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A theorem on B-splines

by
J. DOMSTA (Sopot)

Abstract. In this paper we investigate a special family of partitions of unity
on I = <0,1)>. Each partition of unity is formed by B-splines of order m,m > 0,
corresponding to a given dyadie partition of I. The partitions of unity are linearly
independent sets of functions and therefore their Gram matrices are invertible. The
aim of this work is to give exponential estimates of elements of the inverse matriees.
This result plays the eentral role in the construetion of bases in 0™ (I9) and W;’} (1%, [3].

1. Introduction. In this paper we investigate a special sequence
of partitions of unity on I = ¢0,1). The nth partition of unity is the
(linearly independent) set of B-splines of order m corresponding to the
nth dyadic partition of I for ne # = {1,2,...}. Thus the Gram matrix
G™ of the nth partition of unity is non-singular and therefore is invertible.
Let A{™ denote the matrix inverse to G{™.

The (n-+m+1)-dimensional space spanned by elements of the nth
spline partition of unity is denoted by &5'(I) for ne 4.

Let us further denote by #2(I), » = —m,..., 0, the subspace
spanned by the functions 1,1, ...,#" ™. Applying the Schmidt orthonor-
malization procedure to the sequence of functions {A{™}, defined as follows:
MM e F™ING™_(I) for > —m-+1 and A%, = 1, we obtain an ortho-
normal complete in L,(I) set {f{"™: n > —m}. The exponential estimate
of the elements of 4¢” established in Theorem 1 (cf. Section 3) can be
used to obtain exponential bounds for the Dirichlet kernel of the ortho-
normal set {f™}. By means of this argument it was shown in [3} that

. the d-fold tensor product of {f¢™} is an orthogonal basis in C¢™(I% and

W% for d=1,mz0,1<p < oo,
Theorem 1 was conjectured by Ciesielski and the result was announced
at the Conference on Constructive Funetion Theory in Varna, May 1970 [1].

2. The B-splines. Let 8 = {s5;: ¢¢Z}, where % = {0, +1,...},
be a partition of (— oo, o), i.e.let s, ; > s;for ieZ and lims; = —lim s_;
i—>00 100
= 00.
DErFINITION 1. The function feC™(— o0, o) is said to be a spline
(-function) of order m corresponding to S, whenever all the restrictions
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Flesypop 228 polynomials of degree not ex‘ceeding m+1. The elements
of S are called the knots of the spline functions.

The splines were introduced by Schoenberg [7]. Their basic properties
are given in [4], [8-9]. The set of all splines of order m corresponding
to the partition S is a linear space with usual definitions of addition and
multiplication by scalas. Let this space be denoted by &™(S). The
functions hy(t) = (s;— i3+, where @ = max{0, «}, belong to F™(8),
whenever s;e8. Thus also the funetions

88)] N = (Sypmp1— ) [Sim1s -+ o2 Sipmen (s—1)

where [81, ..., 8; f(s)] is the divided difference of f in points 85, ..., 8y,
are elements of &#™(8). The functions N m have the following properties

(ef. [4], [8]):

1
T,

(P.1) NM(#) =0 for te(—oo, ), teZ, .
(P.2) SuP?N'(Lm) = {81y Spamar)  JOF ieZ,
(P.3) MNP =1 for  te(—o0, Fo0),
[7X4
(P.4) }m NGy di = Sumrn oL g ez,
A m-+2

(P.B) The sequence of functions {NJ™: supp N™ N (a, b) = B} is a basis
in the fimite-dimensional space .
Tty (8) = {lcapy * fe I™(8)}
of restrictions of splines of order m to {a,b) = (—o0, +o0). In
particular, if & =s, and b =s,, then the sequence {2 g
= —m, ... n}is @ basis in the space FSL(8) = S 50 (8). ,
TevmA 1. If 8 = {52 4eZ} and 8’ = {si: ieZ} are two partitions
of (—oo, o) such that
$; =c8+d forieZ,
where ¢ and @ are independent of i, ¢ > 0, then the equality
@) () = N (o t+a)

holds for te(— oo, c0); ieZ,m > 0.
Proof. According to (1) the left-hand side of (2) equals (cf. [6], ». 17)

m+1

21 (8ia— 2!
Ly = (s —8; 1) Mkt U+
(2} i+m4-1 -1

A~ Da(s:3)

mtl
, , (i —ct—ayp+ ,
= (Shpmp1— i) 2 ﬁ_l__,_)":_‘ = N/™ (gt +d),

= D™ (8 m)

