icm

STUDIA MATHEMATICA T. XLI. (1972)

Interpolation of -Banach spaces

by .
YORAM SAGHER* (Buenos Aires)

Abstract. The paper extends the interpolation theory of Lions and Peetre to
r-Banach spaces. The  extension permits application of the theory to L(l, oo) as
well as to other spaces, not covered by the original theory.

The interpolation between L?:¢ spaces is carried out also for measure spa.ces
which contain atoms, and this is applied to trigonometric series.

1. Introduction.

DEFINITION 1. Let B be a vector space over C. An r norm on B is
a function | [z: B — R satisfying: :

() [bz =0 ift b =0,

(b) for all 1e C, all beB, |Ab|g = |A"]b]g,

(€) b1+ bslp < [balp+ 1045

An 7 normed space is a topological vector space, whose topology is
given by an # norm. A complete r-normed space is called an r-Banach
space.

Every r normed space is an r; normed space for every r, < r, for
| ¥ is an r, norm on B, defining the same topology on it.

From 27[blz = |2b]z = |b-+b|p < 2|b|z we see that non-trivial »
normed spaces exist for » <1 only.

Let T: (By, | |5,) = (By, | |z,) be a linear operator between an r,

. and an r; normed space. It is easily seen that T is continuous iff ¢ > 0

exists so that for all beB, [Thl31 < c[b|Ho.
r-Banach spaces oceur na.tura,lly in ana.lysm H, 0< r< 1 are but one
example.

DEFINITION 2. Let B be a vector space over C. A qua.si-norm on B
is a function || [p: B - R™ satisfying:

(a) [Bllp =0 it b =0,

(b) for all i¢ C, all beB, |ls = |4] bz,

() & number %k = k(B) exists 50 that [[by+ balls < k([balln+ [Balls) -
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A quasi-normed space is a topological vector space, whose topology

iy given by a quasi-norm. . .
? glIVt is eZsilY seen that if (B, | |p) is r-normed, then (B, | [5) is quasi-

normed, where | [z = |¥, with &(B) = 20N~-1 We also have:

TEEOREM 3. (S. Rolewicz [71.) If B is a quasi-normed space, 2'"
> 2k(B), B is r-normed. . .

Our work is motivated by the following copsideratmnsi P spaces
(see [2]) which are in L'+ L™ appear as intermediate spaces in the mper-
polation theory of Lions and Peetre, [4], [5] ete. Th1.s, however, l‘ea;vef?
out L' (weak I'), and so Marcinkiewicz’s interpola,y'mn the.orem is pot
proved in this context, for a case most important in &ppllca.mon?. By
considering interpolation between r-Banach spaces we shall- obtain all
I gpaces (0 <p < 00,0 < g < oo;9p =¢=00) as mtermec’llla.‘ue gpaces.
The theory is also applicable to other problems, e.g. interpolation between
H? spaces (0 < p << o), etic. . )

Krée [3] has extended the K method of Peetre to q_uam-nor):ped
spaces, and hag obtained the identification of all L7 spaces as intermediate
spaces (1). However, Krée does not make use of »-norms. )

Using » norms, we are able to obtain theorems on the topological
properties of the intermediate spaces not available in XKrée’s method,
as well as interpolation theorems missing from hig theory. As examples
of the latter: The reiteration theorem of Lions and Peetre is generalized
in full. Another example is the following regult:

(Lmo’ Lml)eq = Lm,

where 1/ = (1—06)/g+0/q:,0 <p < o0, 0<g< co.

This generalizes a result of Peetre [5], who proved this under the
assumptions 1 < p < o0, 1 < ¢; < oo. This result is particularly interesting,
for it was previously available only by complex methods.

Tor an extension of the complex method of Calderén to r-Banach.
spaces, see Riviere [6]. '

In Sections IT, IIT we generalize the work of Lions and. Peetre [4],
[6]in two directions: We consider »-Banach spaces rather than Banach
spaces, and our parameters are in (0, co] rather tham in [1, cc], For
the sake of completeness we have included proofs of all theorems, including

(*) We take this opportunity to note that Krée’s proof of this fact is valid only
when the measure space has no atoms. The theorem is true, however, in the general
cage (See section IV) and is-in fact of interest, since it' enables one to obtain various
theorems on Fourier coefficients.
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those where the generalization of the proofs of Lions and Peetre is
straightforward.

In Section IV we present the basic properties of I*? gpaces. For an
exposition on these spaces using elementary methods, the reader is referred
to [2]. We then show that these spaces are intermediate between IP
spaces. From this we proceed to deduce various topological properties,
and a generalization of the weak interpolation theorem of Hunt.

In Section V we give a unified account of theorems of Hausdorff—
Young, Paley, E. Stein and others, on Fourier coefficients, using L2
spaces and the weak interpolation theorem. The connection between
LP spaces and these theorems was suggested practically since the time
that L™ spaces were defined, and this seetion is of expository nature.
Still it may be of some value — if only as a demonstration of the strength
of the go-called weak interpolation theory. :

Il. The spaces (B,, B1)o g, *

THEOREM 1. Let B be an r-normed space, V a topological vecior space,
T: BV a continuous linear operator. Let B — range T. Define on R
[vlp = int{|d|5/Th = v}. Then (R, | |y) is an r-normed space. If (B, ]| |p)
8 complete, so i8 (R, | |g).

Proof. The last statement is the only one requiring verification.
Vpely |, —vylp —~ 0. Suffices to show the existence of a convergent
subsequence. We therefore take a subsequence of the original sequence

and can assume [v,—w,,lp < 27""%. Let b,eB, Th, = V= Vp 1

bals < [0 —vppalp+27"7 < 27,

Let a,¢B satisfy Ta, = v,. Define inductively a, = a —1—by_y, Ta,
=Ta, y—%, 1+v,, and by induction T4, = v,. |y — 1] m = B,
< 27" and so {a,} is a Cauchy sequence a, > a, |Ta— e < la—ay|g — 0
and so v, converges. . N

DEFINITION 2. Let (B,, ]| 5 (Buy||) be 7, and r, normed. It both
are continuously embedded in a topological vector space B, we shall
say that (B, | 183 By | |,) 18 an interpolation pair.

- In the sequel, we shall omit the norms and write (Bg, B,). Also, when
(B, | |p) is r-normed, || |5 will stand for | ji.

