L. Takács

Proof. Now we have

(53)
$$A\log[1-\varrho\varphi(s)] = \log \Phi^{+}(s,\varrho) + \log \Phi^{-}(0,\varrho)$$

for $\text{Re}(s) \ge 0$ and $|\rho| < 1$. Thus (51) and (52) follow from (43) and (44) respectively.

We can prove (53) for Re(s) > 0 if we use the following formula: If $E\{|\zeta|\} < \infty$, then for Re(s) > 0 we have

(54)
$$E\{\zeta e^{-s\eta^{+}}\} = \frac{1}{2} E\{\zeta\} + \frac{s}{2\pi i} \lim_{\epsilon \to 0} \int_{L_{\epsilon}} \frac{E\{\zeta e^{-z\eta}\}}{z(s-z)} dz,$$

where L_s , the path of integration, consists of the imaginary axis from $z=-i\infty$ to $z=-i\varepsilon$ and again from $z=i\varepsilon$ to $z=i\infty$. By (54) we can obtain (53) for Re(s) > 0. Since (53) is continuous for $\text{Re}(s) \ge 0$, we can obtain (53) for Re(s) = 0 by continuity.

References

- [1] F. Pollaczek, Fonctions caractéristiques de certaines répartitions définies au moyen de la notion d'ordre. Application à la théorie des attentes, C. R. Acad. Sci. 234 (1952), pp. 2334-2336.
- [2] F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), pp. 323-339.

DAVID C. SHREVE* (Minnesota)

Abstract. The purpose of this paper is to construct approximations to translation invariant operators from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$. We give error estimates in the form of rates of convergence on subspaces of L^p .

1. Introduction. The purpose of this paper is to construct a family of approximations A_h , $0 < h < \infty$, to a translation invariant operator A from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$. We obtain error estimates

$$||Au - A_h u||_q \leqslant Ch^s ||A^s u||_p$$

for u in the Bessel potential space $L^{p,s}$, s>0, where C is independent of h. For the definition of A^s see Section 4 below.

First we consider $1 . <math>A_h$ is given by $A_h u(x) =$ $\sum_{\beta \in \mathcal{D}} c_{\beta,h} u(x+h\beta)$. An interesting feature is that the coefficients $c_{\beta,h}$ are independent of h if and only if the multiplier \hat{T} corresponding to A is homogeneous of degree zero, that is, $\hat{T}(\lambda \xi) = \hat{T}(\xi)$ for $\lambda > 0$ and $0 \neq \xi \in \mathbb{R}^n$. We also give approximations to singular integral operators with variable kernels.

In Section 7 we construct approximations A_h , where A maps L^p to L^q , $p \leqslant q$. If p < q, then A_n cannot be a difference operator as above. However, $A_h u$ is given by convolving a function with u. Certain approximation results for translation invariant operators on locally compact abelian groups are given by Figà-Talamanca and Gaudry [6].

Part of the results presented here appeared in the author's Ph. D. dissertation at Rice University directed by Professor Jim Douglas, Jr.

2. Preliminaries. \mathbb{R}^n denotes n-dimensional Euclidean space, \mathbb{Z}^n the points in \mathbb{R}^n with integer coordinates, and \mathbb{T}^n the dual group of \mathbb{Z}^n . For r>0 we set $Q_r=\{\xi\,\epsilon\,R^n\colon\, -r<\xi_i\leqslant r,j=1,\ldots,n\}$ and we identify T^n with Q_{π} . L^p , l^p , and $L^p(Q_{\pi})$ denote the usual L^p spaces of functions on R^n, Z^n , and Q_{π} respectively. If E is a subset of R^n , CE is the complement of E and χ_E is the characteristic function of E.

^{*} During the preparation of this paper the author was partially supported by the National Science Foundation under NSF grant GP-7041X.