©
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where w(im)(s) = (§—8;.9) -oe (S—si+m+1)’ w;(m)(s) = (3_‘8;'—1) e (s "’s;+m+1)
daf
a Df(s) = —(s).
an ) =55 (s)

Properties (P.1)—(P.3) and (P.5) allow us to introduce

DEFINITION 2. The sequence {N(: ieZ} of splines of order m
corresponding to the partition § = {s;} of -(—oo, c0) according to
formula (1) is called a spline pariition of unily; the elements N™ are
called B-splines (basic) corresponding to S.

The following result proved in [4] will be used later.

LEMvA 2. The unique spline of order m with a support contained n
(853 Sspmary 18 The mull funciion f(s) =0, for any ieZ.

It follows that Properties (P.2) and (P.5) define uniquely the

spline partition of unity. In the case of equidistant knots, i.e. if
3) s—8, =h for ieZ,

the B-splines have special property important for our considerations.
According to Lemma 1 we find that the numbers

+oo .
(4) G = f N () N (1) de

corresponding to § = {s;} satistying (3) can be expressed in terms of
(8) @™ =G for 1eZ

as follows:

(6) G = G, for i,jeZ.

The important property of N —s may now be formulated like this
(cf. [8], p. 182):

Ledma 3. The roots ¥, j = +1, ..., & (m+1), of the function

m+1
) @) = Y 6Md = D GMd for 2%,z £0,
1z I=-m—1

are all simple and negative. Moreover, they may be enumerated as follows:

(8) P << < L <y < <, <0

“and

(9) P = (o for i = +1,..., (m+1).

3. The family of partitions of unity. For each nef’, 4/ = {1, 2, by
we define the sequence 8, = 8 = (sl : i =0, &£1,...} by

for 1eZ

oy

(10) sl =
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and for n> 2
E‘H_—l fOl‘i:...,—l,O, .,21’,
(10"} sl =
- i—v .
T for ¢ =2»4+1,...,m,...,

where u and » are non-negative integers defined by the unique decompo-
sition: # = 2*+4», > 0,1 <» << 2" Notice that for each ne 4" we have

{11) sl =0 and s =1.

The set {si: ¢ =0,1,...,n} is called the n-th dyadic partition of
I ={0,1). The spaces (S of restrictions to the interval (S,., Sp.
=T of splines corresponding to S are defined uniquely by the dyadic
partitions. These spaces are denoted shortly as & (I). Notice that
Ful) e S (I) and that dim S7(I) = n+m+1 for nes". According
to (P.5) the system i ‘

(12) N = (N § = —m, ..., 0} = ()

is a basis in SP(I). Thus for the Gram matrix G = {G,:

31,7 *

with J% ={—m,...,n} and G, = [ NOING) for i,jeJT, there
. .. I ”
exists the inverse matrix AM™ = {4M.: i, jed™} = (G, neA". The

> 01,7 ¢
main result now can be formulated as follows: .

T.ZEI}OREM 1. For each m > 0 there ewists constants C,, and ¢,,, 0 < g,
< 1, independent of n, such that

(13) A0 < 0, gli" for i,jedT, ne A .

.In order to prove Theorem 1 we have to develop a technic of esti-
mating the inverse matrices.

) 4. lSome properties of matrices. The letters J, K, I equipped possibly
in additional indices denote finite or infinite subsets of the set &
={0 ) +1,...}. Any function defined on J is called a J-system. Any
tonction defined on J x K is called a J x K-table. The systems and tables
are denoted in the sequel by capital bold-faced Latin or Greek letters.
The domain of a system or a table M is denoted by 2(M).

The real- (complex-) valued systems and tables ave called real (comples)
"vectors and matrices, respectively. The set of all real (complex) J-veetors
is denoted by #/(%’). Similarly %27*X(#7*X) denotes the set of all real
(complex) J x K-matrices.

) T.he value M(j) (M(j, k)) of the J-system (J x K-table) M is called
Jth{(j, k)-th) element of M whenever j cZ(M) ((§, k)e2(M)) and is denoted
by M;(M;;). If some subindices oceur to denote the system (table),

i,jedl}
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then the subindex j (subindices j, k) is (are) proceded by a semicolon,
unless it is (they are) preceded by a parenthesis, e.g. M, and M}f};bﬁ,k
denote the (j, k)-th element of, say, matrices M, and M[ll;, respectively.

