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Proof. Now we have

(53) Alog[1—gp(s)] = log @t (s, ) +log D (0, ¢)
for Re(s)> 0 and |g| < 1. Thus (51) and (52) follow from (43) a_nd (44)
regpectively. :

We can prove (63) for Re(s) > 0 if we use the following formula:
If E{|{|} < oo, then for Re(s) > 0 we have
E{Co"””} P

(e} = 2B} + e
1

(54)

2 3 a—vD L, !
where L,, the path of integration, consists of the imaginary axis from
2 = —ioo to 2 = —i¢ and again from 2 = 4¢ t0 ¢ = foo. By (84) we can
obtain (53) for Re(s) > 0. Since (53) is continuous for Re(s) == 0, we can.
obtain (53) for Re(s) = 0 by continuity.
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Appronmanon of translation invariant operators
by
DAVID C. SEREVE* (Minnesota)

Abstract. The purpose of this paper is to construct approximations to translation
invariant operators from IL? (R") to L2 (B"). We give error estimates in the form of
rates of convergence on subspaces of L2,

1. Introduction. The purpose of this paper is to constluct a family
of approximations 4;, 0 <h < oo, to a translation invariant operator
4 from IL?(R"™ to L(R™). We obtain error estimates

Il 42 — Ay, < OB*)|4°ul,,
for  in the Bessel potential space L, s> 0, where 0 is independent
of k. For the definition of A° see Section 4 below.

First we consider 1 <p =g < co. 4, is given by Aju(z) =
Z' ot (#+hf). An interesting feature is that the coet'hclents Cpp aTE
ez

independent of % if and only if the multlpher T corresponding to 4 is

homogeneous of degree zero, that is, T (AE) (f) forA> 0and 0 # Z<R™
We also give approximations to singular integral operators with vama,ble
kernels.

In Section 7 we construct approximations 4,, where A maps L? to
I% p< g If p <g, then A; cannot be a difference operator as above.
However, A,u is given by convolving a function with u. Certain approxi-
mation results for translation invariant operators on locally compact
abelian groups are given by Figh-Talamanea and Gaudry [6].

Part of the results presented here appeared in the author’s Ph. D.
dissertation at Rice University directed by Professor Jim Douglas, Jr.

2. Preliminaries. R" denotes n-dimensional Euclidean space, Z" the
points in R" with integer coordinates, and T™ the dual group of Z* For
r>0 we set @ = {{eR" —r<§<r,j=1,...,n} and we identify
I with Q.. L%, 1, and L?(Q,) denote the usual L” spaces of functions on
R*, Z* and Q, ‘respectively. If F is a subset of R”* CF is the complement;
of D and yp is the characteristic function of .

* During the preparation of this paper the author was partially supported by
the National Science Foundation under NSF grant GP-7041X.
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S(B™ denotes the space of O functions f on R" guch that
sup|w"])"f(w )| < oo. 8(Z") is the space of functions f on Z" such that

sup]ﬁ“f )] < co. The Fourier transform % of a functlon ueS(R") is
ﬂdeﬁned by @(&) = (2m)"" [ w(@)e @O dw, (2, &) = Zx,é‘, The Fourier

transform % of we§(Z™) is defined by 4(£) = (27:) Znu(ﬂ) eKBE,
£¢Q,. i denotes the inverse Fourier transform of u. ) p -4 .

A bounded linear operator is said to be translation invariant if it
commutes with translations. We refer to [2], [3], and [7] for the funda-
mental properties of translation invariant operators and multipliers.
L2 denotes the space of distributions 7' in 8'(R™) guch that

(2.1) (Tul, < Cllullp,  weS(R).

The smallest constant ¢ for which (2.1) holds is ]|T]]Lg. The space of
distributions 7' in §8'(Z") such that

(2.2) 1T *ulhe < Ollule,  weS(2"),

is 75 and |T1¢ is the smallest constant ¢ for which (2.2) holds.

The space of Fourier transforms 7' of distributions T in Li or 1% is
denoted by Mj or mj respectively. Elements of MZ are called mu1t1phers
of type (p, @) We wiite |22 — |T|;2 and [£l,p = |Tlig. Blements
of M3 or mj, are bounded funetions on E* or O

We refer to [7] for the following facts:

. 1 1
2.3 I2 = I S =1y
(2.8) =Ty gty ;
(2.4) I=If=IF i p< oco.
If fe M3 and geS(R"), then ‘
(2.8) C gfeMInDE for r<p and ¢<s.

3. Periodic multipliers. We shall be concerned with periodic functions
which are multipliers. Thus it is of interest to congider the distribution
whose Fourier transform is & periodic function. The first lemma is an
immediate consequence of the Poigson summation formula.