37

 $\begin{array}{lll} S(R^n) & \text{denotes the space of } C^\infty & \text{functions } f & \text{on } R^n & \text{such that} \\ \sup_{R^n} |x^\beta D^\alpha f(x)| < \infty. & S(Z^n) & \text{is the space of functions } f & \text{on } Z^n & \text{such that} \\ \sup_{\beta \in \mathbb{Z}^n} |\beta^\alpha f(\beta)| < \infty. & \text{The Fourier transform } \hat{u} & \text{of a function } u \in S(R^n) & \text{is} \\ \operatorname{defined} & \text{by } \hat{u}(\xi) = (2\pi)^{-n/2} \int u(x) e^{-i\langle x,\xi\rangle} dx, \langle x,\xi\rangle = \sum_{j=1}^n x_j \xi_j. & \text{The Fourier} \\ \operatorname{transform } \hat{u} & \text{of } u \in S(Z^n) & \text{is defined by } \hat{u}(\xi) = (2\pi)^{-n/2} \sum_{\beta \in Z^n} u(\beta) e^{-i\langle \beta,\xi\rangle}, \\ \xi \in Q_\pi. & \tilde{u} & \text{denotes the inverse Fourier transform of } u. & \end{array}$

A bounded linear operator is said to be translation invariant if it commutes with translations. We refer to [2], [3], and [7] for the fundamental properties of translation invariant operators and multipliers. L_p^q denotes the space of distributions T in $S'(\mathbb{R}^n)$ such that

$$(2.1) ||T * u||_q \leqslant C ||u||_p, u \epsilon S(\mathbb{R}^n).$$

The smallest constant C for which (2.1) holds is $||T||_{L_p^q}$. The space of distributions T in $S'(Z^n)$ such that

(2.2)
$$||T * u||_{l^{q}} \leq C ||u||_{l^{p}}, \quad u \in S(Z^{n}),$$

is l_n^q and $||T||_{l_n^q}$ is the smallest constant C for which (2.2) holds.

The space of Fourier transforms \hat{T} of distributions T in L^q_p or l^q_p is denoted by M^q_p or m^q_p respectively. Elements of M^q_p are called multipliers of type (p,q). We write $\|\hat{T}\|_{M^q_q} = \|T\|_{L^q_q}$ and $\|\hat{T}\|_{m^q_q} = \|T\|_{l^q_p}$. Elements of M^p_p or m^p_p are bounded functions on R^p or Q_p .

We refer to [7] for the following facts:

(2.3)
$$L_p^q = L_{q'}^{p'}, \quad \frac{1}{p} + \frac{1}{p'} = 1;$$

$$(2.4) L_p^\infty = L_1^{p'} = L^{p'} \quad \text{ if } \quad p < \infty.$$

If $f \in M_n^q$ and $g \in S(\mathbb{R}^n)$, then

$$(2.5) gf \in M_r^q \cap M_p^s for r \leqslant p and q \leqslant s.$$

3. Periodic multipliers. We shall be concerned with periodic functions which are multipliers. Thus it is of interest to consider the distribution whose Fourier transform is a periodic function. The first lemma is an immediate consequence of the Poisson summation formula.

LEMMA 1. Suppose $0 < h < \infty$ and $f \in L^{\infty}$ is periodic with period $2\pi/h$, that is, $f(\xi + 2\pi\beta/h) = f(\xi)$. Then $f = \hat{T}$, where $T \in S'(\mathbb{R}^n)$ is given by

$$(3.1) T = h^{n/2} \sum_{\beta \in \mathbb{Z}^n} a_{\beta}(f) \, \delta_{-h\beta}$$

with δ_x the Dirac measure supported at x and

(3.2)
$$a_{\beta}(f) = (h/2\pi)^{n/2} \int\limits_{Q_{\pi/h}} f(\xi) e^{-ih\langle\beta,\xi\rangle} d\xi.$$

In certain cases we shall obtain a family of periodic functions from a single periodic function by dilation of \mathbb{R}^n . The next lemma characterizes the transforms of such functions.

LEMMA 2. Suppose \hat{T}_h , $0 < h < \infty$, is a family of L^{∞} periodic functions and \hat{T}_h has period $2\pi/h$. Then

$$(3.3) T_h = \sum_{\substack{\alpha \neq 2n \\ \beta \neq \beta}} a_{\beta}(\hat{T}_1) \, \delta_{-h\beta},$$

where

$$a_{eta}(\hat{T}_1) = (2\pi)^{-n/2} \int\limits_{Q_\pi} \hat{T}_1(\xi) \, e^{-i\langle eta, \xi
angle} \, d\xi$$

if and only if

(3.4)
$$\hat{T}_h(\xi) = \hat{T}_1(h\xi)$$
 almost everywhere.