THEOREM 3. Let (B,, B,) be an interpolation pair of 1y, 1, normed
spaces. Let r = min{r,, r,;}. Then 1Bl gynm, = max {||b|[5,, [1bl5,} s an
r norm on By, N By, while blpysm, = inf{%n?)lzllbinﬁi/bo—l—bl = b} is an r
norm on By+B;. Finally, if (B,, | |Bo)’ (B1y | | B,) are complete, so are
(Bo N By, | lBor\BJ and (By+ By, | IEO-i-Bl)- : i

Proof. The verification for (B, n By, | |By~m,) I8 immediate. As for
(Bo+B1, | [p+m,) We note that T: (B, | |Bg) X(By1, | |p) =B defined
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by T'(bo, b1) = b+, defines | |5 .5 as a T induced norm on. its range
B,+B; as in Theorem. 1.
DEFINITION 4. Let (B, | |5) be an r-normed space, {u,} a sequence
of positive numbers. Define
(a) ”{bn}llzgﬂ(ﬂ,l B = (_Zm i BalIB)17, 0 < p < o0,
(0 {utlhee g, p = SUp {llenbylls} -
oy, n

Define also I} (B, | |p) as the space of all sequences of elements of B go
that | ”1/1" Bl g < %
n . .
TEEOREM 5. 1 (B, | [5), | [%(B,l |B)) is an s normed space, where
§ = min{r, p}, and
— 8 .
Hie @i = | “l’,in(m 15
The spaces are complete iff (B, | |g) is.
Proof. The proof proceeds along well-known arguments. We ghall
write I (B) for 12 (B,| |5); P(B) for B(B).

DEFINITION 6. Let (B,, B;) be an interpolation pair of *95 7y DOTIEd
spaces, 0 < 6 <1, 0 < p; < oo. Denote

w(Po, Bo; P1, By; 0) = lfﬂgn(Bo) al Zf(ll_o)n(Bﬂ,

with the s norm:

Htn} o = ﬂf:f{||{e(i—a)n“n}||;m(ﬂ)}’

where s = min{r,, r;, po, p;}.
TamorEM 7. Let (Bo, By) be an interpolation pair of r,, v, Banach

spaces. Then Tt w(py, Bo; py, By; 0) — By+ B, defined by T ({u,}) = Yu,

is @ well defined continuous linear tramsformation.

m m
Proof. osz; ]un|31 = %1]“ng(l“")"jﬁl0("'1)"“”, if now p, < ry
m m m /
_ o R _ /p
25 60 SV 00 < (3 e,
k Ie I
while if r; < p,

mn m
= - - &
ZB g o oMIBl €O < Ok, 0, p, ,,,)( E (128, € o)nH%ll)n By
%

with kmC(k, 6, p,7) = 0.
00
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’ . =
In any case, ' u, is a Cauchy sequence in B;, and so Y u,eB,. The
-1 0 o0 0
proof for > w, is similar. Therefore D, eB,+B,. The linearity and

continuity of 7 are now clear,

We can therefore define an s norm on the range of 7', where
§ = min{r,, 1, Py, P1}, with respect to which the range is an ¢ Banach
space, T' is continuous and from open mapping theorem, (R, | |p) is
continuously embedded in B,+ B,.

. DEFINITION 8. Let (B, B,) be an interpolation pair of 7, r, Banach
spaces. Define:

(Boy Buleipgy = { Xt/ {0} €10 (pa, Bo; 01, By 6)}

with the s norm defined by T above:

1¥1cB, 2400,y = 12 { {0}/ _fu =3}

When B,, B, are not complete we can still make the following
definition: .

DEFINITION 9. Let (B,, B;) be an interpolation pair of r, and 7,
normed spaces. Define:

(Boy By ™™ = {b<By+By| J{0in} <l (By), Von+ 01, — B},

IbI(Bo,B]_)omn’l”l = iﬂf{Fﬂ?IXI]{e(i_o)n”in}“:ﬂiwj/’UOn'H)ln = b},
=0, .

where again s = min{ry, 71, Poy D1} ((BM B,)’70n, I '(B,,,Bl)"-Puml) is
eagily seen to be an s normed space.

THEBOREM 10. If (B,, By) is an interpolation pair of 7y, 7, Banach spaces,
then (By, B, 7071 = (B,, B1)o,p,, - :

Proof. Let be(Bo, By)"707. Let 0y, -+ 10y, = b, {0, } cIPi(B,).
Take w, = ¥4, —v,_;. Clearly

[{“n}hfg NEAR {von} |lfﬂgn(ﬂo) )
- (’Uln - ’Uln—l)

B)1 27,: Uy = Vgp—Vg_g—_1.

Since Vop+ V1 = b= 'U()n—l'!“vln—la Uy, = Vop, —Vop—1 =
0

and so also ]{u“}llﬁLo)n(Bl) < 21{”1“}115(11—6)1»(

0
[{e™ ™ von}IPy5, < co and so 93115, = 0. Therefore Zk' Uy, —> Voo I By,
: 1 00
Similarly, 3w, == v~y = v,y in B, and so DUy = Vgg -0y = b
1
(in B,+ B,), and

—00

IbI(Bo:Bl)ﬂ,po,m < GIbI(BO,.Bl)B’m’pl'
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00
OonveI‘Sely, if bE(BoyBl)a,bo,p17 b= Z“m {un}ew(p(ﬂ Bo;pl’ Bl; 0):
Bl o0 " ™ k-1 o LS .
- T -0k - -
take 2 Uy, = Vgpy Zun = Vyy € "Uuk = 2, e ", = 2 € ”’Mnﬂ(” Ic).
o & —~w® -0

Therefore:

0 k-1

- .

—~6k,, 1P ~0 0(n~ ) \ ol ]
Z‘”e MUWC”B?J<IGZ ( 2 |0 n“nlﬁoero (n c)) oo . T,
—00

=—00 fl=—00

If now p,/ro> 1, use Young’s inequality for convolutions:

oo -1
I"O/pog( Z ]e_”“un]’;if:]/"'ﬂ)rom"( 2 erooﬂ)
= 00

e m OO
while if p,/ry <1

00 k-1 ; o] 00
- i — - Y7 L
IS 3 Y e g e — 31 foonu ) (N gemn),
k=—00 n=—00 N=—00 Nl

In any case [{e~"vs,}Poz) < O [{e™" s} |20 Similarly:
l{e(l_am"’ln}h”l(ﬂl) < Cl{e(l_a)nun}’zplwl)
and the proof is complete,

TrmorEM 11. Let (B,, B,) be an interpolation pair of vy, ¥, normed
spaces. If for some A # 0, there exist sequences {s} elz’(’iﬂo)m (By), ©==0,1,

Vont+ V10 = b, then for every u £ 0 there ewist sequences {v,} e f@_,a,m(Bi)
80 that v+l = b. Further:

l{e(i“")“%fn}]lm@) <O, p) f{ﬂﬁ*am"’m}|z’”f(s¢) (6=0,1)
(and in particular be(B,, B,)"Pv1),
Proof. Since vj;} = v,_, takes care of the cage 4 = —1, We can aEsume
0<i,u.
Let o = u/a, and take v¥, = ian) (Where [an] is the largest integer
not larger than an). Clearly of,+ o4, = b. We have

e Y™
< “ﬁ(i‘a)[am%i[aﬁj“Bﬂm“m-
From these inequalities it is clear that if 0 <y < g
— B G0 1ty
e o iy < O|{ett R TR

and so suffices to consider the cage o = 1 Jk.
For such u, however,

od 0
o B . N !
) R A Y "
& <

and the proof is complete.
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TeEOREM 12. Leét (B,, B,) be an interpolation pair of vy, r, normed
spaces. Then:

N —0 1-6 - (]
Pz, 207021 ~ e~ 0 g gy {6 ™ 010 1 5 f00n+ 23, == B}

If B; are complete,
1Pl 21, ~ 1 {0 g K0, i,/ S0, = 1) .

