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The distribution of the values of a random function
in the umit disk
by
A. C. OFFORD (London)

Abstraet. Let f(2) be defined in the unit disk by‘a, power series whose coefficients -
are independent random variables and let x(f, b)) denote the number of zeros of
f#)—Db in |2| < t. It is shown that, for almost all functions of the family considered,

Tn(t,b
inf -n-(t—ldt has a well defined asymptotic behaviour. Furthermore f(2) almost
DI<K 1y .
surely takes every finite value in every open sector of the unit disk. The paper contain
some inequalities for f log|X|du, where X is a random variable defined on a measure
B .

space (Q, A, u) and B belongs to £ but is otherwise arbitrary.

§ 1. Introduction and principal results. This paper is concerned with
the behaviour of functions

(1.1)

defined in the unit disk for which the coefficients a, are independent
random variables, Our object is to show that the family (1.1) has certain
properties almost surely. This implies some statistical basis and it becomes
necessary to define this statistical basis precisely. Many years ago Little:
wood and Offord [3] studied a similar problem for the family of entire
functions

3
e,

0

(1.2)

in which the coefficients a, were given and the ¢, took the values 1
with equal probability. In 1964 one of the authors [4] returned to this
problem and established the basic results of Littlewood and Offord under
very general conditions on the distribution functions of the coefficients. a,,.
From this it followed that the behaviour of the family of entire functions
was largely independent of the particular distribution functions chosen
for the coefficients a,. For this reason in the present investigation we

3
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confine ourselves to one distribution, the Steinhaus distribution which is
defined as follows. We consider the family

(1.3) flz, 0) = Zczmton(w)a”zn,
) 0
where the a, are given real or complex numbers and are such that
(1.4) lim sup (|a, )" = 1
N n—>00
and
(1.5) Dl = o
0

The #,(w) are independent random variables uniformly distributed
in (0, 1). This particular distribution leaves the moduli of the coefficients
unchanged and this is what commends it to us. However, our methods,
although they do not cover the case of the family (1.2), do cover
any distribution whose characteristic function satisties a certain order
condition at infinity. Also it is not necessary to assume that the ex-
pectations of the coefficients are zero; it iy enough for them to be smaller
than the standard deviation. The reader who is interested will find the
necessary tools in [5].

There is & considerable literature on these problems (cf. 2) and we men-
tion particularly the work of Zygmund and Kahane which ingpired the
present investigation. Zygmund [1, p. 157 and 2, p. 127] has shown that
almost all functions of a family of type (1.2) map the unit disk onto a set
which is everywhere dense in the complex plane. Later Kahane [2, p. 137]

proved that if :
. Ay,

lim
e V(nlogn) ‘
then a Gaussian-Taylor series almost surely takes every complex value.
In a sense the results of the present paper can be regarded as completing
thoge. of Zygmund and Kahane because we shall gshow that, subject to
(1.4) and (1.5), the function (1.3) almost surely takes every complex
value infinitely often in every sector of the unit disk.

We proceed to state our theorems. We write n(r, b, w) for the number
of zeros of the function

o0
Z (@) g, ot b
0

- in the disk |2| <. We write
r :
(1.6) N, K; w) = sup ff”—(i’?bl-»l it

<K

* ©
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and

»

(L.7) Nu(r, K; ) = inf fﬂ(L’f—’-—) dv,

bl<K

where K is any finite real number and b any complex number satistying
the condition. We also write

(18) mt(;) = (i ]%1]2,’,.271,)1/2‘

We prove
TEEOREM 1. If (1.4) and (1.5) hold and if K and & are any positive
real numbers, then, for almost all functions of the family (1.3) we have

N, K; o)

1.9 S T G e L R
(1.9) o log M(r) ’
’ N, E; o)
110 1 Aol
. e log M(r) ’
and
3

- . _ _K.

(111) liming 22 I @) =N lr Ky w)

ool {log M(r))°
An immediate consequence of this theorem is that the integral

- n(t, b; w)
12

dt

172

diverges almost surely whatever the value of b and so almost all functions
of the family (1.3) take every finite value b an infinity of times within
the unit disk, and so map the unit disk onto the finite complex plane.
However, we shall prove more namely

TumoreM 2. If (1.4) and (1.5) holds, then the function (1.3) almost
surely takes every finite value infinitely often in every sector of the unit disk.

It is natural to ask if the limit superior in (1.10) can be replaced by
limit. If M(r) is of regular growth, to be precise if

M+ 4(M(r)) ) < CM(r)
or if
M(FL+7)) < OM(r)

for some numerical constant ¢ and all #, then this will be true and indeed
it will follow from our proofs. However, if M (r) is of very irregular growth
it may well be that ne more than (1.10) can hold.

The proofs of our theorems are long. In § 2 we give the results needed
from probability theory. These are of independent interest and are stated
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a8 Theorems 3 and 4. In § 3 we apply these results to the particular family
(1.3). The proof of (1.9) is given in § 4 and that of (1.10) and (1.11) in
§§5,6,7 and 8. The principal result from function theory mneeded is
Jensen’s theorem which asserts that if f(e) is regular in |2 <+ and
f(0) # 0, then

*

21
n(t,0) 1
Gf——t——dt T on bflog

By taking the range of integration in the first member as (}, 7), we elimi-
nate any trouble at 2 = 0. The proof of (1.9) is a straightforward deduction
from Theorem 4. The proofs of (1.10) and (1.11) are more difficult and
here in addition to Jensen’s theorem we use Carathéodory’s inequality
(ef. [61, 139) which we state as Lemma 5.3. Inproving (1.10) and (1.11)

f(re®)

70) an.

it i3 necessary to treat separately three cases. The first when M (r) increases

rapidly we deal with in § 5. The second when Mt (r) satisfies an order con-
dition but its rate of growth is not too slow is treated in § 6. The third

that of an Wi(r) of extremely slow growth is dealt with in § 7 and in §8

we collect these results together. The final section is devoted to the proof
of Theorem 2.

§ 2. Some probability theorems. In this section we develop the main

probability results required. Some of these results were given in the

paper [5] which contains the special case of Theorem 3 when 6 = 1.
TeroREM 3. Let X be a real random variable defined on the measure
" space (2,4, u) and suppose (i) E(X) =a, (i) &(lx—al)=p, (i) the
distribution function I(t) of X is such that for some number y satisfying
y = sup(|e|, #,1) and for positive numbers 6 and 1 we have for 0 <t <1

(2.1) TR —F (=)} < 1.

Then for any set Hed of méasure not ewceeding et we have

(22) [log|X|du = p(B)logy —yu(Blogu(m), .
where ’ 3

— 6 2+1) <y < B,

It is very important for our applications that E should be guite
arbitrary, apart from the requirement that it should be a member of M

Theorem 3 is a consequence of the following two lemmas. We observe
that Lemma 2.2 does not require hypothesis (iii) of Theorem 3.

Tmmya 2.1. Under the hypotheses of Theorem 1

(2.3) ‘ flongldu > u(B)logy+ 6=(21+ 1) u(B)log u (B).
. :

-

@ © ‘ : ‘
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LemMA 2.2. If X is a real random variable defined on the space (2, 4 , p)
such that &(X) = a and &(|X—a]) = f and: if y 2 sup(lal, §), then

(24)  [log"|X|du < p(B)log*y —2p(B)logu(B) + 3u(B).
B

The proof of Lemma 2.2 is given in [5, p. 176]. We give only the proof

- of Lemma 2.1.