Proof. If (3.4) holds, then (3.3) follows from (3.1) and (3.2). For $\varphi \in S(\mathbb{R}^n)$ define $\varphi_h(x) = \varphi(hx)$. From (3.3) it follows that $T_h(\hat{\varphi}) = T_1((\hat{\varphi})_h)$. Since \hat{T}_h and \hat{T}_1 are L^{∞} functions, $\hat{T}_h(\xi) = \hat{T}_1(h\xi)$ almost everywhere.

The next result was proved by Jodeit [8]. We shall use only the case stated here.

THEOREM 3. Let $1 and suppose <math>f \in M_p^p$ vanishes outside Q_π . Define $f_0 \in L^\infty(Q_\pi)$ by $f_0(\xi) = f(\xi)$, $\xi \in Q_\pi$. Then $f_0 \in m_p^p$ and there is a constant C depending only on p and n such that $\|f_0\|_{m_p^p} \le C\|f\|_{M_p^p}$.

The following theorem was proved by de Leeuw [2] for n = 1. The proof given there is also valid for n > 1 if the *n*-dimensional Fejér kernel (the product of the one-dimensional kernels) is employed. A shorter proof is given in [8].

THEOREM 4. Let $g \in L^{\infty}$ be periodic with period 2π . Suppose $f \in L^{\infty}(Q_{\pi})$ is given by $f(\xi) = g(\xi)$, $\xi \in Q_{\pi}$. Then $g \in M_p^p$ if and only if $f \in m_p^p$, $1 . If <math>g \in M_p^p$, then $||g||_{M_p^p} = ||f||_{m_p^p}$.

4. Continuity and approximation in L^p . Let p be fixed, 1 . Suppose <math>A is a translation invariant operator from L^p to L^p . By a theorem of [7] there is a unique $T \in S'(R^n)$ such that Au = T * u for all $u \in S(R^n)$. Thus $\hat{T} \in M_p^p$. For $0 < h < \infty$ define \hat{T}_h to be the periodic function with period $2\pi/h$ such that

$$\hat{T}_h(\xi) = \hat{T}(\xi), \quad \xi \in Q_{\pi/h}.$$

THEOREM 5. $\hat{T}_h \epsilon M_p^p$ and there is a constant C depending only on p and n such that

(4.1)
$$\|\hat{T}_h\|_{M_p^p} \leqslant C \|\hat{T}\|_{M_p^p}.$$

Proof. Define f by $f(\xi) = \hat{T}(\xi/h)$. Then $f \in M_p^p$ and $||f||_{M_p^p} = ||\hat{T}||_{M_p^p}$. Since $\chi_{Q_\pi} \in M_p^p$ and the product of two multipliers in M_p^p is in M_p^p , we see

that $f\chi_{Q_{\pi}} \in M_p^p$ and $\|f\chi_{Q_{\pi}}\|_{M_p^p} \leq C \|\hat{T}\|_{M_p^p}$. By Theorems 3 and 4 the periodic function g with period 2π which agrees with f on Q_{π} is in M_p^p and $\|g\|_{M_p^p} \leq C \|\hat{T}\|_{M_p^p}$. Since $T_h(\xi) = g(h\xi)$ it follows that $\hat{T}_h \in M_p^p$ and (4.1) holds.

Remark. It is easily seen that if \hat{T} is homogeneous of degree zero, then $\hat{T}_h(\xi) = \hat{T}_1(h\xi)$ almost everywhere. Thus $\|\hat{T}_h\|_{M_p^p} = \|\hat{T}_1\|_{M_p^p}$ and all the distributions T_h have the same coefficients by Lemma 2. If $\hat{T}_h(\xi) = \hat{T}_1(h\xi)$ for $0 < h < \infty$, then it follows that \hat{T} is homogeneous of degree zero.

We have seen that T_h belongs to L_p^q and has norm bounded independent of h. Let A_h denote the closure of the mapping

$$(4.2) L^p \supset S(\mathbb{R}^n) \ni u \to (2\pi)^{n/2} (\hat{T}_h \hat{u}) \tilde{\epsilon} L^p.$$

 A_h is a translation invariant operator from L^p to L^p and we shall see that A_h is an approximation to A.