Proof. Let {vs,}el’% 5,(B,); v+, = b. Denote V= iy We
have: ’
”{e(i—e’""??u}”z"iwi) = 9(9—7%i|{ﬂ”_a)"’”m}|!zpiwi)-
Let y be determined by: R
&% ”{e_m%n}”zpﬂ(zal) = =17 || {00 "”m}”z”lwl)
and take & = [y]-+1.
—q i— i) (fe— —_ 6 — 1—0
0= {e e)n@z‘n}nlﬂi(ﬁ,;) = ¢0mIE=A | 10 o)n”m}“Zm(Bl)H{” 0”1;0n}|[lp0(30)
and so:
. _ 16 _ 0
Bllzp, B2 Porpr < Olnf{”{e an%n}”ﬂ’o(Bo)H{e(l 6)n”1n}”'lp1(31)/’00n+’!)1n = b}.
Since:

- 1-6 — 8 ‘ G
”{8 Bn%ﬂ}”lpa(Bo)”{g(l D)ﬂym}”lpl(Bl) < 1']1?21({”{6@ ﬂ)"vin}”lm(Bi)}’
i=0,

‘the first claim is proved. The second follows from it via the construction

in the proof of Theorem 10, or else can be done directly as above. _
- TEHROREM 13. If p,<P;, (By, By) is an interpolation pair of vy, 1y
normed spaces, then: .
(Bo, B! 0P < (B, By)PFoPr,
. B,

Proof. Ii_q,(By) < Li_p,(By). »

DErFINITION 14. (See [3]) Let (4,, 4,), (B,, B;) be two interpolation
pairs of 7;, o; normed spaces. T: 44+ 4, — By+B, will be called a quasi-
linear operator from (4,, 4,) to (B, B,) iff for every a,-+a, edo+4, we
can find b;eB; so that
(15) T(ag+ay) =bo+b,  and by, < Kyllai]a, _
Of course if 7' is a linear operators from 4,4 .4, to B,+ B, whose restric-
tions map 4, continuously into B; it will satisty the requirements of the
definition.

TeEOREM 16. (Interpolation Theorem.) Let Aoy 4y, (By, By)

be two interpolation pairs of 7, o; normed spaces. T a gquasi-linear
operator from (Aq, 4;) to (B, By), then if 0 <6<1,0<py,p:< 0,


GUEST


59 Y. Sagher

1)0,100:291

T: (Agy 4,)"P07 - (B, B
and ||Tl, < OKL°K!, where K, are the constanls appearing in (15).
Proof. Let ac(dq, A) 2071 @= vy, -+ Oy, {660, } elP(A4,), 5=0, 1.
v, ed; and so for every n we have, wg,, W, 50 that
0:ll3; < Hyl[0inlla -
K “{eu—ﬂ)n”m}”lm(zli and 8o

Ta = wy,+wy,, and
Therefore [[{e"= " w;, }#izy <
IT‘IH(H,J RLETR IS a[]{e“”‘w(m}”zpow)|]{e‘1 9)"W17z}|z"1(131)
< eBy RYIe™ 00n} g {6 010} -
Taking the infimum of last expression over all sequences {vy}, {v,}
so that vy, + vy, = a, we geb
||TGH(B0 B0 2001 < oK§™ aK1”“H(Ao, A)0 Do, 1
DEFINITION 17. Let (X, Z, u) be a o-finite measure space, 0 < u.
Let (B, | |g) be an r normed space. Denote by .L”(B) the space of all

strongly measurable B valued functions on (X, X, u), so that ||f|lzsgm < oo,
where

(a) “f“LT’(B) = L_zf“f”%d‘u]llp it .

(0) fllzeom) = EssSuplifis.

TuEOREM 18. I7(B) 48 s normed with ¢ = min{r, p} | |z = | |zogm-
If B is complete, so is L”(B).

Proof. Triangle inequality is all we have to verify for the first claim.
I s =p,

\f+9lny = [If+olBdn = [1f+ 9% au< [ 1f18" du+ [ lgIPrap

= |flzo@ + 19 zogz)
while if s = ¢

|+ glznsy = ([ 17+ 918)"™ = ([ 17+ g18f aus)™
< ([ 1 an)™ + ([ g1t au) ™.

The last inequality is Minkowski's for p/r > 1.

The proof of completeness of LP(B), given that of B, follows along
the same lines ag that of the corresponding proof for Banaoh gpace valued
functions. ‘

TerOREM 19. Let (B, B,) be an interpolation pair of ry, vy normed
spaces. Then:

(L™ (B,), L% (By)"Po1 = I7((B,, B,) o),

where 0 < po, p1 < Cinl L

Do P

0<p < oo,

1
oo and — =
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Proof. Let f(»)< (L (B,), L7 (B, )21, £(2) = vy, (@) + 01y (), 2 e.z,
where v,,,(*) e L?i(B;) for every n, and {[[e“‘“’”'um (@)z?i5,} €Pi. For almost
every z we have

(] Z Nl 5, ”°) o (2 Zneﬂ "0l )“

I 4'7)”(30 BPPo 1
Using Hélder’s inequality:

f ”f”ﬁs'n,z?l)ﬂy Do Py d,u
X

o J 2:’ e~ vllgedu) 7o

Pl 0) -5 1;1

([ 2160313, 2
00

and so:

1 oy, 5yom0my < ell{e~"™ on}“;ﬁo(,—}’ow ,)”{3(1 D)n”m}”lwwpxml,)

Oonversely: Let f = Zbkx,, be in L*((B,, B,)"Po®), where y, are

characteristic funetions of dw]omt measurable sets bye(B,, B,)»Pef1 gnd
80 we can write f(x) = v,,(%)+ ., (), where:

1 (®)llzy, 20 20,21 = cl?lf;'lf {{e“ ™ v lms 5}
1=0,

" Let 2 be given by: p,(1+16) = p. We then have:
P:(1—A(1—0)) =

Taking w,, = v;,,,, where k = [A].Og”f”(Bu)BI)B,pD,pI], we have:

o
Z'He(i—s)nwinngii <0
—00

() et )2 exp (a(6 D205, 500)

Pit+0iA0—1)
< ollfllgs mysonzs = 171z, mp02omys

and so:

et

2 f o= 04, (@)1 g

_ (i—0)n Py
= Af K=" 0 ()1,

171}“1171(LI7'L(B )

< ¢ [ 1f Iy, my0pom: du
X

=c¢|f ”’131’((190,1?1)9:17011’1)'
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However:

) 1-6 (1-0)n e
I hzPosg, LPLB 2021 S eli{e nwﬂn}l|1p0(Lp0(Bo)) Ii{e wln}”z”I(L”l(zrp)

LELB I
< 0”f“Lp?(Bo,Bl)s,po,_w,) = 0[|fl| oy, By 2omy -
Since functions of the form given above are dense in L the proof is
complete. .
TarorEM 20. Let (B, B,) be an interpolation pair of o, 7, normed spaces.