Proof of Lemma 2.1. We have
x|
[10g1x18 = u(@ 1087+ [10g 2L ay.
b B Y

Writing X’ = inf(|X |y, 1) the integral in the second member is not
less than . . :
[ logX'du+ [ logX'au =I,+I,
B E
X' <(uE)He X>(mE)Y®

and
(w(E)1®

I,> f logudG(u),
F ,
where ¢ (u) is the distribution function of X'. But by hypothesis
Guw)lul?<l for [|u/<1

and so, integrating by parts
(weEy)io

I> %10gH(E)G((/‘ (B))~

0
1718
1 [(Te:)2 du
> S uBlogu@®—1 [ —o
p ‘
> 2107 u(B)log u(B).
‘While
: I,> 67 p(B)logu(B).
The extension o a complex valued random variable Z is as in [5, 178],
We write Z = X 1Y, where X and ¥ need not be independent

() = &(X)+id(Y) = a,+iny = a,

and
E(|Z—a]) = f.
Then
Ze~™ = Xecosy+ Yeiny+i(Xeosy— Yeiny). "“
So

| & (X cosy+ Ysiny)| < |a|
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for all , and ‘

& (| X cosp -+ Ysiny — a; 608y — a, siny|) < .
Write P(2, ) for the probability that —f< Xcosy~+ Ysiny < ¢, then the
hypotheses of Theorem 1 will be satistied for some y if y > sup(|al, §, 1)
and :

1P vty 9) < Uy)
for 0 <t < 1. Or if

(2.5) P, p) < Uy)

for 0 <? < 1/y. Here p is at our choice and we may choose it to give
() the smallest value possible. We have :
Lemma 2.3. For any measurable set H, where u(lB) < el and
y 2 sup(laf, f)
Ef log* 12| du < p(B)log*y — 6u(B)log u(B).

The proof of this lemma follows from Lemma 2.2 as in [5]. The result
corresponding to Theorem 3 for a complex valued random variable is

TeEOREM 4. If B is any set of measure not less than el y=sup(|af, g, 1),
6> 0 and

(2.6) I =int sup ¢7%p°P(t, v),
P o<i<lly
then )
[log|Z|du = p(B)logy — nu(B)log u (),
B
where

—51(21+1) < n < 6.

The second inequality follows from Lemma 2.3 and does not malke
use of (2.6).

§ 3. Lemmas for the family (1.3). In this section we apply the results
of the previous section to the family of random functions (1.3). The
independent random variables e™n(%) have expectation zero, variance
one and characteristic function

. 1
(3.1) Jolo) = j exp (i€ cos2mu + iy sin2mu) du,
0

where ¢ = (&4 7%)¥2 and J, (o) is & Bessel function. So that the charac-
teristic function depends only on'the modulus of the terms and that of

b 2101, (w) n
e % g 2,

is therefore
Jolela,| ™),

icm°®
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and that of f(z, o)
[17:(elanr™).
0

A simply calculation shows that

sintp

(3.2) Pt ) = 'i“f'_‘é““ID? Io(o|a,|7™)do,
0 0

so that P is independent of y: With the notation (2.6) we shall show that
(3.3) [P(t)] < C13 (MR (r)) 22,

where O is a numerical constant. However, unless the series for f(z)
is dominated by one or two terms we can prove much more namely

(3.4) [P(t)] < Co(D(r) .

But while it may be possible to improve on (3.3) in the particular case
of the family (1.3) the method would not be general so we ghall content
ourselves with (3.3) which is sufficient for our purposes. We require

Levua 3.1. If 8 = 3¢, is a convergent series of non-increasing non-
0
negative terms, then we can find an integer k such that

@)

0, > 18,

=g oD

(i) XYe.>18,

(i) o> }(k+1)78.,

Remark. The hypothesis that the ¢, are non-increasing is made only
for convenience of statement and the lemma ean be applied to any con-
vergent series of non-negative terms since such a series can be re-ordered.

Proof. If ¢, > 1§ there is nothing to prove since the theorem will
hold with % = 0. Hence we may assume & > 1. Then we can find m > 1
such that

m—1 m
de< 318< e,
0 0

If ¢, > 1(m+2)"28, then the conclusions of the lemma hold since (i)
and (iii) are satisfied by definition and ‘

1

icn = S-—jcn> 18.
m 0
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If ¢, < }(m+1)28 we can find » satisfying 1<» < m such that for

v<n<m we have ¢, < }(n+1)-28 while
= 8.

‘Such a »> 1 must always exist, because if not

m

1 1 1 1

o,

contrary to hypothesis. Bub then

Sa=3a-Jasgs

and so taking & = v—1 (i) and (iii) are satisfied while

1
W—s>is
4y 4

6o 00 m—1
Cp 2= Gn=S—20n>%S
n=%k n=m [}

We now have
Luvma 3.2. Under the conditions of Lemma 3. 1 and if in addition

k=2, then
o«
( 02 Uﬂ) 1/2

oa

| f}nJo<gVa:)|dg

[

where C is & numerical constant.
Proof. We use the following properties of the Bessel function:
(1) |Jo(e)| <1 for all o,
i) [Jo(0)l <1—3e? for 0<po<1,
111) [7o(e)| <3 for
(iv) |Jo(0) <Be™* for

Without loss of generality we may arrange the ¢,’s in decreasing
order. With the notation of Lemma 3.1

e=1,
0> 1.

Woy o ey

f |HJo(gVon)tde f

exp (——%@2 5}%) do < 387,
k B

[[a—-ieta)de
-k

<

o—g

icm

©
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‘ Again by (iv) and the hypothesis k> 2

-1 00 k o0 .
— , 1 d
= f ’]—]J"(QVC") d <31&1]7( i — ) f Q(kfx)/z
w6Vep 0 0 }/Gn 16/,
3\F-! 18 1
AR s
4 b—1 1/(0001)
Finally using (iii)
16//e oo
L= [ |[]nteVe|a
Wey 0
4 Te+1 1 4 k+1
< (—) i < 30( ) (k+1)872 < 6082,
\s] Vo |

This proof does not cover the case, when in Lemma 3.1, %k is 0 or 1.
In this case either ¢, =38 or ¢, >+ 8 bub in the latter case we
have ¢, > ¢, > &8 and this we shall assume. We have

LemmaA 3.3.
U fosintg T
[ [ ] TuteVenae| < oa,
[ [

~where C is a numerical constant.
Proof. By (i) and (iv) of Lemma 3.2 the above integral does not

exceed
1

co—l/é(f 9~2/3 do -+ fe—uedg)
0

0

0™ T4 (oV o)l do <

QRB

and the desired result follows. Combining these results we have
Lzvma 3.4. If P(t) is defined by (3.2), then, for all t > 0,

T \U3
( fr)) )
where C 18 a numerical constant.

Hence by Theorem 4 and Lemma 3.4, we have Lemma 3.5. For the
family (1.3) and for any set B of measure not exceeding ¢-1

[log|f(z, )l du = u(B)log M (r) — npu(B)log u ()
b

Pr(|f(2) )<P ®< O’max(

im(r

where, for some numerical constant O,
-0 kK6
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§ 4. Proof of (1.9). As stated in the introduction the purpose of this
section is to establish the equality (1.9) which is given as Lemma 4.2,
We require the following lemma.