In the sequel we idenfity J-systems with J x {0}-tables in the following
way: X is indentified with ¥, 2(X) =J, 2(¥) =J x{0}, if X; =T,
for jed.

To complete the list of definitions. let M denote a J X K-matrix.
The main diagonal of M is the set {M;,: j =k, (j, k)eJ xK}. It may
be the empty set. M is said to be diagonal if all its elements are equal
zero unless they belong to the main diagonal. The K xJ-matrix MT
is the tramsposition of M if ML, = My, for (j, k) =J XK. M is said
to be symmetric if MT = M. )

The restriction M.z of M to the set J' XK', where J' < J, K' = K,
is called the J’ X K'-submatriz of M. The submatrices My, gy and Myx
are called k-th column and j-th row of M, respectively. If the sets J and
K are decomposed into e.g. three parts J¢, J?, J°, and K%, E°, K® respecti-
vely, then Mja, g6 is denoted shortly by M, for a, B = a, b, c. In more
complicated cases of submatrices the following examples explain the rule
of the abbreviation of notation. We write e.g. My, Mg e My and
M5 for My boxeyy Myaooxres M, b and Ma,sb)xz, Tespectively.
For J' > J and K’ > K the J" x K'-matrix M7 *¥", where

TRE M;, for (j,k)eJ XK,
s 0 for (j, k) el xE")N(JT X K),
is called the null J'' x K''-extension of M.
M is said to be the aull J xK-matriz i M, =0 for (j, k)ed XK.
M is said to be the identity J X J-matriz if J = K and if My, = 6;, for

(j, k)ed XJ, where
5 1
kT [0
for j, keZ. '

The null (identity) matrices are denoted by O(E) with a subindex
denoting their domain. Thus, e.g. Oy, Byy and Ej,; denote the null
J x K-matrix, the identity J°xJ’-matrix and the identity J xJ -matrix,
respectively.

The sum M +N of two J x K-matrices, the product AM of M by a scalar
4 and the product MoN of the J x K-matrix M and the K X L-matrix N
are defined as usual; namely, (M+N)(j, k) = M+ Ny, (UM, F)
= M;, and (MoN)(j, 1) = Y M;;N;;, whenever all the sums converge.

keK

The K XJ-matrix N is inverse to M if MoN = E,,; and NoM = Egyx-
M is said to be non-singular if it has (exactly one) inverse matrix.

£j=k,

14
4 it j k&,
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Let J = K < oo, where. .7 denotes the cardinality of the set ..
II(J, K) denotes then the set of all (one-to-one) mappings of J onto K.
Moreover, there exists exactly one =, <II(J, K) which is order preserving,
ie. m(jy) < mo(js) if and only if j; < j,. This enables us to define the
determinant of M according to the formula

Z sgnnn My aiys

nell(J, K) e

(15) Det M =
where sgnz equals 1 whenever the permutation pe [I(K, K), p = mo (m,) ™"
is even and —1 for odd p.

Now let MeZ’7. M is said to be non-negative (positive) definite
if for each X%/, X #0;, Xo MoX>0 (> 0), where one-element
maitrices are identified with numbers. The complex number A is said to
be an eigenvalue of M if there exists X<%’, X # O,, such that MoX
= iX. ;

The Buclidean norm of a real J-vector X, J < o0, iy defined as follows

IX] = (3 %3)" = (X70 By y0X)™  for Xeat.

JeJ

’

(16)

Now we may list the known properties of matrices which are used
in the sequel. To do this let Me%'*’, J < oo,
It Ne#2”*7 and it N is non-singular, then
) M is p.d. <> NTo MoN is p.d.,
where p.d. stands for positive definite. If M is symmetric, then
i (18) 2

(197

is an eigenvalue of M = Ae%
An(M) = min{X"o Mo X: Xe#’, |X| =1},

(19) Ay (M) = max {XTo MoX: Xe’, |X| =1},

where 2,,(M) :a,nd Ay (M) denote the minimal and the maximal eigenvalues
of M respectively. According to (19) we have for a J' xJ'-submatrix
M of M,J" = J,

(20) A (M) < 2 (MY < D (M) < g (M)

and if NeZ” is symmetric, then

L) A (M) + 2 (N) < A (M + N) < Ay (M + N) < Agg (M) + 75 (N).