Ledwa 1. Suppose 0 < b < oo and feL*™ is periodic with period 2w /h,
that is, f(E-+2nB[h) = f(£). Then f = T, where T <8 (R" is given by

(3.1) T =W 3 a5(F)dp
BeZn
with 0, the Dirac measure supported at © and
3.2) a(f) = (b2 [ f(e " E0de.
Qr/n
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In certain cases we shall obtain a family of periodic functions from
a gingle periodic function by dilation of R”. The next lemma characterizes
the transforms of such functions.

LeMMA 2. Suppose T, 0 < b < o, 48 a family of L™ periodic functions
and T, has period 2 /h. Then

(3.3) Th= D a5(T1) 8 s,
BeZ™
where

aﬂ(Tl (2m)~" f Ty (£)e %P0 gg

if and only if

(3.4) T0.(8) = T, () almost everywhere.

Proof. If (3.4) holds, then (3.3) follows from (3.1) and (32 For
peS(E") define ¢, (x) = @ (hw). From (3.3) it follows that T5(p) = Ty((@)y)-
Since 7, and 7T, are I® functions, 7,(£) = 7, (hé) almost everywhere.

The next result was proved by Jodeit [8]. We shall use only the
case stated here.

TuEOREM 8. Let 1 < p < oo and suppose fe ME vanishes oulside Q...
Define foe L®(Qy) by fo(&) = f(£), £€Q,.. Then Sfoem} and there is a constant
C depending only on p and n suoh that ]]f0||m < O’IIfHMﬂ’

The following theorem was proved by de Leeuw [2] for » = 1. The
proof given there is also valid for n > 1 if the n-dimensional Fejér kernel
(the product of the one-dimensional kernels) is employed. A shorter proof
i3  given in [8].

THEOREM 4. Let.ge L be periodic with period 2. Suppose feI®(Qr)
is given by f(€) = g(&), §<Q. Then geMD if and only 'lffe y 1< p < oo,
If geMz, then |glla® = [fllm2-

4. Continuity and approximation in L*. Let p be fixed, 1 < p < cc.
Suppose 4 is a translation invariant operator from L? to L?. By a theorem
of [7] there is a unique T'eS'(R"™) such that Au = Ty for all ueS(RY).
Thus J'eM5. For 0 < h < oo define 7', to be the periodic function with
period 2x/h such that

Tu(&) = 1(8), &¢Qun

THEOREM 5. TheM}j and there is a constant O depending only on p
and n such that

(4.1) umM<MMw-

Proof. Define f by f(£) = 7(&/h). Then feMp and |]f”M1“ ||T]|Ml’
Since yq <M} and the product of two multipliers in M} is in Mp, We 566
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that fx@,f W% and foQnI] ik < o)y b By Theorems 3 and 4 the periodic
funetion g with period 2= which agrees with f 011AQ,r is in M% and |jg] )
< O’HT”Mg Since (&) = g(hé) it follows that TheMp and (4.1) holds.

Remark. It is easily seen that if T is homoge]}eous of dggree %ero,
then 19,(¢&) = T,(hé) almost everywhere. Thus |74 wl) = ]|T1||M§;A£md
all the distributions I have the same coef:ﬁicignts by Lemma 2. If 7(£)
= T, (hé) for 0 < h < oo, then it follows that 7' iy homogeneous of degree
Zero.

We have seen that T, belongs to ILZ and has norm bounded
independent of k. Let 4, denote the closure of the mapping )

(4.2) IP 5 S(B™Msu — (27=)"* (Ty#) " . LP.

Ay is a translation invariant operator from L7 to L” and we shall see that
4, is an approximation to 4.

Let Z™* denote the space of Bessel potentials of IP functions for
§> 0 (see [1]). The Bessel potential J,f of f<I? is defined by

(Tof)" = (L+[E7) ",

Define the operator A° by (A°u)” = |&°%. If weI? then wel?, and
AueIP. OFis contained in L™, 'We prepare for the estimaites of [[Au — 4, ull,
with the next lemma.

LevmA 6. Let s> 0 and define g(&) = x@ﬂ(&)[&[““. Then geM%,
1<p< oo

Proof. Let pe 0 be one on 0@, and zero in a neighborhood of the
origin, Bet f(&) = @(&)|£]7° It follows from Hormander’s version of
Mihlin’s multiplier theorem (Theorem 2.5 of [7]) that feM5,1 < p < oco.
Since ypq, ¢ My we see that g = ygp_ felD, 1< p < oo,

THBOREM 7. Let 8 > 0. There is a constant O depending only on p,n,
and s such that .

3) . HMu— dyull, < |20 A0l wel?".
Proof. Using the definitions of @, and 1Y, we obtain
[Z2(&)—Tu()]d = [2(6) = T3 ()1 x0q, (hE) [h& = h* (A% u)" .