Leywva 4.1. If @ is the first non-vanishing coefficient of a,, a,, ...,
then there exists o number O satisfying 0 < 6 < 4 depending only on the
coefficients ay, ty,,, ... such that for all b, 9 and o

(4.1) max (| f(d6”)— b, | f(306°) — b} > K|ay| 6
and
(4.2) mf»;;-flog]f(ae“)—b]da > klog 8-+ log a, — 3

Proof. We choose 8, so that

D 14, 87 = Yy

n=k+1

and define 6 = min(3,, }). We distinguish two cases (i) when

ay—b] < § 0% [y
and (i) when
lag—b] > 36 |ay .

In case (i) we have
If(3€”) —

In case (ii) we have

> |ay] 8" — o —b| — Zl%lé" %mla’“
k+1

— 11O D lan] 6" > & 6% gy,

fe+1

1f (106™) ~B] = | @y —b] — |a,] (16)"

Hence

2
1 10
Tn[flogif(ae )—bldo >

f 10{5

> klog é+log|a,) —logl6

( 6&“’) b‘do

and from these four inequalities the result follows.
LeMvA 4.2, Under the hypotheses of Theorem 1

N, K o)

i logm(r) Tt

almost surely.

icm°®
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Proof. By Jensen’s theorem

(4.3) N*(r, K; o) = sup — f log|LC )2

<K 27

16 -
G —s | "
Define the sequence {r,} by

(4.4) log M(r,) =

It follows by Lemma 4.1 that

Ed
.N*('I" , K; o) 1 f log*'[f(r,e“’)ldﬂ
1i — 1 < lim
o TTog M) S g msu

0 .
o T logii(r,)

But by Lemmas 2.3 and 3.5 for any measurable set B

(4.5)

1 2 ) 1 2 ‘ i )
+— [ an 1087 1f0r, 6106 = —— [ 30 [106* 17,6 au
K ¢ . 0 B

< u(B)log M(r,)—

6u(B)log u(B).
Hence if J, is the set for which '

(4.6) o [ Tog* 171,610 > Log M (r,) + flog M (r, )
T 0
we have
{log M(r,)+ (1og (s, )} u(B,) < s (B, log M () — 6 (1, log u(E,)
and so

1
#(B) < oxp{—{log M)} < —

for » large enough. Hence

B)< D BB < (r— 1)

v"wo
But outside |J E,, we have, by (4.5) and (4.6),
v;vo
* .
N¥(r,, K; w)_<
log M(r,)
and since ¥, may be taken as large as we please we conclude that (4.7)

holds almost surely.
On the other hand from (4.3) it follows that

(4.7) lim sup

=500

flre®)

e | Y

N, K o) ~—f

6 — Studia Mathematica XLI.1
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and hence
N, E;w) 1 of log|f(r,e")] a0
limint 239 o 2 pininf 2
S g m) 7 ew et T ogmg)

But by Lemma 3.5 for any measurable set E, of measure not exceeding
e~1 we have as before

2m
1 .
o= [t [1oglf(ne®]d6 > 4(B,)log M(r,) + Ou (Y log (B
i, 0
and if therefore &, is the set for which

2m
1 ‘ 10 9 Y
= f log|f(r,¢)| 6 < log M(r,) — log M(r,
we have
{10g M (1) — (log M)} (D) > o (1, log M(r ))+ Op(B,)log u(B,)
and we conclude as before that for » large enough

w(B,) < -2
and hence

* .
Jim ing 272 £ @)
T e log M(r,)

almost surely, and this together with (4.7) implies that
N* (r,, K; w)
oo log M(r,)

almost surely. But N*(r, K; ») is an increasing function of » and for
[

N, K;0)  N'(r, K;w) N*(ry41, K; 0)
logM(r,.,) ~ logM(r) logM(r,)
From this and (4.4), (4.3) follows.

§5. Lemmas for (1.10) first case. We now give the essential part

of Theorem 1 for the case when 9 (r) increases rapidly. We need the
following lemmas.

Lemua 5.1. If M(r) satisfies
(8.1) - limsup (1 —7)2M(r) > 260
wnd if . |
- (8.2) T(r) = 2{M(r)) =,
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then we can find {r,}, 0 <7, <1,r, -1, such that

(5.3) Wlr,+2t(r,) < 4 M(r,)
and
(5.4) (1—7)2M(r,) > 16

Proof. Choose a sequence {p,}, p, > 1 such that
(8.8) ‘ (1= 0,)* M(,) > 256
and define : )
o =g, o = V(oY) B> 1.
Suppose that for ¥ =1,2,...,
(8.6) C M) > M),

" We shall show that if p is infinite M (™) will tend to infinity while

o™ < 1(1+ o,). Hence we shall be able to conclude that p is finite and that
(8.7) M (o) < 49M (o).
We have

o — ¥ = 27 (o) < 271 (g,).
Hence
st)——g, <4r(o)<31—0)

by (5.4); 8o that o < }(1+g,) for all k. But .
M{el?) > 4*M(e,)

and tends to infinity if k¥ tends to infinity. We eonclude that p iy finite
and that (5.7) holds. We write r, = o and we have

Mr, +27(r,)) < 4M(r,).
But -
: M(z,) > DM(g,) > 64(1—g,)

and 7, < $(1+p9,) so that (5.4) follows.
LEMMA 5.2. If {r,} satisfies the hypothesis of Lemma 5.1 and if t, = z(r,),
then B

D)@l (4 7,) < 4R M(r)
0
and

nla,| (r,+7,)" < 412 M)

“[\ﬂzv
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Proof. We have

(j I%W)Q < _f lanl* (r+ 5)2"200’ (H’: 6)m < STHM(r+ 8)P.
0 [ 0

Writing r = r,+7, and 6 = 7, and using (5.2) we get the degired result.
The proof of the second inequality is similar.

In proving (1.10) of Theorem 1 and Theorem 2 we shall make con-
siderable use of Carathéodory’s inequality (ef. [6], Aufgaben 284). It ig
therefore convenient to state this as a lemma with various parameters
to which we can give appropriate values for each application.

LeMMA B.3. If ¢(2) is regular and 6 has no zeros in o domain D which
includes the disk |e—zo| < A and if further |p(2)| < M in this disk, then
for [g—z)| < B < A we have .

A+B
log M+ ——=log|p (2)| -

5.8 2
(5.8) 5
- If further B < 34, then

logip(e)l =

(5.9) log|p(2)| = — 2log M+ 3log |y (2,)|.

Proof. Since p(2) has no zeros in D, logp(z) has a branch which is
regular in D and ’
Relogo(z) < log M.
Hence by Carathéodory’s inequality applied to the disks |e—z,| < A
and |[z—z2, < B
2B b8

(2)
< 1
A7B gt

(20)

log g
?

whence

M
log|p(2)| > — [loge()| > — log ———— +log|p(2,)|

2B
A—B " p(z)
and (5.6) and (5.7) follow.

The next lemima is probably the most important lemma of the paper,
because the argument used in the proof will be repeated with variations
many times. Whenever these variations are not significant we shall refer
the reader back to the proof of this lemma. On other occasions we shall
just indicate the variations required. An important feature of this lemma
is the arbitrary character of the set B and the function b(w). The funetion
b(w) is any measurable function which may, and probably will, depend on
f(#, @), but it is independent of 6. Tt is this arbitrary character of b(w)
which gives rise to some delicate arguments. '

icm°®
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Lemwva 5.4. If the conditions of Lemma 5.1 are satisfied with {r,} as
defined in that lemma and if further B is any set of measure not exceeding
¢ b(w) any measurable compler valued function of w satisfying |b(w)]
< log M(r,), then

1 pa .
(5.10) o Ef au Of log|f((r,+,) 6%, 0} —b(w)|d6

> u(B)log M(r,+7,) + Cu(B)log u (B) — C(M(r, +7,)) .