It also follows from (19) that

(229 M is p.d. < 2,(M) > 0

?

(22" M is nn.d. < 4,(M) >0

?
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where n-n.d. stands for non-negative definite. The following estimate
holds for any symetric J XJ-matrix M (cf, [5], p. 240):

(23) max {{Az (M), [ (M)I} < max { 318,03 je}.

ked
Let B denote a finite J-system of elements of a Hilbert space {+,
(-, *)>, where (-, -) denotes the inner product. The complex J xJ-matrix
G is called the Gram matriz of B if G, ; = (B;, B;) for 4, jeJ. If o is a real
Hilbert space, then the following statements are all equivalent ’

(24") B is linearly independent;
(24" G is non-singular;
(24" G s p.d.

To complete the list of properties of matrices we give a proof of the

following _

LmvMA 4. Let I', M, N be real J xJ-mairices such that J < oo and
N = M—To MoT. If T is diagonal, 0 < |I;;| < 1 for jed, and N is p.d.,
then also M is p.d.

Proof. Denoting I'* = I'o...ol for net” and I’ = E;,; we may
— =

assert: I'™ is symmetric and n’:m-singula,r for n> 0. Hence I"oNoI™
is p.d. (cf. (A7), ie.
(25) XTo(Io MoI"—I™"'o MoI™)cX >0
: for Xe#’, X #0;,n>= 0.
It follows that for any me 4,
XToIo MoIoX > X'oI"*'o MoI""'oX  for X', X 0.
But
XPoI™o Mol o X> —|XToI™ o MoI" o X]|
>

- ] 2 Xi(I’i,i)nHMiJ(]"i’j)n—(-lXj
i,je
_at? Z’ I-XiMi’ij‘

2]

for ne ",

A%

where I'= max{|l},|: jeJ} < 1. Hence

(26) XTolo MoI'oX >0 for Xe%’.

Inequalities (25) (for » = 0) and (26) give

XTo MoX >0 for Xe#’', X + 0.
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DEFINITION 8. T J = {jo,er, fo+di} and K = {kg, ..., kg+ds},
then the J x E-matrix M is said to be rotatively symmetric (r.8.) whenever

for 0<j<dy, 0< k< dy.

Mivirgen = Mipray-irorap—k
It is easy to verify

Levma 5. If M and N are r.s., then their sum (product) 18 7.s. whenever
the sum (product) ewists.

5. Diagonally exponential matrices.

DEFINTTION 4. The family {M,: ae &7}, & — any set of indices,
of finite or infinite matrices M, is said to be diagonally exponential (d.e.)
if there exist constants ¢ and ¢, 0 < ¢ < 1, independent of « such that

| M5 < Cg " eD(M,); ae L.

In the sequel we shall make use of the following convention: The
constants € and ¢ occurring in the above definition will be endowed with
a subindex corresponding to the capital letter denoting the family of
matrices, e.g. if {4,: ne 4} is d.e.,, then the appropriate constants are
denoted by ¢, and ¢, respectively. It is obvious that

LevMA 6. Finite sum of d.e. families of matrices is d.e.

Lemya 7. If {M,: ae o} is d.e., then any family {Ny: Be B} such that
each Ny is a null extension of a submatriz of some M,, fie &, is d.e.

_ LemMa 8. If {M,: ae &} and {N,: ae } are d.e. families of matrices
with 2(M,) = 2(N,) for ae o, then {M,+N,: ae &} is d.e. too.

Levya 9. If {M,: ae &7} is a family of matrices such that

27) N = sup{lj—k[: (j, %)
(28) C =sup{|Mul: (J, h)eD
then {M,} is d.e.

Note that (27) cannot be replaced by the following condition:
sup{Z(M,): ae L} < oo.

) DEFINITION 5. A family of matrices {M,: ae o} is said to be almost
diagonal (a.d.) it

Sup {lj—&l: (4, k)e D (M), Moy s, # 0, e} < 0.

LE:«MMA 10. An ad. family of matrices with uniformly bounded ele-
ments is d.e.

) DErINTTION 6. We say that the family of matrices {M,: ae o7}
with 2(M,) = J,xE, is of almost null rows (a.nr.) or of almost null
columns (a.n.c.) if .