Since a dilation of B" preserves multipliers and their norms in M, (4.8)
follows from (4.1), Theorem 5, and Lemma 6.

CoROLLARY 8. If weL” then lAw—Auull, >0 as b — 0.

Proof. Sinee the operators 4, have uniformly bounded norms, the
result follows from Theorem 7 and the fact that 0% is contained in IP®.

° © ‘
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5. Singular ihtegra.l operators with variable kernels. We consider
in this section an operator A defined by’

Au(@) =Xm [ ko, 5—y)u(y)dy,
&0 jE—yl>e

where ueS(R") and % has the following properties. For each xR k(w, 2)
is C* in ¢ for {2] > 0, k(z, 2) is homogeneous of degree —n in 2, and k(z, 2)
has mean value zero on the sphere {z: |2 = 1}. For a discussion of these
operators see [1], where the following results are established. Let T(x, &
denote the Fourier transform of %(w, 2) with respect to z. Then for each
weR", T'(w, £) is 0* in £ for 1&] > 0, F'(z, &) is homogeneous of degree zero
in & and 7'(2, £) has mean value zero on {&: |&| = 1}. We assume that for
each £ with || = 1, the functions D7 (=, &) are L™ in @ for 0 < |a| < 2n.
Write [|4]] = sup{||DiT' (%, &)llo: [&] =1,0< |a| <2n}). Then A may be
extended to a bounded operator from I” to L? for 1 < p < oo and there
is' a constant ¢ depending only on $ and # such that

(5.1) Al < ClIAN e, we”.

Let {¥7,} be a complete orthonormal system of spherical harmonics
in I}(X), where X = {&: |§] = 1}. The positive integer m is the degree
of ¥y, and the number of ¥;, is no more than Om™ 2 with ¢ independent
of m. ‘Also | ¥y,| < Om®™ 92, (5.1) is establishéd by expanding the kernel
k(w,2) and the symbol 7'(x, £) in series of spherieal harmonics,

(5.2) k(@,2) = D (@) Vi, (2) 2],
I,m

(8.3) (@, &) = D byn(®) T (8).
L,m

It follows that the series for 7'(z, £) converges uniformly, by (%) = 3 O (),
[yl < Om™, and |byllze0 < Cm2"}4|. Using (5.2) the operator 4 is
given by '
Au(@) = D a0y, (2) Bipu (),
i,m

where Ry, is a translation invariant operator from I? to I?,1 < p < oo,
with norm bounded independent of 7 and m.

For 0 <h < oo, define 7, (x, £) to be the periodic function with
period 2m/h in & such that T, (x, &) = T'(z, £) in Qrn- Then for each z,
Ty, (%) is a distribution with support on rZ",

Tp(@) = W2 (hj2m)y® 3 [ T, £)e~™PDags_,.
Bez™ Qnin
For weS(R™ define

(5.4) Apu(z) = [T (@) *u](2), -
where the convolution is over hZ"
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TaEoREM 9. A, may be extended to a bounded operator from L7 to L7,
1< p < oo, and there is a constant C depending only on p and n such that

[4rull, < Ol ully, —weL”.
Proof. For ueS(E"),
Ayu(@) = 2 O (8) B (),
Where Ry is the approximation to Ry, constructed in Section 4. The
result follows from Theorem 5 and the estimate for byl 00+
TEBOREM 10. Let s > 0. There is a constant C depending only on p, n,
and s such that
lAu—Ayull, < C|AIW || AL ullyy  wel™®.
"Proof. This estimate is a congequence of Theorems 9 and 7.

6. Multipliers with mixed periods. It was seen in the remark following
Theorem 5 that the approximating operatiors 4; have coefficients inde-
pendent of & if and only if 7' is homogeneous of degree zero. In this section
we shall construct the operators 4, so that they have constant coefficients
if and only if 77-is mixed homogeneous of degree zero in the sense of Fabes
and Riviere [4], [b]. .

Leta; >1,j =1,..., n A function fon R" is said to be mixed homo-
geneous of degree k if f(A°&) = A¥f(&) for 4> 0 and 0 # £eR", where
2 =0",...,2"E,). For 0 < b < oo, set

Qup = {EcR™: —m<hi&<m,j=1,...,m}

We say that a function f on R" is periodic with mixed periods 2L
=(2Ly,...,2L,), L;> 0, if fhas period 2L, in the j- th coordinate, j=1, ..
vy For 0 < b < oo, define & = (L, ..., L,) by h° Lyj=mj=1,.. ,n.