Then for beB, N By, we have

bl 2y, 222021 < €lBlIE;” 1117, -
Proof. Take
b, n =0, 0,nz=0,

v, = Vy,, =
0n 0,%<0, In b,%<0,

[{e" Vg }ly2i5,y < ¢l[bl5, and hence the result follows from Theorem 12.

DEFINITION 21. Let (B,, B;) be an interpolation pair of r,, » Ba-
nach spaces, 0 < 0 <1,B, N B, B < By+B,, B an r Banach space.
We define: BeK, (B,,B,) iff ¢ exists so that for every beB, N B,

el < liBlz;  1Bll%,

THEOREM 22. Let (B,, By) be an interpolation pair of vy, ry Banach
spaces, By N By « B < By+ By, B an v Banach space. Then: If for some
P> 0 (By, Bi)oy,, < B, then BeE,(By, By).

If BeK, (By, By), then (B, Bi)y, . < B.

Proof. We have shown that for every 0 < p, (Byy B1)op,» e_1£0 (Bgy By).

It now (By, Biyyy =B We have |bls < clblls,ny,,,, < bl b3,
for every beB, N B,, and so,Begg (By, By). .
If now BeK, (B, By) is an » Banach space, take

. |
be(Boy By b= 3y, {ugyew(r, Boir, By, 0),

and so

S,

-] o0 "
Bl 1 —
5 < D) Tl < 0 3 [0 s, 15,
—00 —00
(=]
= 0 > lle™ a5 = Vg, 1
—00
< of{e " u HITS O e, 1

(By) By
And so: [bflz < c”b”(Bo,Bl)o,,',d and (Bo, By, = B.

@ © ‘
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TamorEM 23. Let (B,, B;) be an interpolation pair of ry,r, Ba-
nach spaces. Let (X, | lx,)eKo; (Boy B1), 1 = 0,1, 6, < 0 < 6,. Then if
1 .1-¢

6
—f——i, we have
"] Do 2

(Bo, B1)o,pgn, < (X0, Xidnggay  where n = (8—0,)/(0,~ 0,).
Proof. Let be(Bos Bi)o,pgpy b = D Uny {m,} ew (Do, By; 01, By; 0).

ol < Ol
A L N T 2

Using Holder’s inequality:
1-6;
P9

6;
ey < O 3o~ 7> (S-oma

and using Theorem 11:

_ 1— _
“b”(Xo,Xl)ﬂ,qo,ql < G“{&(en e)"un}“lgo(ﬂxa) ”{9(61 B)nun}”:!ll(xl)

— 1—-6 _ [}
< O™ gy O}

Taking the infimum of lagt expression over all sequences so that b= >,
we get =

Bl T .0, < OB 05055

DEFINITION 24. Let (By, B,) be an interpolation pair of r,, r, normed
spaces, 0 < 6 < 1. Let B = B,+ B, be an 7 normed space. Then: we define:
BeK, (B, B;) iff a constant ¢ exists so that for every beB sequences
{”m}dzc(i—o)n(Bi)a 1=10,1, exist, with H{e(l_ﬂ)n”m}”zw(si) < ¢|pllp and
b = Vg + V1

TamOREM 25. BeK, (B,, By) iff B = (B, By)™*>.

Proof. Follows directly from the definition. .

TraroREM 26. Let (By, B;) be an interpolation pair of r,,r, normed
spaces. 0 < 0 < 6 < 6, < 1,7 = (6—6,)/(6,—6y), (X, | |x,) ey, (Bo, By).
Then:

1 1-—6, 0,
(Xy, X,)"0% < (By, B)" 0?1, phere — = — % 4 L
9 2o V2

Proof. Let we(X,, X,)"%0%, g = vy, +v,,, ‘where, using Theorem 11,

{6 v} ixy < ¢llllx,, xpmara. Since X;eKo(Boy By)y Oy = Dgpom,+


GUEST


56 Y. Sagher

+ Vi, With [I'meiHB < el Mo, Iz, all m;. @ = (Vomomy, T Vimom,) +

6 i —1F)mg— —(0—7)n 2,
+(Iuonlmo+’01nlml ? H0 o ’L7L.‘I’/77o,‘”7]7 0”6( v s ”j

Let now m; = n-+1;, we can choose t

1% < 065 [~ 2

Let £; be chosen so that

A o0 B8 = OIS P 8 (i = 0, 1)

(K; will be chosen later).
‘We then have:

L P N <Ll CL SN

Take ¥, = [&]:

”g(y'-e)n fzay < GKIJ,(O —7)“6(%— 11,0 ”’h .

1.n]7)1,,’l

Therefore
H{e(j—e)n ('Uonj'mo + 'vlnﬁnl)}HZﬂj(Bj)

By—7) 1 50— 20/P5 (01-1) || £ o(01—0) 01/101
< o [Eo=) (e ’”%M}IIZ,_,(,(X) + K7 {e" vm}lllql(x)

- 0y~
< O LEPO a2 g0+ S Dl 10, 00,0,]-

q’b) 1
(-5

Taking K; = HxH(X xyminay) WO get

H{eu_ﬂ n”Onimo -+ /Dlnjml}”lpj(Bj) < “wH(Xo,.Xl)m 20919

and: ollz, zy00em < [0llx, x,)mowe and the proof is complete.
DEFINITION 27. Let (B,, B,) be an interpolation pair of »y, 7, Banach
spaces. By, N B;c B« By,+B,,0 < 6 < 1. B an r-Banach space. Then
define: »
BeKy(By, B;) iff BeKy(By, B,) N E,(By, By).

Thus BeK,(B,,B,) iff (B, Bl)o,raa‘ @ B (B, B 1)0,0,00 (Where B
is an r-Banach space).

TrEOREM 28. (Reiteration theorem). If (B,, B,) is an interpolation
pair of vy, v, Banach spaoces, XieKy(Bo; By), 0 <0< 0< 0y <1, then

1 1—0, 0,
(Xoy X3)o—apio,—sgapar = (Bos Bilopgw,» where A = o -+ ]9: ..