Let $L^{p,s}$ denote the space of Bessel potentials of L^p functions for s > 0 (see [1]). The Bessel potential $J_s f$ of $f \in L^p$ is defined by

$$(J_s f)^{\hat{}} = (1 + |\xi|^2)^{-s/2} \hat{f}.$$

Define the operator A^s by $(A^s u)^{\hat{}} = |\xi|^s \hat{u}$. If $u \in L^{p,s}$, then $u \in L^p$, and $A^s u \in L^p$. C_0^{∞} is contained in $L^{p,s}$. We prepare for the estimates of $||Au - A_h u||_p$ with the next lemma.

Lemma 6. Let s>0 and define $g(\xi)=\chi_{CQ_\pi}(\xi)|\xi|^{-s}.$ Then $g\in M_p^p,$ $1< p<\infty.$

Proof. Let $\varphi \in O^{\infty}$ be one on CQ_{π} and zero in a neighborhood of the origin. Set $f(\xi) = \varphi(\xi) |\xi|^{-s}$. It follows from Hörmander's version of Mihlin's multiplier theorem (Theorem 2.5 of [7]) that $f \in M_p^p$, $1 . Since <math>\chi_{CQ_{\pi}} \in M_p^p$ we see that $g = \chi_{CQ_{\pi}} f \in M_p^p$, 1 .

THEOREM 7. Let s>0. There is a constant C depending only on p,n, and s such that

$$\|Au - A_h u\|_p \leqslant C \|T\|_{L^p_p} h^s \|A^s u\|_p, \quad u \in L^{p,s}.$$

Proof. Using the definitions of $Q_{\pi/h}$ and \hat{T}_h we obtain

$$[\hat{T}(\xi)-\hat{T}_h(\xi)]\hat{u}=[\hat{T}(\xi)-\hat{T}_h(\xi)]\chi_{CQ_\pi}(h\xi)|h\xi|^{-s}h^s(\varLambda^su)^{\hat{}}.$$

Since a dilation of R^n preserves multipliers and their norms in M_p^n , (4.3) follows from (4.1), Theorem 5, and Lemma 6.

COROLLARY 8. If $u \in L^p$, then $||Au - A_h u||_p \to 0$ as $h \to 0$.

Proof. Since the operators A_h have uniformly bounded norms, the result follows from Theorem 7 and the fact that C_0^{∞} is contained in $L^{p,s}$.

5. Singular integral operators with variable kernels. We consider in this section an operator A defined by

$$Au(x) = \lim_{s\to 0} \int_{|x-y|>s} k(x, x-y) u(y) dy,$$

where $u \in S(R^n)$ and k has the following properties. For each $x \in R^n$, k(x,z) is C^∞ in z for |z| > 0, k(x,z) is homogeneous of degree -n in z, and k(x,z) has mean value zero on the sphere $\{z: |z| = 1\}$. For a discussion of these operators see [1], where the following results are established. Let $\hat{T}(x,\xi)$ denote the Fourier transform of k(x,z) with respect to z. Then for each $x \in R^n$, $\hat{T}(x,\xi)$ is C^∞ in ξ for $|\xi| > 0$, $\hat{T}(x,\xi)$ is homogeneous of degree zero in ξ , and $\hat{T}(x,\xi)$ has mean value zero on $\{\xi\colon |\xi| = 1\}$. We assume that for each ξ with $|\xi| = 1$, the functions $D_\xi^*\hat{T}(x,\xi)$ are L^∞ in x for $0 \le |a| \le 2n$. Write $|A| = \sup\{||D_\xi^*\hat{T}(x,\xi)||_\infty\colon |\xi| = 1, 0 \le |a| \le 2n\}$. Then A may be extended to a bounded operator from L^p for 1 and there is a constant <math>C depending only on p and n such that

(5.1)
$$||Au||_p \leqslant C||A|| \, ||u||_p, \quad u \in L^p.$$

Let $\{Y_{lm}\}$ be a complete orthonormal system of spherical harmonics in $L^2(\Sigma)$, where $\Sigma=\{\xi\colon |\xi|=1\}$. The positive integer m is the degree of Y_{lm} and the number of Y_{lm} is no more than Cm^{n-2} with C independent of m. Also $|Y_{lm}|\leqslant Cm^{(n-2)/2}$. (5.1) is established by expanding the kernel k(x,z) and the symbol $\hat{T}(x,\xi)$ in series of spherical harmonics,

