B, «#(T) and B'#(F).
Detine ¢gz: 8 - X by @g(s) = »(H,) and ygz: T =X by pg(t) = u(F).
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THROREM III. 1. Let HeB (8 x T);

a) if v(%(T)) is separable, then @g: 8 — Y is u-integrable and
Jomdu = (ux»)(B).

b) if u(#(8)) is separable, then pg: T - X is v-integrable and
Jopdy = (ux»)(B).

Proof. We shall prove only (a) since (b) has a similar proof. @z (S)
< »(#(T)) which is separable so to show that g is strongly measurable
we need only show that is it weakly measurable. Let yeX"; then yg,
from Sx T to the reals, is measurable and fxEd(V(,u)X"/’(y ?)) =
[¥(u) X ¥ (y-9)](E)< oo, 50 by the Fubini Theorem for real valued, count-
ably additive set functmns, Jxp(s, t)d(yor)(t) is measurable as a functlon
in 5. But [yg(s, 8)d(y-») t) = (yovg)(8). Thus ¢y is strongly measumble,

[lles(SNa¥ (@) = [ Ip(BN@ ()< [ #(v, B)ar (u)
f[V(u)XV(V)]( ) < oo
If E = AX B, where A<#(8) and Be#(T), then

?u(8) = v(B,) = 24(8)(B) 50 [ gpdu = [ 7.auv(B) = (ux»)(B).
Now let o(E) = [pgdu on #(SX T); then o is countably additive,
regular, and of bounded variation on ﬂ(;S’ XT)and o = uX» on #(8) X
X #(T). Thus ¢ = ux» on F(SxT).
We note that the separability condition for the set function » can
be insured by any of the following assumptions:
(1) Y is separable.
(2) v has relatively compact range. \
(3) » has a Radon-Nikodym derivative with respect to ¥~ (»), in the
sense that there is a V(v )integra,ble function f: T — Y such that
for A<#(T) = [4fd(») (see Thl [9]). For example, ¥ could
be a reﬂexlve spa,ce and any such y would have a Radon—leodym
derivative (see Phillips [77).
(4) There is a countable subcollection in #(T), dense in .%’(T) with
respect to the topology determined by the pseudo-metrie
a(4, B) = ¥ (v, ANB)+9¥ (v, B\ A).

CororrarY IIT. 1. 1. If (4 (T)
from 8X T to Z, then

J watux») = [ ([ ots, 1)) au ).
Proof. Let He#(SxT); then
J 1@l x o) = (uxn) (@) = [9(B)du(s) = [ (f 22,0 @) dus)
=f(fXE’(S7t dv(i)du

) is separable and ¢ is a simple function
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The result for a simple function is a direct consequence of the linearity
of the integral.

We are now ready for the Fubini-type theorem. The Fubini Theorem
for sealar valued set functions involves two pairs of interated integrals;
however, in our present context, only one of the pairs makes genge.

TrroreM ITL 2 (FUBINI-TYPE THEOREM). Let »(%(T)) be separable

and f: SXT —~Z be 7 (u)X ¥ (v)-integrable, then
A (a) [f(s,t)d»(t) (as a function in s) s p-integrable and
) [fa(ux») = [([f(s, t)dn(2)) du(s).

Proof. (a) Since fis ¥ (u) X ¥ (v)-integrable, then. [|f]| is ¥ (u) X ¥ (»)-
integrable so by the usual Fubini Theorem [|f(s, ¥)||d¥ (»)(¢) exists for
almost all s, is measurable and ¥ (u)-integrable. Now without loss of
generality f may be assumed to be separably valued. For yeZ*, (y-f) is
meagurable on S x T to # and thus (y-f)(s, ) is measurable for almost
all s. Therefore, f(s, -) is weakly measurable and separably valued (since f
is separably valued). From the first sentence of the proof, f(s, -) is »-
integrable so [f(s, t)dv(3) exists for almost all ¢ and is w-integrable.

(b) We prove the result first for countably valued integrable functions
and use Wright’s result and the dom]mted convergence theorem to get

the result in general. Suppose ¢ == ZZA '2; (where each 4, e.é’f?(Sx )
and 4;~A4;=0 if i+#j) and (p is /f( )X ¥ (v) integrable. For all n, let
Z'mtz i op(s, 1) =llg(s, O, then v is ¥ (u)x

|E% (s, )]] p(s, t) for all » and ¢, - ¢ on. §x T. Thus by the dominated
convergenee theorem,

¥ (v)-integrable,

[ oatuxs) =l [ gud(uss) =lim [[ ([ pals, 0y () du(s)]

N—>00

= [ (1im. [ gu(s, v (1)) (o)

(since (e, (s, t)ydy (2) which is u-integroble)

< [ly(s, 1)) du () (1)
=J 1 i ot ’)‘l”(”)) ap(s) = [ (f ols, 0 () (o).

Now it f: 8xT —Z is ¥ (u)X ¥ (»)-integrable, then there exists
a sequence {y,}i° of countably valued, ¥ (u) X 7" (»)-integrable functions
on 8XT to Z and a non-negative, ¥ (u)x ¥ (v )intend;ble funetion y
on §x T such that |ly,(s, 1) < w(s,t) for all # and P, (8, 1) = f(s, t) a.e.
Thus by use of the dominated convergence theorem as above, f j fd(,u X ¥)

= [{[£(s, ) dv(t)) dpu (s).
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IV. CONVOLUTION OF VECTOR VALUED SET FUNCTIONS

Let X, ¥, and Z be as in Chapter IT and let & be a locally compact
Hausdortf topological semigroup. Let . (X) be the collection of all coun-
tably additive, regular set functions of bounded variation from Z(@)
into X (similar definitions are made for .#(Y) and .#(Z)). We recall that
it Be#(G) and B, = {(g, h): gheB}, then E,eB(G X G).