. The theorem is-of course a combination of Theorems 23 and 26.
The interpolation theorem can be combined with Theorems 23, 26 to
yield the following theorem:
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TeBOREM 29. Let (Ao, 4,) be an interpolation pair of (vo,r,) Banach
spaces, (By, By) of g4, 01 normed spaces. Let 0 < 6, <0< 6; <1, 0 <y,
<7< ’hil; 0 = (60— 00)/(0;—6o) = (12— 20)/(m1—10), Xifﬁ(Aoy 4,)
and YK, (Ao, A;). Let further 0 < po,p,< oo and g; be determined

11—, )
S A/ + LA If then T is a quasi-linear operator from

Po Dy % 141
(Xo, X;) to (¥,, Y), we have:

ITallz,, pymava < ¢+ Ky K] el g, 45

's . 171 )
1 —6; 6,
Proof. ae(4,, 4 16,045, - Then ae(Xy, Xy),, ,lmth 7 + -,
o D
and |laf|, X0 Xida,rgry < cllaf], 400 41)0,p0,y " From mterpola.tlon theorem
ITaliry, v poram < 0K3_GKY“"'“(X,,,xl),,,ro,,l
while from Theorem 26
”T“”(B,, Byhap s S ]T“H(yo o1
- 1 1- 1° 1—0, —, .
For =120 2 _17% M o L 10 0 L—ns  m
m—no’ ri %o 4 i Do V21 qo [/}

Combining the three inequalities, the theorem follows.

II. The spaces (B,, B,)y,-

DEFINITION 1. Let (B, B,) be an interpolation pair of vy, 7, normed
spaces. Define on By N B;:

M (n, b) = max {||bllz,, €"|Ibllz}
and on B,+ B;:

W(n,b) = Inf{max{|bolls,, ¢ bz} | Bo+by = b}.

These are of course the analogues of the J and K functionals of Peetre [5].
It r = min{ry, r,}, then M"(n,d), W'(n,b) are r norms on B, n B,
By+B,, both equivalent to the usual ones.

THEOREM 2. Let (B,, B;) be an interpolation pair of r,, 7, normed spaces.
Then be(Bgy, B))"™? iff ¢ "W (n,b)el®. Further

[18llzy, o2 ~ I{e™™W (1, B)} o
Proof. Let be(B,, By)"™?, b = vy, +v,,, with
H{e“‘”“vm}llmi) < ¢lblzy, Byyo.2ep-

" W(n, b)<max {[j6“" v}, and so
i=0,1

I{e™ "W (n, D)}l < 0?:?111{H{@“_B)"%}]lw(si)} < ¢|pllz,,myoer


GUEST


58 Y. Sagher

conversely, if e ""W(n,b)el® for every n we can find v, so that
ma’X{”vm”Bt n} < oW(n,b), vputoi, = b.
=01 = Un
Therefore: [[Bl|(z, 002 < cli{¢ OV (my B) Ml

TarorEM 3. Let (By, By) be an interpolation pair of ro, 7, Banach
spaces. Then be(By, By, Uf there ewists o sequence {4}, UpeBy N By

so that g’un =b and {e”"M(n,u,)}l®. Further:

By 5.5, ~ T2 {I1{6 3 (5 )| )0 = B}

Proof. Similar to that of Theorem 2. ,
Our next objective i3 to show that if (B,, B;) is an interpolation
pair of 7,7, Banach spaces, then

1—0

1
(By) Bl)a,po,pl = (By, B1)o,pps ‘where —_'; == T_I—E
we shall need the following result:
THEOREM 4. Lét 0<p<K oo, —o< <o, 0<O0<], a=
(L—0)ay+ 6ay. Then:
P,
(I, gy L  Le)ongmy = Vecne
Proof. Let f = pypo(a;—ap)/(py—po). Denote by If the space of
all sequences {u,} so that

luaty = (Zlu [ 6f)" < oo

Define then I({u,}) = {u"exp (ﬂﬂfﬂiﬂ n)}, we have:

P1—DPo

P %P Oy Qo 1o
I {u ., = u,|7 ex; - n)]
Tl [Zm (= BN gy ppy e

- ”{u‘n}ulm '

Therefore I is an isometry between ¥ _on and 77 interpolating the isdmeﬁry
between l—a,hn and Ift we get for 0 < 6 < 1

Po D1
Dy 10
(L=agn, b=a)o.gm, > (B0 Bo,p0,m,
-1 g
» D
le—-an <~ lﬂ

and the proof is complete.

Interpolation of r-Banach spaces 59

TusorEM B. Let (By, B,) be an interpolation pair of rq,r; Banach
spaces. Let 0 < Py, Py < 0,0 < 6 < 1. Then (By, B1)o,npp, = (Bos B1)o, p,ps
1—6 0 )

Do [2e
Proof. Let 0 < 0, <0< 0, <1, 1= (6—0p)/(6,— 0),

[7)
—L, X; = (By, By,
1

1
where — =
V4

a0+ BY the reiteration theorem We have

(6) (Bo, Bl)ﬂ,po,pl = (X, Xy)

1,20.01°

Let now be(B,, Bl)ﬂ,pu,pl. Using (6) we have

b = Vg + ”{éi“l)nvin}”z‘“(x) < c”b||(B0,Bl)9JPO "
Using Theorem 2, [[{e™%™W (m, v,,)}H|2 < ¢llvullx, and so:

o o0

D D) 16 ()% < o Zueﬁ"m mu% olplj%,

N=—00 M=~00 oo

Le. [{"P e W (m, v,)}
on B,+B,; we have:

Bl’s.Po;pl

gigty < €0z 55, , - Since W' is an v norm
W (m, b) = W"(m, vo+ 1) < Wm0y 09) + W' (1, 0,,,)
and so 0 << W(m,b) < e[W (m, vOn)—}—W m, vy,)].
Therefore W(m b)e (l-eon: _,,1"),1,,:.1,041
By Theorem 4, W (m, b)el? y,, with

1 1_Z+i _ (1—1)(1—Bo)+,1(1—-91)+ (1—2)6,+26, 1
¢ @ & Do 71 p’
0 = (1—2)8,+16,,

and  [[{e="W (m, b)}iw < clblls,, By, USDg Theorem 2 again,
be(By, By)s,pp and the injection is contmuous

Conversely, let be(B,, Bi)spp. We can write b = Zum, ‘with
[{e™"™M (0, tn)} o < ¢[Bll5,

M (my ) Uy = (KL gy 1

v BUo,p, 0"
a1 .
~omligyg, 304 S0 we can find two

sequences {'Umin} 80 that Vyey+ Vpmin = M(m, uy,),

I{eC=P™ 6= 0,5, i) < o|1Bllzy, By, p,p*

Since M(m,wu,,)> 0, We can assume 4, > 0. Take now b, =
00 P '
Zum M(fr::mu ) (4 =0, 1). Clearly by, -+ b, =b.
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o M( _min_ ) = di=Amg=0my,,, and so {6, Hisix,

m? ‘n M(m um)
< ¢[bllzy 55,,, 2020 ”b”(xo,xl);,,qo,ql < o[blliz,,3y),5,p°
From (6) the theorem now follows.
‘We ghall from now on denote (By, By)s p,p DY (Bos Bi)oy-
THEOREM 7. Let (B,, B,) be an interpolation pair of r,,r, Banach
spaces, 0< 0,4 <1,0 <pyq< 0. Xy = (By Buop,-
The following conditions are equivalent:

() blf(Xoy-XﬂA,q,
() b= Xu, (in By-+By), and "M (n, u,) (P, 1?2), ,

(¢) & (n, b)e(l?e, T71), ,

The corresponding norms are equivalent.