(5.2)
$$k(x,z) = \sum_{l,m} a_{lm}(x) Y_{lm}(z) |z|^{-n},$$

(5.3)
$$\hat{T}(x,\xi) = \sum_{l,m} b_{lm}(x) Y_{lm}(\xi).$$

It follows that the series for $\hat{T}(x, \xi)$ converges uniformly, $b_{lm}(x) = \gamma_m a_{lm}(x)$, $|\gamma_m^{-1}| \leq C m^{n/2}$, and $||b_{lm}||_{L^{\infty}} \leq C m^{-2n} ||A||$. Using (5.2) the operator A is given by

$$Au(x) = \sum_{l,m} a_{lm}(x) R_{lm} u(x),$$

where R_{lm} is a translation invariant operator from L^p to L^p , 1 , with norm bounded independent of <math>l and m.

For $0 < h < \infty$, define $\hat{T}_h(x,\xi)$ to be the periodic function with period $2\pi/h$ in ξ such that $\hat{T}_h(x,\xi) = \hat{T}(x,\xi)$ in $Q_{\pi/h}$. Then for each x, $T_h(x)$ is a distribution with support on hZ^n ,

$$T_h(x) \, = \, h^{n/2} \, (h/2\pi)^{n/2} \sum_{\beta \in Z^h} \int\limits_{Q_{\pi/h}} \hat{T}(x,\,\xi) \, e^{-ih \zeta \beta,\,\xi\rangle} \, d\xi \, \delta_{-h\beta} \, .$$

For $u \in S(\mathbb{R}^n)$ define

(5.4)
$$A_h u(x) = [T_h(x) * u](x),$$

where the convolution is over hZ^n .

THEOREM 9. A_h may be extended to a bounded operator from L^p to L^p . 1 , and there is a constant C depending only on p and n such that

$$||A_h u||_p \leqslant C||A|| ||u||_p, \quad u \in L^p.$$

Proof. For $u \in S(\mathbb{R}^n)$,

$$A_h u(x) = \sum_{l,m} a_{lm}(x) R_{lmh} u(x),$$

where R_{lmh} is the approximation to R_{lm} constructed in Section 4. The result follows from Theorem 5 and the estimate for $||a_{lm}||_{r\infty}$.

THEOREM 10. Let s > 0. There is a constant C depending only on p, n, and s such that

$$\|Au - A_h u\|_p \leqslant C \|A\| h^s \|A^s u\|_p, \quad u \in L^{p,s}.$$

Proof. This estimate is a consequence of Theorems 9 and 7.

6. Multipliers with mixed periods. It was seen in the remark following Theorem 5 that the approximating operators A_h have coefficients independent of h if and only if \hat{T} is homogeneous of degree zero. In this section we shall construct the operators A_{ij} so that they have constant coefficients if and only if \hat{T} is mixed homogeneous of degree zero in the sense of Fabes and Rivière [4], [5].

Let $\alpha_i \ge 1, j = 1, \ldots, n$. A function f on \mathbb{R}^n is said to be mixed homogeneous of degree k if $f(\lambda^{\alpha}\xi) = \lambda^{k}f(\xi)$ for $\lambda > 0$ and $0 \neq \xi \in \mathbb{R}^{n}$, where $\lambda^{a} \xi = (\lambda^{a_1} \xi_1, \dots, \lambda^{a_n} \xi_n)$. For $0 < h < \infty$, set

$$Q_{\pi/h} = \{ \xi \, \epsilon \, R^n \colon -\pi < h^{a_j} \, \xi_i \leqslant \pi, j = 1, \ldots, n \}.$$

We say that a function f on \mathbb{R}^n is periodic with mixed periods 2L $=(2L_1,\ldots,2L_n), L_i>0$, if f has period $2L_i$ in the j-th coordinate, $j=1,\ldots$..., n. For $0 < h < \infty$, define $L = (L_1, \ldots, L_n)$ by $h^{a_j}L_j = \pi, j = 1, \ldots, n$. Set $L\beta = (L_1\beta_1, \ldots, L_n\beta_n)$ for $\beta \in \mathbb{Z}^n$. Then for $\varphi \in S(\mathbb{R}^n)$, $\sum_{k \in \mathbb{Z}^n} \varphi(x + 2L\beta)$ $h=(2\pi)^{-n/2}h^{|a|}\sum_{a,\sigma n}\hat{\varphi}(h^a\beta)e^{i\langle h^a\beta,x\rangle}$. This replaces the usual Poisson summation formula.