Proof. It is necessary to remove the zeros of f(z)—b in the disk
|#| < 7,47, and to do this we write

f(z, @) —b(w)

5.11
(611) w(z, by 1,5.0) ’

9, b 0) =

where 7 is the Blaschke product of the zeros of f— b in the disk |2] < r, -+, .

‘We ghall, then prove that

2
1 N
(5.12) - | du | loglg(r,d”, b; w)|d6

satisties the above inequality. But the integral of g(r¢*®) with respect
to 0 in this expression is an increasing function of » and for r =7, 41,
lg(tr,+=) 6| = |F((r,+7,) 6", o) —b(w)]

and so (5.10) will follow. )
Throughout the proof we write = for v, since there will not be any

ambiguity. We divide the interval (0, 2x) into N equal disjoint sub-

intervals 6,— 6, 6;4 6, where N = [¢v~°] and put (5.12) in the form

8+

N
1
e I .
5 2y | W [ ostas
1k D

=
We now express ¥ as the union of three disjoint sets

. B = E,;VE, ;UE,,
where, writing z; for r,¢" and r for r,,

g ot~ {0lo<D £l 0l > ROPY,
By ={o|locB\H, lilzljia!f(z, ®)—b(w) = a(m}(,j))-a}_

Write
61 448

¥ .
1
E - _S_ fd,; f log|g (2, w)|d6,
1 T £
i=1 By ; o2
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10
where z = #,¢°. In B, ;

‘ [f(2) —b(w)| = ()| — |f (&) =f(&)] — B ().
But
HOESICHES |z—z|2n]an|r 43P (r) = O(A(r))
by Lemma 5.2. Hence in E,; for 0;—o< < 0;+6
’ 1
1f@=flw)l =3 (2!
Now for |2| =r<7,+7,
lg(2)l = |F(2)— bl
and 80
Z 262 floglf 2)| du— p(E)log2.
j=1 le

But, by Lemma 3.5,
[1og (2l d >

Eri

( L) log M(r)+ Cu (B )logu(Hy ).

Now |zlogz| is an increasing function of  so ‘
(B ;) logp(Byg) > pu(B)log u(B).
Also by Lemma 3.4

Wl < O(B:rt(m)-”“.

Therefore

‘212#(1’7)1@%%( )+ Op(B)log u(B) — O (M () *log M (r).

). Denote by &; = {;(w) the point on
)| attains its maximum. On |2| =+

(@) = If(z, 0) =B ()| < D) |a,

0

We have defined F,; by (5.13
|z—#2| = 6, where |f(z, w)—b(w
(1, "+ LogM(r,) = BN ()

by Lemma 5.2. This inequality true for Iz\ = 7,7 holds for |z <7, +

by the maximum modulus principle. Now apply Lemma 5.3 with
2 ={;, A =7—¢,B = 26. We deduce that
loglg(2) > — Clog M(r,) —log(67* (M ()} > — Clog M(r,)

for |z —{;| < 26 and so for |z —z| <

2, = Zidﬂ

0. Consequently
0;+8

flogm ¢)| daf >

1 0;—38

— 0N 5log M(r,) sup u (By ;)-
. 7

icm°®
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Now

(B ) < u(BE ;) < (WR(r,)) 7

and so .
22 = —O(M(r,)) " log M(r,).
If wekl,;, then, integrating round |z—z;] = 4,

y 1 fl&)=b _3
[f (2, ») <'?; Je=zp dzlé(im(%)) .

Hence by Lemma 3.4

(B.14)  p(Byy) < O(MY

n))—l (Z'ﬂzlllnlg?‘%n)_uﬁ < O(mt(rv))—l
1

Write 2, = 2 and consider |f(z)—b| in the disk jz—z| <2

function attains its maximum at a point {; on the circumference and
I (2] < w2 (8ry @) = b(w)] < 72g(L0)-

Now apply Lemma 5.3 to the function ¢(z) with z, = {; and the
numbers 4 and B chosen so that both disks include the arc joining
(r,+37)€7°, (r,+ L) €*, lie entirely within |2] <r,+v and are such
that 4 —B > ir. This is possible becanse § = O(z%). We deduce that

This

c ¢
loglg(2) > — —logM(r,) — - log|f'(2:)| +loglg (£,)]
c ¢
= — TIOg M(r,) — —T“IOEUN (2]
Hence
6 +4

fdu floglg{do logsm< ulBa )~ 0~ [ogIf eidu.

Ty 5 5~ . 1"3 X

. But by Lemma 3.5 the last term is not less than

tog( 30l

therefore by (5. 14)

=3 Jau [ ogigas> — oo

1 I"aj 0;—8

Combining the inequalities for 3 , 3, and };, we deduce that
1 21 , )
—= [[n [108190r.6")10
27
B [}

> u(B)log M(r,) + Ou(B)log u (B) — O (M(r,)) " log M(r,).

271) (By,1)+ Cp(By 1) log u(Bs ;)

7,)) 7Y log M ().

(5.15)
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Butb the first number is an increasing function of r and on [z} =r,+v
we have ' ]

lg(r+)6")| = [ (7 +7) 6" —b(0)]
and so (5.15) and (5.3) yield the desired result.

§ 6. Lemmas for (1.10) second case. Our next task is to consider
the case when (1—7)29t(r) is bounded. The argument of Lemma 5.1
cannot now be applied because; in the notation of the lemma, #, =,
may lie outside the unit circle. But although we cannot use this lemma we
now have the advantage of an order condition on I (r). We do, however,
get into trouble if M(r) increases very slowly and this case we reserve
for the next gsection. The analogue of Lemma 5.1 is

Lemma 6.1. If, for some numerical constant C

(6.1) ‘ M) <OL—r)2

for all v, and

(6.2) lim sup (10g(

P>l

then we cam find {r,} so that r, —1 and for all v

(6.3) w(5%) < sme),
and .
(6.4) - ]’im(log( — ))— P (r,) = oo.

Proof. Choose g, so that

-, 1 § -5 )
im(g,)(log( - )) - o0,
l—gv
Write
) =0, o =401+
so that ’

1—g?=2"%1—y,)
and suppose if possible that

M () > 8M ()
for ¥ =1,2,...,p. Then

M () > 8*M(o,)
50 that

(1- 95"))29?1(99“’) > 2" (1~} M(e,)-

icm°®
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But by hypothesis the first member is bounded and hence p is bounded
and indeed

(6.5) 2P< 01— 9»)'2(933(9»))"1-
We have therefore found o such that
M(oP+Y) < 8N (o),
writing 7, = o® we obtain (6.3). Further from (6.5)
1 _ 27 < (o} < 1
1—r,  1-g = (1—oFM(e)  @1—0o)

if g, is near enough to unity. Hence

sy "> e

as desired.
LemMA 6.2. If (6.1) is satisfied, then for all r

Eiani(ljf)ns ca
Z.Qn]an[(lj_r) <O@—r)y.

1.