Proof. (a) = (¢): Let be(Xy, Xy);,- Then b = oy, +4v, with
e s by < €18l zy05, 00 16~ W (10, 0 2 < 003

Therefore b = v, + v, with ¢
(8) e~ N (m, v,,,) €19 (TP

W'(im,-) is an r norm, and so W"(m, b)<< W' (m, v,,)+W"(m, v,).
Therefore W (m, b) < ¢[W (m, vy,) + W (m, v,,)]. From (8), e~""W (m, b)
€17, 1), ’

() = (b). Let ¢~ W (n, b)e(I™, 1), ,. For every = let vy, v, = b,
with € |[o;,]l5, < ¢W (n, b), i =0, 1. (%, 1), , < 1%, and so W (n, b)< ce™
therefore

”DONHBO < 06 v s () as n—> —oo,

ol < e 50 a3 m— oo,

Take %, = Ty, ~—Vp_; = Viy_y— ¥y, (se6 Theorem II 10). 2% = Yoy —

~ V-1 =b—vy—n_y_, and since o1z, = 0y 120 ny-alls, — 0, 2'“‘
=b (in By+By),

ur (my ty) = max {Jlu,, 6" [[ull3,}

< M8 {|[0 5, + [n-1lT5g5 €™ (02llls, A~ o2l }

< max{[[vg, |5, € v, } -+ € mAX {040l 6" 01l }
< e[W(n, b)+ ¢ Wiin—1, b)]< ¢(L+¢") W (n,b).
Therefore ¢~ M (n, u,) < ce™™W (n, b)e(I0, 1), ,

(b) = (a): Let b= Yu,, eM(n,u,)els, 1),

Therefore we have two sequences {T,} (¢ = 0, 1), {e=™g, .} 17(1%),

icm°®

Interpolation of r-Banach spaces 61

5 = )
Vpom + Vpim = € nM(""; u,). Take Dy,
=+
?,

= ¢"7,,,,. We can assume v,, > 0.

nim
Take by, = niwun mn—) Then bom—l— bim = b,
. Vs .
(z—A)me-th nim — 8(1—A)me—ﬂn7} - el2(1P),
-e (’)’l«, Uy, M(n, ’ll;n)) 'nim € ( )
Therefore ¢~ ™||b,,||x.<1% and so be(X,, X;); ,. The proof is com-
plete.
, 1—2 A
COROLLARY 9. Since (I™,171),, =17, where +—=—, from

Theorem 8 then: Do V21
((Boy Bl)a,pos (Bo, Bl)ﬁ,pl)l,p = (By, B1)a,p-

IV. L™ spaces. To make this account self contained, we will present
the definitions and statements of theorems on LP? spaces. For the missing
proofs we refer the reader to Hunt’s paper [2].

DeriNiTION 1. Let f a complex measurable function defined on
a o-finite measure space (M,ZX, u), x> 0. We assume that f is finite
valued a.e. We define

={&/f@) > 9}, Aly) = ul(E,).
In the fo]lowing we assume always that A:(y) < oo for some 0 < y.
DEFINITION 2. f*(f) = Inf{y > 0/4,(y) <t}. f* is called the non-
decreasing rearrangement of f. : :
DEFINITION 3.

r a1y
. (f ﬂ/p(f*(t))qT)l/q,
Ifllpe={

Suptllpf*(t); 0<p< o0,q =00,
o<t

= {flIflpe < o0}
Note that for p = ¢ we get the usual L” spaces, while for ¢ = oo

we get the weak-I” spaces, i.e. the spaces of functlons satisfy ,(y) < C/y?.

DEFINITION 4. Let fel®, r<g,r <p,r
Define:

0<‘p<oo,0<‘q< oo,

Sup{( e | Ifl'dM)IIT/M(E)St}, t< (),

(+] ),

1t ir
THEOREM 5. (f*)™ (1) = (-t—f( ()" du) .

) =@, =
p(M)<t.
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TamoREM 6. F*(1) <™ () < (f*)™ (8).
Proof. Let ¢ > 0. B, = {o/|f(@)| = f*(t+e)}, u(Z,) > t+¢ > t, and so

K 1 r Hr *
7 (t)>(m%f|ﬂ W) 21+

and so f*(i+¢) <f™(t). Since f* is continuous from the right we get

o<, .
HE) - p(E)
[ifrans [ asrrae = [ (o
H 0 0
and so
l 1 ) r u(I) s )1/7'
R r < - r
E;B:(ME)JW d’“) < E%Et(y(ﬂ)of (") au

g(_.f(f*(u))'du)m = (f)"™ ().

' ifr |
mamonme 7. 11y < 15 < 10 < (525) 105

The first two inequalities follows from Theorem 6. The last inequality
follows from Hardy’s inequality. Since this inequality will be needed in
the sequel again, we state it explicitly:

TrrOREM 8. (Hardy’s inequality.) If 0.< f, 1

o (f(ff(s)‘ff) )< -f—(fwf as

o ([ roded) <t froct)"

t

<q,0<r:

Our aim now is to identify the LP* spaces as intermediate spaces
between L* spaces. For 1 < p < o0, 1 < ¢ < oo this was done by Calderén
and by Peetre.

For 0 < p, ¢<< oo this was done by Krée in [3], for meagure spaces
which contain no atoms. ‘

‘We present a proof which covers the general cage. Our proof is also
shorter than XKrée’s, since we have the reiteration theorem at our disposal.

DEriNITION 9. Let (B, B,) be an interpolation pair of 7y, , normed
spaces. Define for 0 < ¢,beBy+ B,

E(t, b) = Int{Max {[boll, , tBsllz,} /b0 + by = b}

icm°®
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DEFINITION 10. Denote for f(¢) defined for 0 < ¢, measurable,

il =( [ trcor
12 = {f/lfl,5 < =}.

THEOREM 11. be(B,, B,)*® iff t°K(t, b)eL2 and the corresponding
s-norms are equivalent.

Proof. If e"<<t<< e, we have W(n,b)< K, b)< W(n+1,b).

a1
il = swisc.

Therefore:
et ot at -1
9; (W (m, B < f K, b))”—t—ge (e (n 41, B
e?’b

summing for — oo < n < oo, and using Theorem 2, the proof is complete.
The case p = oo is done similarly.

THEOREM 12. Let now 0 < p << oo, feL? + L. Let K (1, f) =
O =0, 0<r<p, r<1.

Then
tﬁ
t, 1) ~( [ (7 (w)?au)”.