If $\hat{T}_h \in L^{\infty}$ has mixed periods 2L, then

$$T_h = h^{|a|/2} \sum_{eta \in Z^n} a_eta(\hat{T}_h) \, \delta_{-h^aeta},$$

where

$$a_{\beta}(\hat{T}_h) = (2\pi)^{-n/2} h^{|a|/2} \int\limits_{Q_{\pi/h}} \hat{T}_h(\xi) e^{-i\langle h^a\beta, \xi \rangle} d\xi.$$

It is easy to see that

$$T_h = \sum_{eta \in Z^n} a_eta(\hat{T}_1) \; \delta_{-h^lpha_eta}$$

if and only if $\hat{T}_h(\xi) = \hat{T}_1(h^a \xi)$ almost everywhere.

THEOREM 11. Suppose $1 and <math>\hat{T} \in M_n^p$. For $0 < h < \infty$ define \hat{T}_h as the periodic function with mixed periods $2L, h^a L_i = \pi$, such that $\hat{T}_h(\xi) = \hat{T}(\xi), \ \xi \, \epsilon Q_{\pi/h}.$ Then $\hat{T}_h \epsilon \, M_p^p$ and there is a constant C depending only on p and n such that

$$\|\hat{T}_h\|_{M_p^p} \leqslant C \|\hat{T}\|_{M_p^p}.$$

Proof. The proof is identical to that of Theorem 5 except that the dilations $\xi \to h^{-1}\xi$ and $\xi \to h\xi$ are replaced by the affine transformations $\xi \to h^{-a}\xi$ and $\xi \to h^a\xi$ respectively.

It is easy to check that $\hat{T}(\lambda^{\alpha}\xi) = \hat{T}(\xi), \lambda > 0$, if and only if $\hat{T}_{h}(\xi)$ $=\hat{T}_1(h^a\xi), h>0$. Thus T_h has constant coefficients if and only if \hat{T} is mixed homogeneous of degree zero.

Let ρ be the metric associated with α defined in [4], that is, $\rho(x)$ is the unique ϱ such that $|\varrho^{-a}x|=1$. Then for $\lambda>0$, $\varrho(\lambda^a\xi)=\lambda\varrho(\xi)$ and ϱ is C^{∞} except at the origin. Using the proof of Lemma 6 and the mixed homogeneous form of Hörmander's multiplier theorem (see [4]) we obtain the next lemma.

LEMMA 12. Let s > 0 and define $g(\xi) = \chi_{CQ_{\pi}}(\xi)[\varrho(\xi)]^{-s}$. Then $g \in M_{p}^{p}$, 1 .

For the definition of the operator P_a and spaces $L_a^{p,s}$ corresponding to Λ and $L^{p,s}$ see [5]. If $u \in L^{p,s}$, then $u \in L^p$ and $P^s_a u \in L^p$, where $(P^s_a u)$ $= [\varrho(\xi)]^s \hat{u}$. C_0^{∞} is contained in $L_a^{p,s}$.

Let A_h be the closure of the mapping

$$L^p \supset S(\mathbb{R}^n) \ni u \to (2\pi)^{n/2} (\hat{T}_h \hat{u}) \tilde{\epsilon} L^p.$$

THEOREM 13. Let s > 0. There is a constant C depending only on p, n, $and \ s \ such \ that \ \|Au-A_hu\|_p \leqslant C\|T\|_{L^p_n}h^s\|P^s_au\|_p \,, \, u \, \epsilon L^{p,s}_a.$

Proof. Since ϱ is mixed homogeneous of degree one and affine transformations of \mathbb{R}^n preserve multipliers and their norms in \mathbb{M}_n^p , the result follows from Lemma 12, Theorem 11, and an equation similar to (4.3).

COROLLARY 14. If $u \in L^p$, then $||Au - A_h u||_p \to 0$ as $h \to 0$.

7. Operators from L^p to L^q . In this section we consider a translation invariant operator A from L^p to L^q , $p \leqslant q$, and either 1 or $1 < q < \infty$. We shall construct an approximating operator A_h and give error estimates similar to those of Section 4. First we show that it is not possible to use periodic multipliers to define A_h if p < q.