Proof. We have

— ))—sim(e,) o0

- T)_slz ’

and

oo / oo
147\" 34 227 \2\ 12 _sp
PR e (DI DI
and similarly for the second inequality.
The following lemma is analogous to Lemma 5.4 and its proof is
similar.
LevuMa 6.3. If the hypotheses of Lemma 6.1 are satisfied with {r.}
as defined in that lemma and if further B is any set of measure less than ™'
and b(w) any complex valued measurable function satisfying |b(w)| <log M(r,),

then for » large enough
w)——b(m)
1—|—r,,))*1’8

L fu otz
(E)logsm( )+0u( )10gM(E)—(5m(~—2——

do
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Proof. We denote by = (2, b, r,; w) the Blasechke product of the zeros
of f(z, ) — b(w) in the disk 2] < }(1-7,) and as in the proof of Lemma 5.4
we write
_ J(z, 0)—b{w)
g(z, w) = n(z) .

Then as in the case of Lemma 5.4 we consider

m -
1 .
I= fd,,,f log g (r,é)| do.
Fa 0

We divide the range (0, 2=) into NV equal disjoint intervals (6,— 4, 0,+ ¢)

with N¢ == and N = [z(1—r)"*] Then if z =r6" [z—2|< s
and [b(w)] < log M(r,)

. [f(z; ) —=b(w)] = |f(z;)] ~log M(r,)—
We define

={wlwel,|f(z, o) 310gim O}y

B, ={o|ocB\E,; sup [f(z, 0) —b(w)] >

Je-—gjl<(1~1,)]16

B, ; = E\E, VB, ;.
Thenin B, ; for [¢| =1, [6—6;/ < 6

If(z, ) —b(w

(1 s v)7}J

1
> 5 1@l

Hence as in the proof of Lemma 5.4

S o | e

1 Ky 0;—
= u(B)log M(r,) + O (B)logu (B) — u(B)log2.

If LU.EEZ,.]- let {; 1?6 the point on [g—2;| = (L —r,)/16, where |f(z, m)—b(w)|
attains its maximum. Then by Lemma 5.3 with z, = Ly A = (1 -7,
B =}4 we have, for [z—z] < (L—n,)/16

logig(2)| = Clog(1—m,) -
whence
0;+5 ~
.
2= 2 { au f log|g|d6 > 20slog (1 -—74)2,4 (B,,).
U By 4o ’
But B, B; and so

(B y) < OM(r,)) " log M(r,)

icm°®
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whence

!

22> Clog(1—

for large enough » by condition (6.2). In F,; we have, by the argument
used in Lemma- 5.4 .

) (D)) log W (r,) > — ()"

lf(z;)I <OL—r).

(Zn |, ]27"”) s

Reasoning ' similarly to §5 we apply Carathéodory’s inequality to
disks centre a-point in the neighbourhood of $¢'% and of radii to include
the are 7,69, 7,60+ we deduce that

‘Whence

(6.6) u(B; ) < =o((1—7)).

B+6

) b
[ ap f loglg (76", w)|d0 = C — log(1—7,) u(Bs,z)
E3; 66 v

whence in view of (6.6)

8;+8

Za 2 [ an f loglg|d8 = C(L—r,)log(1 ———7')

T Ez; 6~

for » large enough. Collecting together the three terms 3 , 3, ¥, remem-
bering that the integral of g(ré™®) with respect to § in (0, 2=) is an increasing
function of r and using inéquality (6.3) we get the desired resuls.

§ 7. Lemmas for (1.10) third case. We have finally to deal with the
case when Mi(r) mcreases very slowly. The analogues of Lemma.s 6.1

— (W (r,))

. and 6.2 are

LemMA 7.1. If for some numerical constants C ond &

. 1 \E

(1.1) M(r) < G(IOg 1_7) )

then we can find a sequence {r,}, r, — 1 such that
1

(7.2) m (J;—”) <8M(r).

LEMMA 7.2. If M(r) satisfies (7.1), then

1 k
=)

1 k
Zma,nlv” 0(1 )3 (Iog ~1———) .

Sladr < 0a—r* log
. 4 1

and

»
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" The proofs of these lemmas are similar to those of Lemmas 6.1 and
6.2. In this case there is no result corresponding to (6.4) and condition
(6.2) is not needed.

Lyvma 7.3. If M(r) satisfies (7.1) and if {r,} is o sequence satisfying
(7.2), then for any set B of measure less tham ¢~ and for any comples valued
measurable function b(w) satisfying |b(w)| < log M(r,)

2
1 147, 4 _
E!d,uoflog f(Te ,w) b(w)| a8
. 1 ; 1 —-1/8
>#(E)logm({i%—oﬂw)loguw)-lr(mt(%11))

provided v is large enough. Here C is a numerical constant, K depends on
@1y Gyy ... but is independent of r.

Proof. As in Lemma 6.3 we write (s, ») for the Blaschke product
of the zeros of f(2) —b(w) in the disk |2| < $(1+7,) and define

flzy0)=b(w)

g(2, 0) = 2z, o)

We consider on |2| = r, the expression

27
1
=5;Efduof loglg(2, )| d6.

We divide (0, 2n) into ¥ equal disjoint intervals (6;— 0, 6, 6), where
N6 =x and N = [(1—7)7"]. We write 2, = r,¢'% and F — Pz, 65 »)
= §up |f(z, ) —b(w)], '

la—2;]<8
B ={oloe<B, |f(z)| > 3log M(r,)},
B,y ={o|o<B\E,; F > exp(— () ),
By ={0|oc<B\E,; F< (1—r)7},
B,; = BE\NE,;u Hy; O By

Then ®
3
I=2+2+3+3,
where
’1 N 0548
;’ =52 [ [ toelote, wia0
J=1 Ek,1 6j~0

for k =1,2,3, 4. The treatment of 2 2, and 3 is similar to that in
Lemma 6.3. The only change in the treatment of 2, is that the small

icm°®
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order of M(r) enables us to have a larger 8. For 22, let {; be the point
of |z —#]| = 0, where [f(z)—b(w)| attains its maximum; then by (5.8)

1
of Lemma 5.3 with 4 =Z(1-—'r,),'B = 23 we get

loglg ()l = —(M(r,)* — o ((1—1,)")

in [¢—#]< 4, and remembering that

1(By) < O(Dr,)) " log M(r,)
we deduce that, for » large enough

3> o).
For } we use
Fe<d?F<Q—n)

whence as before

(B ) < (L—1,3P (M (r,)) 2. A
Then, by using Lemma 5.3 as in Lemma 6.3, we deduce that in t—2zl <o

loglg(e)l < C(1—n,)"'log(1—7,)
whence

3> —o0a—nyn,
3

This leaves only the sum 3 , Which has no analogue in Lemmas 5.4
and 6.3. It is necessary to make a further division of the sets B, ;. We write

P
E‘M’ = U E;ﬂ,i’
D=5

where the sets B, ; are disjoint and in B, ;
A1 < sup |f(z, 0)—b(w)| < 45%
lz—zj<é
and 4, is defined by
Ay = exp ((SUt(rv))"s), A, = 2774 4,,
dp s <(1—-1)"< 4p

p=4,

and so for all p

1
log4, < 810g(1_r )

Let {; = {;(w) be the point, where |f(z, ©) —b(w)| attains its maximum
on |g—z| = 4. By Lemma 5.3 with 2, ={;, 4 = }(1—7,), B =24,
we get, for wel, ;

loglg () = — O(1—7,)"* —log 4, > —2log 4,
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if » is large enough. Therefore

650

Zp D fdyflog[g(zfd(? ~47:10g/1pN2,1 )

i=1 Ep ; 0;—0

1N
and we have to estimate the sum FZN(EM)- Let g(w) = 25,5(0) be
1

the characteristic function of the set &, ;. Then

Sumi =3 e (f(Suof )"

and
N N
[(Zm@fau= 3 [z@adu+ 337 [ )
Q 1 1 Q j#i Q
N
=D u@, )+ D)) u(By; N B,
1 I#1’
Now it 3'u(B, ;) <2, then the second member of (7.3) is small and so there

i8 nothing to prove. If this is not so, then

(nttoif <2 55wt 02,0,

=5

(7.4)

But if wek,; N H,;, then

[F@y—b (o) < 471, [f(g)—b(w)| <

and 8o

[f(2) = floy)] < 2452,
But if j #j'

D oy (8= O
T —fley) = 2 3 emint a,,r”e‘"“’?*"f"smn( - ) ‘
1

So by Lemma 3.4

(1.8) 6By 0 Byy) < Pr(|f(e)—flep)| < 2453))

— 0\ '
< 047 (Z @, 27 5in2 n( =+ 4 )) .