DEFINITION IV. 1. Let u et (X) and ves# (¥); then ux v: B (G X @) Z.
For each H<Z (@), let (u++)(H) = (uX)(B,). Then p=*» is called the
convolution of w and v.

TeroREM IV. 2. If pet# (X) and vet (X), then u*ved (Z). Moreover,
V() < k¥ (u)* ¥ (). :

Proof. Let A be the extension of ux» to Z(GX Q).

(a) pxv is countably additive: Let {E,} be a pairwise disjoint
sequence in #(@). Then

(e (U B) = MU Bl = {U Fh) = 3 4((B)
. 1

b) lussl] < oo and " (uk») < KY () * ¥ (v):

Tirst note that ¥ (u) and ¥ (») are members of #(R) (where R
denotes the real numbers).

=D (wxn) (B

e x) (D] = BN < ¥ (2, By) < B[F () X ¥ (3)1(By)
= kL7 ()% ()1(B).
Now
P (u*r, 4) = sup{ X lurr (B} < i {kaw )X (5) (B}
= ksup {[#"(u) X V(m( B} = L7 () X ¥ ()](4y).-

Thus [Jjux| < oo.

(e) wxv» is regular on Z(G):

wxw is regular if and only if ¥ (u*v) is regular but ¥ (u*»)<<
*¥"(v) which is regular so ¥ (u*v) is also regular.

Suppose X, ¥, Z, U, V, and W form an associative bilinear system
as in Chapter III.

LevMA. If pett (X), ved (X) and ¢ is a simple function from @ to Z,
then

kY ()

[ e@atu)ig) = [plgh)aux (g, h).
Proof. If ¢ = y,-2 with 4<% (G) and z<Z, then y,(gh) = %4,(95 1)
50

Jolah) atuxo) = [a(gh) 2d(nxv) = [ 14,(g, 1) x5)2 = (ux9)(45)5

= () (4)2 = [ ga2d(uer) = [ pd(uxy).
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The equality for Slmple functions follows from the linearity of the
integrals.
TreoreM IV. 3. Let ,us///(X), ved (Y
integrable; then [fd(uxv) = [f(gh)d(uX »).
Proof. We prove the result fmt for countably-valued, #~ (M VeV (v)-

integrable functions. Suppose ¢ = ZX 4% (where each A4,¢% () and
1
A;nA; =0 if i #j) and ¢ I8 ¥ (u)* For all n, let
@, = g’mi-zi; it p(g) =|lp(g)ll, then w is ¥ (u)+7#" (v)-integrable and so
1

w(gh) is 7 (u) X ¥ (v)-integrable. Now [, (g)] < p(9) llg(eh)ll < p(gh),
and ¢, - ¢ on G. Thus

[ @ud(urr) — [ gd(u),
[ palgh)d(ux) > [ plgh)d(ux»),

Y, f: G —>Z be ”/(,u,)*’V(v)

¥ (v)-integrable.

80 )
[ pi(usr) = [ p(gh)d(ux»).

Now let f be ¥ (u)*¥ (v)-integrable. It is clear that f(gh) is strongly
measurable (as a function on & X &). By Wright’s result cited in Chapter IV,
there is a sequence {g,}7> of countably valued % (u)*? (v)-integrable
functions on & to Z and a non-negative ¥ (u)* ¥ (v)-integrable function
on @ such that ||p, (9)] < w(g) a.e. [# (u)*7 (v)] and ¢, — f uniformly a.e.
[¥ (k)7 (»)]. Now if @, —f uniformly on G\JE and (¥ (u)*7 (»)(B)
= 0, then ¢, (gh) — f(gh) uniformly on (G X G)\E, and [ ¥ (u) X ¥ (»)1(H,)
= (¥ (WY (»)(B) = 0. Also |lp,(gh)] < p(gh) a.e. [# ()X ¥ (»)]; thus

[ algh)aux ») —>ff(gh)d(,u>< ¥),
f%d(/u*v) —>ffd(/mv)

and thus
[ Hgmyatuxr) = [ fa(px»).
Lovwva. If Bed(@), and g, heG, then (([By])s)y = (By)y,-
Proof.

ee([(Ba)yJa)n < (b, 0) e [(T
< g(he)e B < (gh)ecl < (gh, ¢)elly < ee(Hy)y,.

gle < hee(By), < (g, he)e B,

THEOREM IV. 4. Let pe(X), ve M (Y) and Aet (Z) and suppose
#(Z(A)) and A(F(A)) are separable. Then (u#v)x i = wk (vk2).
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Proof. Let FeZ(G). Then

= (wx¥) X A(Ha) = [ (uxv) [(By),1d2(g)

= [(wx ) (@)Ll arlg) = [[[u({[@),1)s) @ ()] da(g)
_f[f[Em]dv (m]aa(g) ‘

= [[ul(Bo)plauxs) = [u((Ba),]d(v2)
= [uX (7% 2)](Ba) = [ (% 1)](B).

(u*v) *4(B)
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