Set Lf = (Lyfy1y ..., L,f,) for feZ™ Then for peS(R™) ; (p(m—}—ZLﬂ)
= (2n)™"he 3 G(hB)e<P® . Thiy  replaces the usua.l Poigson
pezZ

summation formula.
If Ty e L* has mixed periods 2L, then

T, = pi Za’ﬂ (@) O_naps

peZn
where ‘
aﬁ(T,L) = (2ﬂ)—1z/2hiu5/2 f T;L(E)e"“"n”"” ic.
’ Q1-1:/h
It is easy to see that
T = Z ap(T5) O_yap
- s

if and only it 7,(£) = 7, (h°€) almost everywhere.

icm°®
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THEOREM 11. Suppose 1 < p < oo and T'e ML, For 0 < b < o define
Th as the pemodw Sunction with mized periods ZL Wi L; = =, such that
Th(f) =T'(¢), éeQp- Then Tye M3, and there is a constant C depending
only on P and n such that

I h”MZ <

Proof. The proof is identical to that of Theorem 5 except that the
dilations & — h™'¢ and £ - k& are réplaced by the aﬂme transformations
E—>h7"¢ and & — h°¢ re5peet1vely

It is easy to check that 7'(1°¢) = 1(&), 1> 0, i and only if T,,(E)
= T, (n® &)y h > 0. Thus T, has constant coefficients if and only if 7' is
mixed homogeneous of degree zero. )

Let ¢ be the metric associated with a defined in [4], that is, e(x)

O 2.

is the unique ¢ such that [p7*»| = 1. Then for 21> 0, g(1*&) = 20(&) and

o is 0 except at the origin. Using the proof of Lemma 6 and the mixed
homogeneous form of Hérmander’s multiplier theorem (see [4]) we obtain
the next lemma.

LeMMA 12. Let s > 0 and define g (&) = Koo, (§)[0(£)17°. Then ge MD,
1<p<oco. .

For the definition of the operator P, and spaces L¥* corresponding
to 4 and L™® see [5]. If weL?®, then ueL” and PiueL®, where (P5u)

= [o(&)F%. O is contained in L.
Let 4, be the closure of the mapping

IP 5 8(BY>u — (2r)"* (10 4)" IP.

THEOREM 13. Let s > 0. There is a constant C depending only on p, n,
and s such that || Au— Ayull, < 0| T2 hs]]PSunp,ueL 23, _

Proof. Since ¢ is mixed homogeneous of degree one and affine
transformations of R" preserve multipliers and their norms in My, the
result follows from Lemma 12, Theorem 11, and an equation similar to (4.3).

CororLARY 14. If wel?, then [|[Au—Ayul, -0 as h 0.

7. Operators from L” to I In this section we congider a translation
invariant operator A from I? to L% p < ¢, and either 1 < p < oo or
1 <¢ < co. We shall construet an approximating operator 4, and give
error estimates similar to those of Section 4. First we show -that it is not
possible to use periodic multipliers to define 4, if p < g.

Levma 15, Suppose feME has period 2n and p < g. Then f = 0.

Proof. Since ¢“/® ¢L}(Q,) it follows that f*e™ " e M2, where the
convolution is over Q.. But

(f*65%) (&) = (@)™ 6%6:0 ay ().
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Since ¢#® i mot in MZ if p < ¢, all the Fourier coefficients of f must
be zero. ' X

‘The approximating multipliers 75 will have compact support and
by the next lemma T; will be a function.

Lzvma 16. Suppose p < q and either 1 <p < o0 or 1 < g < oo, If
Se M2 and § has compact support, then S<L7 N 7.

Proof. Lot pe§(E") be one on the support of 8. It follows from (2.§)
that § = @ is in M?and M. Using (2.3) and (2.4) we see that S L n L7,

For 0 <7 < oo define @, = {§eR": —r < §<Kr,j =1, v n}h .]3‘0r
0 <h < oo define Ty, = zo_, T, where Au =T+y for all ueS(R"). Since
Za,€ Miforl <t < 0 with norm independent of 7, it iollows that 14 M3
and |14 ul < Ol T]ly¢ with ¢ independent of h. Let A, denote the
closure of the mapping

CIP o §(RYeu - (27)" (T 0)” e IO,

THEOREM 17. Let s > 0. There is & constant O independent of h such
that

w eI,
Proof. The estimate follows from the fact that
(T—=T3) 9 = BTycq, (hE)|hé|* (47u)".

Ildw — Ayl < O|T||p2gh* | 4° ull,

CoroLLARY 18. If welP, then ||Au—Ayull,~0 as b —0.

Note that 7 is the best approximation to 7' on Q- IE 8 iy any
approximation to 7' with compact support, then the error (7' — &)4 must
contain a term similar to that appearing in the proof of Theorem 17.
Thus 4, is the best approximation to 4 among operators defined by
multipliers with compact support, in the gense that there is no approxi-
mating operator with a higher rate of convergence. Similar considerations
lead to the conclusion that the difference operator 4, of Section 4 is the
best approximation to 4 among difference operators, that is, .4, yields
the highest possible rate of convergence.
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