(29')

for (j, k)

M), ae A} << o0,
(Mu)yas M}< 00,

S\l]_){Za(j, ): jEJ,,, ae ﬂ} < o0,
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resp.
(29 SUp{Z, (k): keK,, ae o} < o
holds; here
(30" Z.(,) = {heKy: My, #0)  for jed,, ae o,
and
(30" Z.(k) = {jedu: My, # 0} for keK,,ae o.

Tt is obvious that an a.d. family of matrices is simultaneously of
a.n.r. and of an.c.

Now we are ready to formulate the rule of multiplication of d.e.
matrices.

Levma 11. Let {M,: ae o/} and {N,:
ces such that 2(M,) = J,xK,, Z(N,) = K
for ae of. Moreover, let {M,} and {N.} be d.e. If in addition {
a.nr. or {N,} is of a.n.c., then the family {M,oN_} is d.e.

Proof. According to Lemma 6 we may assume that CM =0y =0
and gy =qy =6 0<g<1l TLet Z(§,1) ={kek,: aii Vo 7 0}
for (j,l)ed,xL,, ac . By the assumptions

ae o} be two families of matri-
X L,, where Jqy Koy L, &
M.} is of

N =sup{Z,(; U): U, Dedo XLy, ae &} < 00,
hence (a is dropped)
1

(MoN)(G, D] =| X MW =] )
keK keZ(3,1)

My Ny

< 2 Cq"* 0g*" < 02N g
keZ(f1)
6. Inverses of d.e. matrices. We begin the analysis with the following

Leynra 12. Let J = J*u J%, J* N J? = @. Then for the J XJ-matriz
M with

(81) My =8 for (§, R)ed*xJ
we have
(32) Det M = Det Mp,.

If, moreover, Det M = 0, then the inverse N = M~ has the properties

(33") Nyw= b for (5, )ed <,
(33”) -N(z;z) = (M(z;z))_ly

(33""") Nem = —Nim© Mey-
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Proof. Let us expand the determinant with réspect to the j-th row
of M, jeJ%, and then apply (31):

Det M = 3 (—1/ M, Det M gyxings = Deb M gyxnay-
keJ

Repeating the same procedure J—1 times more we get (32).
The proof of (33) is based on the following scheme

E(1;1)§0(1,2)] _ [ E(l;l)i O(l;z)]O [N(l,l) i N(m)]
0(2;1)! E(Z:Z) 1”(2:1) | M(Z:‘l) N(Z;l) f N (2:2)

(68  Ep, =[

— [E(l:l) 0Ny + 0 0 Ny i By 0Ngsz) + O O Npsyg) ]
Miy.20 Nigsny + Mgy Neay | Mip.0 0 Ny + Mg 0 Naioy

Comparing the submatrices of the first and the last maitrices in (34)
we geb '
Noy = Buyy  and - Ny = Oqy),

ie. (33"), whence M, 0Ny = By, ie. (33), and
My + M0 Ny = Opyy

Applying (33") we get (33'"").

Let J ={jeZ,j, <j<Js}, where j,j,eZ. Further let m denote
a non-negative integer. We say that the disjoint subsets J% J° and J°,
J°U J°u J° = J, form an m-partition of J of the first kind whenever

(35) J>m+1,

and .Jb = {fos .-+ Jo+m} for some joed, J* = {jed ;5 < jo}, J® = {jed:
j > Jo-+m}. The subsets J% J* and J° form the m-partition of J of the
second kind if

(36) - J > 2m+2

and J% = {j;, ..., +m}, J° = {a=my .0y da}.

_ DEFINITION 7. Let J% J° and J° form an m-partition of J of the

first (secon.d) k}nd. A J xJ-matrix M is said to be of m-shape of the first

(seco'n,d)‘ kind i M;, = 6, for (j, k)ed X(J%U J9) (for (j, k)eJ” XJ).
It is ObVIOI.].S that Lemma 12 is applicable to matrices of m-shape

of the second kind with J' = J? and J* — J% U J°. The assumptions of

L.emma.. 12 are satistied also by transposed matrices of m-shape of the first

kind with J1 = J*U J° and J2? = J°. Thus

M—lLim 13. If M is of m-shape of the first (second) kind, then the inverse

] also s of the m-shape of the first (second) kind, whenever it exists.

\Y
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In the remainder of this section {M,: ae &7} is such a family of ma-
trices that

37 2(M,) = Jo X,

where J, is a finite set of succesive integers for ae &3
{38) {M,} is d.e.;

(39) C = inf{|Det M,|: ae &} > 0.