LEMMA 15. Suppose $f \in M_n^q$ has period 2π and p < q. Then f = 0. Proof. Since $e^{i\langle \beta,\xi\rangle} \in L^1(Q_\pi)$ it follows that $f * e^{i\langle \beta,\cdot\rangle} \in M_p^q$, where the convolution is over Q_{π} . But

$$(f * e^{i\langle \beta, \, \cdot \, \rangle})(\xi) = (2\pi)^{n/2} e^{i\langle \beta, \, \xi \rangle} a_{\beta}(f).$$

Since $e^{i\langle \beta, \xi \rangle}$ is not in M_n^q if p < q, all the Fourier coefficients of f must be zero.

The approximating multipliers \hat{T}_h will have compact support and by the next lemma T_{h} will be a function.

LEMMA 16. Suppose $p \leq q$ and either $1 or <math>1 < q < \infty$. If $\hat{S} \in M_n^q$ and \hat{S} has compact support, then $S \in L^q \cap L^{p'}$.

Proof. Let $\varphi \in S(\mathbb{R}^n)$ be one on the support of \hat{S} . It follows from (2.5) that $\hat{S} = \varphi \hat{S}$ is in M_1^q and M_n^∞ . Using (2.3) and (2.4) we see that $S \in L^q \cap L^{p'}$.

For $0 < r < \infty$ define $Q_r = \{ \xi \in \mathbb{R}^n : -r < \xi_i \leqslant r, j = 1, \ldots, n \}$. For $0 < h < \infty$ define $\hat{T}_h = \chi_{Q_{-lh}} \hat{T}$, where Au = T * u for all $u \in S(\mathbb{R}^n)$. Since $\chi_{Q_n} \epsilon M_t^t$ for $1 < t < \infty$ with norm independent of r, it follows that $\hat{T}_h \epsilon M_n^q$ and $\|\hat{T}_h\|_{\mathcal{M}_n^q} \leq C \|\hat{T}\|_{\mathcal{M}_n^q}$ with C independent of h. Let A_h denote the closure of the mapping

$$L^p\supset S(R^n)\ni u \to (2\pi)^{n/2}(\hat{T}_h\hat{u})\ \epsilon L^q.$$

THEOREM 17. Let s > 0. There is a constant C independent of h such that

$$\|Au-A_hu\|_q\leqslant C\|T\|_{L^q_p}qh^s\|A^su\|_p, \qquad u \,\epsilon\, L^{p,s}.$$

Proof. The estimate follows from the fact that

$$(\hat{T} - \hat{T}_h) \hat{u} = h^s \hat{T} \chi_{CO_{-}}(h\xi) |h\xi|^{-s} (\Lambda^s u)^{\hat{}}.$$

COROLLARY 18. If $u \in L^p$, then $||Au - A_h u||_q \to 0$ as $h \to 0$.

Note that \hat{T}_h is the best approximation to \hat{T} on $Q_{\pi/h}$. If \hat{S} is any approximation to \hat{T} with compact support, then the error $(\hat{T} - \hat{S})\hat{u}$ must contain a term similar to that appearing in the proof of Theorem 17. Thus A_h is the best approximation to A among operators defined by multipliers with compact support, in the sense that there is no approximating operator with a higher rate of convergence. Similar considerations lead to the conclusion that the difference operator A_n of Section 4 is the best approximation to A among difference operators, that is, A_h yields the highest possible rate of convergence.

References

- [1] A. P. Calderón, Integrales singulares y sus aplicaciones a equaciones diferenciales hiperbólicas, Cursos y seminarios de Matemática, Fasc. 3, Univ. of Buenos Aires.
- [2] K. de Leeuw, On Lp multipliers, Annals of Math. (2) 81 (1965), pp. 364-379.
- [3] A. Devinatz and I. I. Hirschman, Jr., The spectra of multiplier transforms in lp. Amer. J. Math. 80 (1958), pp. 829-842.
- E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), pp. 19-38.
- - Symbolic calculus of kernels with mixed homogeneity, Proc. of Symp. in Pure Math. 10 (1967), 106-127.

[6] A. Figà-Talamanca and G. I. Gaudry, Density and representation theorems for multipliers of type (p, q), J. Australian Math. Soc. 7 (1967), pp. 1-6.

[7] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math, 104 (1960), pp. 93-140.

[8] M. A. Jodeit, Jr., Restrictions and extensions of Fourier multipliers, Studia Math. 34 (1970), pp. 215-226.

Received September 28, 1970.

(246)

43