Proof. Let f = fy+fi, foe L?, f1e L. For any set H, u(H)> 0, we

K p 1t 1)y

have

1 \a ._}__ 1 r

mEfm < f!foi it — fml
and so

(™ @) < (F @)+ (7 @) < (£ (W) 4+ 1fill oo
Hence

@

o[ (£ w)rau)” < ( f (£ )P @)™ +¢)lfill oo < Wfoll g+ E12l o

< 2 Max {[|foll .55 tllfall oo} -

Taking infimum of lagt expression over all fyeILP, feL® so that
Jot+fi =1, we get

»
([ (rwpa)”< ek, 5.
Conversely, let 0 <t be given. E = {o/|f(@)] > [*)} fo = I 15,
fi=F=Ff

Since £ < If], £7*(w) < 7™ (u) for all a.
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For every u <1, ||fill <) < fF(u) <f*"' . Therefore:
oo . .
(13) Max{ [ (@) du, #|fill) < f (™ )P du.
0 0

Since f* vanishes outside H, u(H) = M F*(7)) < ¥ we have:
i

Ifol2y = [ (f3 (w)rdu = f (P < [ (f* @)Pdu.
From (13) we therefore have

4
Max {[[foll%pr IIf2l2e0} < f (F™ () du

{0
and so K(¢,f)< ( e (u))”du)“”, and the proof is complete.
0
The idea of the proof goes back to Krée [3]. However, the formula

. t
Sup, Ef |l dp = f ()
which is basic there, does not hold if the measure space has atoms.
THBOREM 14. Let 0 <p<0, 0<0<1, p<q. Then (LP, L),
_ g
Proof Since K(t,f) ~ (?{f**(u)]ﬂdu)”", and  fe(LP, L®),, iff
I f O
The last integral is equal to

1 w_ﬂl_ : - alv @t
(15) ;Jt v (of[f (u)]”d’w) -

Using Hardy’s inequality (for which we need g > p) the integral in (15)
is majorized by

(q/p) ft-aw/p[fw() -%(%)’fo we-0 12 1L

The last integral is finite iff f eLmq. The reverse inclusion is easily proved.
. ‘THEOREM 16. Let 0 < p; < 00, 0 < g, < 00, Po # Py, 0 <O <L,
en

(LPo%, I%), = IP%  where L = 1-0 -9—
Do Py

@ ©. .
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Proof. Take Py <Min{1,p0,p1, Qs 91, 9} Let then 4,, 1, be deter-

—2 1 1-—2, 1
mined by p . = ™ _ ", We have by.Theorem 14:

L% K, (LP2, L), na <K, (L%, L)
and since p, # p1, Ay # A, We can use the reiteration theorem:
(LP0%0, LP19)g, = (L7 L®) 305 4 1y8,¢ = L™
1-2(1—=0)—40 (@A—4)3-0)+1—-2)8 1-—9 + 6

where — = .
D P2 Po Py
THEOREM 17. Lot 0<p< oo 0< @<l (LP%, LP96, g .= L™
1 1-6 6
where — = ——— 4 —.
q Qo q

Proof. Immediate consequence of previous theorems and III. 9.
‘We can now prove easily & number of results on L*? gpaces.

TBEOREM 18. Let 0 <r <p < oo, r<min{g, 1}, |flog = ()"
Then ( % | |pg) 48 am r-Banach space.

Proof. Take r as above. I*? = (L', L), with § = 1— % (L L®)gq

is an r-Banach space, with an r-norm equivalent to ||t K (¢, f )Hf:g , which

in view of Theorem 14, is equivalent to |fl,,, and the proof is complete.

Note that the completeness of (L% | |,,) is an immediate consequence
of the completeness of L", L™.

THEOREM 19. If ¢; < ¢:, 0 < p < oo, then LPU < LP%,

Proof. Immediate consequence of Theorem II.13.

THEQREM 20. If (M, 2, u) contains infinitely many disjoint sets of
positive measure, then if ¢, < ¢y 0 < p << oo, LPN £ IP%,

Proof. Can be done directly from Definition 3.

We want to compare the interpolation theorems we have for L??
spaces, with the ones in Hunt [2]. For this purpose we specialize the
interpolation theorems:

THEOREM 21. Let T be a quasi-linear operator from (LPoPo, IP1™1) fo
(ZPoP0, IPIPY), then if Dy # Py, Py %P1, 0 <0< 1,0 << o0, we have

V150 < Bollfha,  where o == 4
(===

b Po )

This is the weak type theorem of Hunt [2], if quasi-linear operators

in the sense used by Hunt (|T(f+g)| < K(|Tf|+|Tg|), we shall call them

[ 0
+7—T and ||g| denotes, for short, |g™*|*).
M1

5 — studia Mathematica XLI.1
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pointwise quasi- l'mear) can be connected with quam -linear operators in the
sense of Definition IT. 14, when ||Tf Hz,qu < My f”mi

This follows from the following considerations:

It T is pomtwme quagi-linear and | Zf ”z‘, S M| f ”Wl , we congider
T Qefined by Tf = |Tf|.

o f -+ fl) /14
T(fo-+f1) = bo+Db,, where b, = 7, 01_ 7, fi‘
7 P .
Since T]fff:%ci <K, bl z5 < K- MlIfilp,q and so T s quasi-
0 1

linear in the sense of Definition IT.14.

Hence | 7], < Bollfllpgs bub qun;,l = |Tflls, and so ITunt’s theorem
follows. We also have:

TeEROREM 22. Let T be a quasi- lmem" operator from ( L”o’fo L”lql) to
(LPodo, IP18%1), Then if 0 <0 <1, <G, ond

1 1-6 0 1 1-0 9

Then |Zf Iz < Bollf e
Proof. From the interpolmion theorem, 7' is continuous from
(L7, I%),, to (LPk, IAl),. By Theorem IT.13, (LPo%o, Ihod), =
(1;”040 Lplql)ga, while from Theorems 16,17

(L@o% Lplql)g — Liw (Lf)gl]o Lmal) . LW]

Wlthout the restriction g; < §;, and with a B, which is bounded when

6 —0,1, but for a more restricted class of operators (sublinear), this
is proved in [2] (strong type theoreni) using complex methods.

- - Of course Theorem II.16 enables one to interpolate in the manner

of Theorems 21, 22 between general interpolation pairs and (LPo%, LP1%),

V. Theorems on Fourier -coefficients. In thiz section we make use
of the results of previous sections to present some theorems on Fourier
coefficients. The exposition is intended ag a demonstration of the appli-
cability of the results. The idea is not novel, and iy implicit in [2]. Let

{qvn }ML be a bounded orthonormal system. on (a, b). We define f(n)
—f on (@) f(w)dw, and consider the operator Tf = {f n)}. Taking the

mtegers ag the underlying measure spa.ce with the meagure 1 carried by
each mteger, we have [ITf|ke << M ||flf, (boundedness of the system)
and [|Tf|3 < |13 (Bessel’s inequality).
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. 1 1 ,
Interpolating, we get [|Tfl, < ¢ Hf”;q for —p— + ? =1,1<p<2.
Since we know that I*? < LP% if ¢ < ¢;, we can write
1) TS g, < cllfllpe  for 0<g< @< oo,

If now {C,};<, i8 & sequence of complex numbers, we consider it as
a function on the integers..