We now distinguish two cages, cage (i) when

o0

8;— 0 '
2 ianlzv‘“sixfn( 7'»9 7 ) > A;ll

1

iom®

B
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and case (ii') when the opposite inequality is satisfied. In cage (i) we have
w( By OB, ) < CAZYS
denotes the sum over those terms for which case (i) holds

3 = 3 u(B,,; 0 B,,) < ON° A7

Let @, be the first non-vanishing term in the sequence al, sy oo
Then .

so that if Y™
(7.6)

Jag P r¥sin® — k (0 — 6;1)

oo ) : %
Z ia,n[‘rz"smz? (6;—0;) =
1

50 that in case (if)

. .
in - (e,.-a,-,)J < (A2 o)™

The number of terms sa.tlsfymg this condition is clearly
C'JWAD 2R e v < BN? AV

where K depends on Pt(r) but is independent of p.
So from (7.3) and (7.4) and (7.8)

2 ~ Elog A, {A; 18 4 4715,
Putting in the value of 4, we get

273 FF

for sufficiently large ». Collecting the inequalities for 3, 5, 3 and
2, we get the desired result.

100114 K
s K
AT TG

§ 8. Proof of Theorem 1. We are now in a position to prove Theorem 1.
We begin with the following lemma

Lmvva 8.1, If (1.4) and (1.5) are satisfied there exists a sequence
{o,} 0, = 1 determined by the function M (r) and to each v o set B, of measure
at most (log Vi (g,)) ™" such that if K and § are any positive constants

(8.1)  inf ——fmg,fne , @) —b]d0 > log M(o,) — (log M(o,))

pi<g 27
SJor vz v (I, 8) and all o in the complement of E,.
Proof. The sequence {r,} is as defined in Lemmas 5.1 and 6.1 and 7.1
and o, = 7,47, when the hypotheses of Lemma 5.1 are satisfied and
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0, = }(1+r,) when those of Lemmas 6.1 or 7.1 are satisfied. Since by
hypothesis M(r) tends to infinity we may suppose that », is such that
for v > v, K <log M(p,). To each o, there exists a measurable funection
b(w) such that

floglf(e, ) — b g+ 1.

1b|<K o

I(0) = 5 [ loglf(e,e") ~b(a)las <

However, we have shown in Lemmas 5.4, 6.3 and 7.3 that for any meagura-

ble function b (w) satisfying these conditions and for any set H of measure
at most ¢!

(8.2) f I(w (B)log M(g,) + O (B)log(B) = O (Mg,

‘We are free to choose for # any meagurable set and we now exercise this
choice by taking for E the w-set E, for which

I(w) <M(e,) — (log M(e,)) +1.
Then ’

1 (B,){log M(g,) — (log M(e,))’ + 1}

> u(B,)log M(e,) + Ou(B,)log u(B,),~ (M(g,) *
or

1 2
log M(e,))’ < Olog——r T
( < u(B)  u(E,)
But if u(E,) > (logim(gv))“ this inequality will not be satisfied for o,
near enough to unity. We conclude that u(H,) < (log M(e,))™* Wwhenever

(8.2) is satisfied. OOnsequently outside ¥, we must have for all b(w)
satisfying |b(w)] <

I(0) > log M(e,) — (log M(a,))’,
and 50 (8.1) can hold in a set %, of measure (log M (g,))~* at most.

By Jensen’s theorem we have from (1.7)

Nu(r, K;0) = a6

inf —
i<k 271 ) ’ f(%ew) ’

2n
log |f(re"”) —b| 40— su f]o €% —B|d0.
> it o f B 17(r6") =010 sy [ Jogif(36) -
But the second integral is trivially bounded. Hence by Lemma 8.1 we have

(8.3) Nu(r, K; @) > log M(e,) — (log M(e,)’ + 0 (1)

Distribution of values of a random function in unit disk 97

outside a set B, of measure at most (log M (0,))~". By taking a subsequence
of {p,} if necessary we can arrange that

e

L (8.4) D) (logM(e,) ™" < oo.

1

Making this refinement, it follows that outside a set | , whose measure

2y
D (log M(e,)™

y=yy

tends to zero as v, tends to infinity (8.3), holds for all » > v,. Hence
'N* (gv ¥ K; U))
g1 10g SD?(Qv)

almost surely, and this with (1.9) yields (1.10).

To deduce (1.10) we observe that the argument used in the proof
of Lemma 4.2 establishes (4.6) for any sequence {p,} satisfying (8.4).
Then from (4.6) and (8.3) outside the exceptional set

N*(0yy K 0)— Na(o,y K; 0) < (log M(2,))’ + 0 (1)
whence as before for 6 > 0 .
N* (o), B 0) — Nu(0,, K 0)

(log M (a,))°

almost surely and (1.11) follows.

0

§ 9. Proof of Theorem 2. The method we used to prove Theorem 1
enables us also to establish Theorem 2, but this time, since we say nothing
about the order of the number of zeros, we can make some preliminary
reductions. In the first place it is sufficient to show that almost all functions
take every finite value an infinity of times in a particular sector; because,
since the union of a countable number of sets of measure zero is of measure
zero, we can then extend this to every rational sector and so to every
sector.

Now suppose that there exists an w-set £ such that to each weF
there exists a number b(w) such that f(z, w) —b(w) has at most a finite
number of zeros in the sector 0 < |2| < 1, |argz| < a. We have to show
that B is of zero measure. Suppose on the contrary that & has positive
measure and denote by {§,}, » =1,2, ..., the set of all rational sectors
in this given sector. Let E, be the subset of E such that if weB,, f(z, o)
takes every value at least once in §,. Now if for all n, y(E Y = u(E),

then u(EN\E,) =0 and so ,u(U (ENE,)) =0 or y(ﬂ EB,) = u(B).

7 — Studia Mathematica XLIL1
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But if we ﬁ I, then f(z, ») takes every value at least one in every sector

8, and so f(z w) takes every value an infinity of times in 0 < |e| < 1,
largz| < a contrary to hypothesis. Hence there must exist 17, ﬂuoh Lhat
w(B,) < u(B) or p(BE\E,)> 0. That is we have found a set IN\E, of
positive measure and a sector 8, such that to each wel\H, there exigts

b(w) such that f(z, w)—b(w) has no zeros in §,. We shall ‘ﬂlOW that this
is impossible and from this contradiction it will follow that J has zero
measure. We can make yet two further reductions. Let {0} (1@11011(5 the
complex integers and

{w{weE\Ew, ]b(“’)“aj‘ - 1}

then T, = U 7,
1

so.if we can show that u(JF;) = 0 for all j the result will follow. However,
since altering the constant term in the expansion of f(z) makes no difference
it will be enough to show that w(F,) = 0. Again if f —b has no zeros
in the sector, then |f(z, @) — b(w)| will be bounded. below for 6 <lo] <16
and a sector 8, = S,. Denote this lower bound by B(w) and let E, be the
subset of E\J, for which B(w)>1/y. Then E\E, = | JE, so u(E\E,)
= lim x (E,) and this implies that for some v, I, will be of positive measure.

»>00

So in what follows we may assume without loss of generality that for

* a seb of positive measure and a positive number 4, | f(2, o) —b(w)| = B > 0,
where B is independent of z and o for 6 << 2| <14, 8, S,L and welf,.
We can now restate the problem with rewsed notation in the following
form. If to each weF there exists a complex number b(w) satisfying
[b(w)| <1 and if |f(z, w)—b(w)| is bounded away from zero uniformly
with respect to 2 and w for 6 < [2] < 1— ¢ and |argz| < « and if f(2, w)—
—b(w) has no zeros in the sector 0 < |2| < 1, |arge| < «, then I is neces-
sarily of measure zero. To prove this result we shall suppose that F is
‘of positive measure and show that this leads to a contradiction. -
Whereas in Theorem 1 we used Jensen’s theorem, we shall now make
use of Green’s Theorem. Let D, be the ‘domain common to the disks
|2l <7, jzcosa—r| <rsine; D, lies in O < |o| < 1; |arge| < ‘and 80 in
largz] < 2a. The Green’s function for this domain with respect to the
point 2z = rcosa is -
r(e— reosa)

G,(2;rcosa) = —log a(zoona 7’)
=

If f(z, )—b(w) has no zeros in D,, then log|f(2, )—b(w)| is harmonie
and by Green’s theorem

Tog f(reosa, w)— b(a)] = 5= [ 10g|f(e, 0)—b(w)] o s,

icm
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" where the integral is taken round the boundary of D,. This integral is in

two parts

cos 0 —cosa
1—2cosfcosa-+cosla

(01) I == flog 7 (e, @) — b (w)]

and

:!n
-t

rsina oG
b ()| T dy,

[«(z
where in the second integral z == rseca-+7tana ¢, and

0< G . 2cosa
S p(l—sina)

If I is the set of positive measure for which f(2)—
the given sector, then

b(w) has no zeros in

(9.3) f117 o)Ay = Jloglf PeO8 e, ) — b(w)] du— fla(r w)du.

We observe that the integrand in I, is a logarithm multiplied by a non-
negative expression. We can apply the same argument to this integral
as we did to the integrals in Lemmas 5.4, 6.3 and 7.3 because the non-
negative multiplier plays no role. There is one difference. The function
f(2)—b has no zerog in the sector and so there is no need to introduce
the Blaschke product and the function g(2). Since the function g(z) does
not enter we do not have to pass from (5.15) to (5.16). Hence we shall
have for the sequence », of Lemmas 5.4, 6.3, 7.3

94) [L(r,0)ds

B .
2a
>ﬁ~?)(ﬂ%ﬁm+W(WMWF( ()
plovmed v ig large enough.

We choose 0 so that reose < eosa < 1— 4§, then, by our h‘ypothems
that |f(2) —b| is bounded away from zero,’

(9.5) [log|f(reosa)

¥

—b(w)|du = u(B)logB

for some positive number B.
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Also since by hypothesis |f(2)—b| is bounded away from zero for
3K |8l <14 it follows that

EuEn
2

| log]f )—b( m)[-——dw
‘ g +2a
is bounded below, so that in the case of I, it is sufficient to consider

= )—2:1

I, = f du j log|f(2, o) —b((z){»,w#(]q/;

«ia

‘We shall prove that
(9.6) I, = o(log(z,))
as v tends to infinity and this is incompatible with (9.3), (9, 4) and (9.5)
5o long as ¥ has positive measure. In this way we shall arrive at a contra-
‘diction and so establish Theorem 2.

The argument for I, differs in certain respects from that used for
Theorem 1. This is because that theorem used - inequalities (5. 3), (6.3)
and (7.2) applicable. to Theorem 1 and the integral of (9. 1), where |2|
was constant in the range of integration. But in I s 0f (9.2) and I, of (9.6)
2| varies and inequalities (5.3), (6.3) and (7.2) cannot be used. We co-
nsider first the case of § 5. We divide the rango (A= a, - 2a) at
a point # = B, chosen as follows. If ‘
(9.7) 21, = 7,86C a7, tan o ¢+

write r; =7, = |z,| and choose r, so that the following expressions
hold as r, and r,, tend to unity

(9.8) W+ 4 (M ()] 27) < 4 (),
(9.9) C log M(r,,) flog M(r,) — 0.
Let
Fhets 5 ke
(9.10) Iy = [du f + _[ du [ =141,
1 [ I o
7 +a by s fi

. We divide the range (3m+a, $n-+a+p) into non-overlapping intervaly
(6;—8, 8;+6), where 0, — 6=} + o and 8 = (M (r,)) " Write 2 = rsoca-|-
+rtana e and 7, = [¢)|. Let -

By ={wloed, |f(z, v) >3},
By; ={o]weB\E,; sup [fz ) =b(w)| = 6 (M (r,))"*},

12--z;|<8

B, = D\ELJUDZJ
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and : .
Iy = I+ 1,4 I,
where for p =6,7,8

07-+17

=2 Ja |

Fpg 40

In B, ; we have

()= b(0)] = £ (=) = |F(2) — F (2)] — b ()]

= 2m’z/~zl an[anl(rv+1,)",>, 1.
1

Hence Iz 0.
If wel,,, then we have

(9.11) #(By,5) < Prob (|f(2)] < 3) < 2(M(ry,,) .

Denote by ; the peint on |2—#] = 6, where | f(2)— b| atbains its maximum.
We have
[f2) =B < Cv ™ M(r,+ 1) < C (M ().

We apply Lemma 5.3 with ¢, = ¢;, p(2) replaced by f(2)—b, 4 =44
and B = 20. It follows from (5.9) that ‘

log|f(e)—b| = — ClogM(r,).
Therefore, in view of (9.11),
—Clog M(n,)- (M(r, ).
If weDM as in the case of (5. 14)

lf J} (L) (SUt(T,,))~3
and so
(012) #(Byy) < O([(r))
Now |f(}#, w)—b| is bounded away from zero, since 4z; is within the
sector. EHence, by Lemma 5.3 applied to the disks [2—%2| < 3o + 6
and |¢—4#] < tlzy| +7 we get
9.13) log|f(2)—b] = — O(M(r,))*log M(r,)
and .

Iz —O(M(r,) P log M(r,).
Combining these integrals we get
= —C(m (r1,,)) " log M(r,).
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Therefore, if r,, is chosen so that
() < ()
we have
(9.14) I, > —Cp(B)(M(ry,,)) " log M ().

For the integral I; we divide the range -} /},%4-20:) into

i
. 2
non-overlapping intervals 0,—d, 0;-- 4, where

§ = (SIR (1))

Write |
& = rseca-t rana
and define
={o|wel snp |f ) —b| = 'S(wt(r],.-))“ﬂ},
|2 ~jl=5 ;
B,; = E\Eu.
Then write
04 0
2 .J dp J +2 fo'l,u j = Iy
By Y T Hyp o 0 i

In virtue of (9.8) we have

Dl 1y, (1)) < (M, ).