Agsume €, — 0. For such sequences it is easily seen that if {C}} is the
sequence {|C,|} rearranged in non-increasing order of magnitude,

- Foodt
n{on}u;qz(go:a [ th) for g < oo,

1 n—1
and Sou%)t"”C’ﬁHl for g=oco."
<

It can be seen that

o0

HOWHipe ~ () Crtna=), g < oo,
1 .
I{On}fpoo ~ Sup Crnt’?.
1<n
Taking now ¢ = ¢, = p in (1) we get
(X ey n =) < l1f1, = elflp,
1

p/p’ =p—1 and 5o we got for 1 <p<2

@) ( X Fem) =" <o) flly-
Taking in (1) ¢ = p, ¢, = p’ (possible, gince p < 2 < p’), we get -
3) , (2 FmE™ < olifl,-

We know, however, that (2) implies (3), since PP = L7
N
We also consider the operators J'y: {0,} —>2 Copn{®). We have:
175 {0}l < O3 1T {0} oo < MI{C M- Therefore

{4) T3 {OuHpgy < el{Calllpy 1 <2 <2,0 <g<qa< 00,

and O does not depend on N. From the last remarks, it follows that if
{0} TP, {T({0,})} is a Cauchy sequence in L*%, 'which we kmnow is
complete. Therefore we can define 7{C,} = lim Ty{C,} (in Z7%), and of
course Voo

(5) 1740} gy < ¢l{Culpey 1 <2 <2,0 << < 0.
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N
Since {OeL™ NI with p <2, {0 ,}eI® and so ng 0, pule) - f
(in I?) with f(n) = C,. We therefore have T{C,} has O, as its m'th
Fourier coefficient.
Summerizing, we have:
Given {0,}eL?, 1 <p<2,0<g< oo (or p =g =2) there exists
feIF, < g,< oo, 50 that f(n) = O, and

(6) ‘ If Il S < ¢|{OuHlre-
Taking ¢, = g = p' we get:

(1) I£llyr < 0( ZO:‘Li‘O’nw'—-z)llﬁ"
n=)
Talking ¢ = p’, qQ =17 (POSSible, for » gp():
N /
(8) “f”p’ E] ( 2 |0,n[p)1p,
Ne=1

and we know that (8) is weaker then (7). The results of (2) and (7) are
Paley’s theorem for Fourier coefficients. Note that we get it immediately
in the stronger, rearranged form.

The results of (3) and (8) are Riesz~Haugdori{—Young’s theorem for
Fourier coefficients. Note that we also have the implication relation between
this result and Paley’s theorem.

Different choices of parameters in (1) and (6) will yield the “dual” .

theorems ([10], XTI, 5.15). Explicitly:
Taking in (1) ¢ = ¢, =p', we get for 1 <p <2

- (9) ' (2 |f(%)lp’)llp’ < CHfHZp’ = g(f lf*(t)lp’tlﬂ'—zdt)llp' .
n=1 0 .
(If (@, b) is finite the lagt integral is from 0 to b— a only, since f*(¢) vanishes
for t>b—a.) ‘
Taking in (6) ¢ = ¢, = p we get: for L<p< 2

0

(10) ( f i peaf <o o)
1

Again, the theorem presents itself in the stronger, rearranged, form.
E. Stein in [8] has proved essentially (1) and (5), but with some

unnecessary restrictions on the parameters, using interpolation with -

change of measure, and Paley’s theorem., -

Together with the operator 7, one can congider also a maximal
operator T*, defined by: "

(1) I* {04} (X) = Sup| Y Cugu(o)].
<n =

Interpolation of r-Banach spaces 69

(See [9], Section 5). The importance of this operator is for the proof of
a.e. convergence ot the series defined by 7.
The operator T™ is no longer linear. Tt is, however, pomtwme sub-
linear. Le. |T%( {0,1€}+{0§} {2) < WT*{O0M) ()| +[(T*{03}) ()] a.e. x, and
(T* {20} ()| = |A] |(T*{C,})(@)| a.e. 2. Since there operators are pointwise
quam linear, we can apply the interpolation theorem.
It is clear that .

(12) IT* {00 < IO HI-

Stein and Weiss in [9, Lemma 6] prove the following: If {s,} is
a sequence of numbers, N of which are equal to 1, and the rest 0, then
it 1<p <2, |T"{e}pp < 4, NY7. Sequences as above are of course
cha.ra.otemstw functions of sets of finite measure of integers, and N7
= |{e, ;. Calderén in [1, Theorem 7] proved that if T is a pointwise
sublinear operator defined for simple functions, with values in a Banach
lattice B of functions (i.e. a Banach space so that if fe.B, | gI< [ f] ae.,
then geB and |lglz< [fllz), and satisfying | Typlls < Clizzllp, then T can
be extended, in a unique way to all of L** and | Tfl|z < 20||f |5, We take
for B, I*? and get

(13) IT* {0}l < Apl{Cipa -

(To be precise, one has to consider as for 7, operators T, extend each
one of then to L*, and then consider the limit operator T*.)
Using the interpolation theorem we getfor 1 <p < 2,0 < ¢< g, < o©

(14) | 1T O by < Ay KO-

Taking in particular ¢, = ¢ = p’ we get

(15) IO, < Aﬂ(Z(OZ)p‘kp'_z)lm'-
k=1
It we take ¢, = ¢ = p we get
(16) 1T (Ol < Ap ( ) 1047)"
k=1

B. Stein and G. Weiss in [9] have proved 15, using “restricted type”
interpolation theorem.

Added in Proof. T. Holmstedt's paper: “Interpolation of quasi-normed spaces”,
Math. Seand. 26 (1970), pp. 177-190, includes better proofs of the reiteration
Theorem (Theorem II. 28), and of Theorem III. 5. The range of parameters is the
same, but the spaces need not be complete. .
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The distribution of the values of a random function
in the umit disk
by
A. C. OFFORD (London)

Abstraet. Let f(2) be defined in the unit disk by‘a, power series whose coefficients -
are independent random variables and let x(f, b)) denote the number of zeros of
f#)—Db in |2| < t. It is shown that, for almost all functions of the family considered,

Tn(t,b
inf -n-(t—ldt has a well defined asymptotic behaviour. Furthermore f(2) almost
DI<K 1y .
surely takes every finite value in every open sector of the unit disk. The paper contain
some inequalities for f log|X|du, where X is a random variable defined on a measure
B .

space (Q, A, u) and B belongs to £ but is otherwise arbitrary.

§ 1. Introduction and principal results. This paper is concerned with
the behaviour of functions

(1.1)

defined in the unit disk for which the coefficients a, are independent
random variables, Our object is to show that the family (1.1) has certain
properties almost surely. This implies some statistical basis and it becomes
necessary to define this statistical basis precisely. Many years ago Little:
wood and Offord [3] studied a similar problem for the family of entire
functions

3
e,

0

(1.2)

in which the coefficients a, were given and the ¢, took the values 1
with equal probability. In 1964 one of the authors [4] returned to this
problem and established the basic results of Littlewood and Offord under
very general conditions on the distribution functions of the coefficients. a,,.
From this it followed that the behaviour of the family of entire functions
was largely independent of the particular distribution functions chosen
for the coefficients a,. For this reason in the present investigation we

3
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