0
So if {; is the point on je—2;| = 8, where |f(¢) —b| takes its maximum we
haive, just as in the ease of I,, in B,

log|f(¢)—b > — Clog M(r, )
whence

— O (B)log Mi(r,,, ).
If weF, ; we have, just as in (9.12),
(o (B g) < O (M (ry,)
further, just as in the case of (9.13),

log|f(e)—b| = — O (r,,)) " Log M(r, ,)
whence ’

—OM(r,,,) " log M(r, ,)

8o that for 7, , large enough we have

I > —Ou(B)log M(r, ).

©
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Therefore using (9.14) in the case cofrespondjng to that in § 5 we have
I,z — Op(B){(W(ry,,)log M(r,) +log M(r, ,)}
so that by (9.9) if u(H)> 0

Iy/log M (r,) -0
as 7, - 1.
‘We now turn to the case corresponding to that considered in §§ 6
and 7. We choose 7, = r,, 50 that, ag », and 7,, tend to unity, we have

(9.15) M A+r,) < 8M(ry,),
(9.16) log M(r,,,)/log M(r,) - 0,
(9.17) log(1—ry,)/log V(r,) — 0

It is clear that these conditions can always be satisfied for an infinity
of 7,,."To each 7, we determine g = f, to satisfy (9.7) and partition
the range of integration as in (9.10). We first consider the integral

-—+2tx

rsina oG
I= fdﬂ flog;f —b 15 dp.

Tatp

Ag before we divide the range of integration into non-overlapping intervals
(6;— 9, 6,+ 6), where § = (1—r,)? and write #; for the point determined
by 6;. Define

By ={wlocl sup |f(z)=b=>(1—7,)%,

fe—z;l<<8-

B,; = ANE, ;.

Denote by ¢; the point on |¢—¢;| = 8, where | f(2) —b] atitains its maximum’
and apply Lemma 5.3 to this function with z, = {,, 4 = 44, B =24.
y (5.9) we have

log|f(e) —b] = — Clog Wi (ry) + Clog (1 —11)

whence
0540
0.18) I =D [du [ dyp> —Cu(B){log M(r:)—log(1~r)}.
7By e .
If well,; as in (5.14)

[f' (2, @) < (L—ry)*
and so
u(By,) < O(1L—ry)s,
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Applying Lemma 5.3 to f(2)—b with 2z, =4z, 4
and B = }|¢] -+ 0 we geb

log|f(2) —b| =

=3yl +3(1—r)

— O (L'—r,)"* {log M (r,) — log (1 —7y)}.

Therefore

=2

By 0

o

18

| dy> =61 —r) fog M(r,) —log(1 —1,)} >
&

and from this result-and (9.18) we deduce, in virtue of (9,1‘6) and (9.17),
that

IflogM(r,) =0
ag r, tends to unity.
Returning to the integral

5 teth

_ rsine fd f ay

——{-a

we divide the range into intervals (6,— 4, 6,4 6), where 6

= (1—n)
and writing #; for the point corresponding to 0;, define

By = Flg,0) = sup_ [f(z, 0)—b(w)|
Jz—zﬂgﬁ
and
= {loeh, fz) =8,
EM ={o|weB\E,;, F; > (M(,)"*},
By, ={o|w<B\B,,;, F;<(1-r)7,
B,; = E\E,;UR, ;UH,,,
Then
I= 11+12+Ia+1u
where
07 +d
I, = Z f (s f dy.
Fi Ep, 0_;-0
~ As before

Lz

By Applying Lemma 5.3 with zo at the point where |f(z)—
its maximum on |z—#] = 6 and with A4 = }(1
on the arc under consideration, .

log|f(z)—b| =

b assumes
7,), B =28 we get,

Clog M(r,).

icm
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Now

w8y ) < (wt(ﬁ))—l/a

and therefore
I, > — G(EUI('TM))-‘/"‘ log M (7).

It welly;, as in (5.14)
frel<a
#(By ) < O(L—n)e.

By a.pplymg Lemma 5.3 with 2, at }2; and with A and B differing by
$(1—r,) we get on the arc under conmdera,tlon

log|f(2)—

—r)
and 80

b) = — 01 —r,){log Wi(r,) —log(1—7,)}.
‘Whence
I;> —C.

This leaves I, which we deal with by the method of § 7. Indeed there is
little significant change in the argument. The expression corresponding
to (7.5) is

bed . -1/6
w80y < OAgi’f [Z |, {(r}” — 7B+ 4ol rsin® 9 (6;— 07-,)}]
1 i

) & o ~1/6
< 045 [Z‘ ianlzr;_”rj’-%sng (6;— G,q)]
H 1
and we consider the two cages (i) when
O 2,1 it Y A
2 |@,|* 77 rj8in —5(67-— ) = 1/4,,
1 .

and (ii) when the opposite inequality is satistied. The remainder of the
argument is as before. Combining these results we get
Iz —0(Mry,) " logM(r,)—C

whence ‘

Iflog M(r,) =0
ag 7, tends to unity.

Combining these inequalities and with the notation of (9.6) we have

shown that

Iy/log M(r,) -0

as r, tends to unity. We have thus established (9.7) and ijOVed Theorem 2.
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Uniform algebras satisfying certain extension properties
by
JAN-ERIK BJORE (Stockholm)

Abstract. In this paper we study a uniform algebra 4 on a compact metric
space X, Here follows the main result. If for each closed subset F of X there is 4 closed
neighborhood W of F and a constant kp, such that for each feA there is some ged
(tesp. a sequence (g,) in A) satisfying g = f on F (resp. lim|g,— flz = 0) while |glw
< kylfip (vesp. |gnlw < kplflp), then 4 = O(X) (resp. 4 is locally dense in O(X).

Introduction. Let 4 be a uniform algebra on a compact space X, .
i. e. 4 is a closed separating subalgebra of C(X) containing the constants.
If 7 is a closed subset of X and if feC(X) we put |flp = sup{{f(@)]: zeF}.
The following two concepts will lead to the problems studied in this
paper.

DrriNITION A. Let A4 be a uniform algebra on a compact space X.
We say that A satisfies the local extension property on a closed set F in
X if there is a closed neighborhood W of F and a constant C such that:
Vifed thero is a sequence (g,) in A with lim [g,—fl» = 0 while |g, | < O IfIF
for all n.

DrrFINITION B. Let 4 be a uniform algebra on a compact space X.
We say that A satisfies the strong extension property on a closed set
F in X if there is a closed neighborhood W of F and a constant C such
that: VfeAd there ig some ged satisfying g = f on F while |glyp < C|flp.

Now we can state the main results of this paper.

THEOREM 1. Let A be a uniform algebra on a compact metric space X.
If A satisfies the local extension property on each closed set in X, then A is
locally dense in C(X).

THEOREM 2. Let A be a uniform algebra on a compact metric space X.
If A satisfies the strong extension property on each closed set in X, then
A = 0(X). :

Finally we study & phenomena closely related to the local extension
property. Let 4 be a uniform algebra with its maximal ideal space M,
and its Silov boundary S, and let feO(M ). We say that f is boundedly
approximable by 4 on a closed set ' in M, if there is a closed neighborhood
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