Aceording to (39) the elements of N, = (M,)~' may be estimated
as follows
[Det (M) x|
G 7
where J' = J,\{k} and J"' = I \{j}, for (j, kK)ed,; ac L.
TaEOREM 2. Fach of the conditions

(40) ol <

(i) o N =wup{d,: ae o} < oo;
(ii) Both M, and MZ are of m-shape of the second kind;
(iii) M, is of m-shape of the first kind; -
{iv) M, 48 of m-shape of the second kind;
together with (37)-(39) implies that
(41) (N} = {(M)7} is dee.
Proof. According to (40) and (i) we get
(42) gl < 25,

where Cy is the constant from the inequality
(43) [ Mol < O™

and I = ja—l < N—1. Applying Lemma 9 we obtain (41).

For the proof of (ii) let Jg, J?, JE form the m-partition of J, of the
second kind. According to Lemma 13 (cf. also the remark following
Definition 7) both N, and N7 are of m-shape of the second kind and there-
fore

N, = N;’(az‘;’cgc)—i«Ez{;;,,’;"ﬂ, ae oF.

According to .Lemmas 7, 8 and 10 it is sufficient to prove that

{Nyaca,0} is d.e. In view of the equality (cf. Lemma 12) i

-Z\Ta(a,c;a,c) - (Ma(a,c;a,c))_l
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we can take J' = (JPU JON{E} and JV = (JoU JI)N{j} in ine-
quality (40). Thus also (42) is applicable with I = Jgu Jo—1 = 2m+1.
Hence, according to Lemma 9, {Nyya} 20d {Nyq} are d.e.

If j eJ*and ke J°, then for each we II(J', J'') (the subindex a is dropped)
there exists j,eJ® such that k, = n(j.)eJ°. This enables us to compute
the value of

Det M, g = sgnodly ;. ”M-,,,m,

weII{J,J") s,
where J., = J'\{j.}, and hence
IDet Myl < TT(T', 7)o {| My, s ) O3+ el (I, T}
< (2m+1)1 05 oy,
where n = min{)j,—#(j,)|: well(J', J"')} = |j — k| —2m — 1. Congequently

21
(Nl < M
. c

QEI(MH_I) ql]{[kl
for (j, k)edixdg, ie. {Nyuqy} is de. In a quite similar way we obtain
that {Nygqy} is d.e. This completes the proof in the case (ii).

For the proof in the case (iii) (the case (iv) respectively) notice that
according to the remark following Definition 7 N = N, == M7 is of the
m~shape of the first (of the second) kind for ae &7. Moreover (Lemma 12),

y _ JxXJ
(4]? N = N3 +NG7,
whnere

4 AT XJ J
(4{2 N(;cic) = E(ai:‘;’u,c) (= N{a:‘c‘;fam))
an

JXJ T XJ JIXJT ¥

(46)  N@y' = Ny —MpchoNgi (= By — N5, jo M.

 Indeed, it is sufficient to write the matrix N in ‘the form

By | Ny Oy |} 74
N =1 Op | Npy)| Opy

1, T = m+1,

9| New| B 1}

Je Jb Je

iv(asa) E _LY_(cib) ’ N(azc) } 7

N = de=7c

I
s
+
LN

i !

_O(b;a) E‘E(b;b] J; O(b;c) } 7,

e Whded B

N ]‘ZYE_@, § Nigo } Je
Ja Jb Je

Theorem on B-splines 303

The family {M,ut (Migee,+Efs"4) satisties the assump-
tions of Theorem 2 corresponding to case (i) (to case (ii)). Hence,
{ N} is d.e. ({Ng a9} 15 d.e.). Applying appropriately Lemmas 7, 8 and 11
to relations (44)—(46) we obtain that {N,} is d.e.

7. Additional partitions of (—oo, o). Let {8¥: n = 1,2, ...} denote
the I-th sequence of partitions of (—oo0, ), 1 =0,1,...,5, where
SO = {sL): je&}, net, is defined by (10) and SY = {sl: e2y,
1=1,...,5,ne4, are given as follows:

(47 sl =4 for ieZ,ne A,

(48) 2 i[2 for i< 0,neA,
R for i> 0, neA,

(49) o i for i< n,neA",
e 2i—n  for i>mn,ned,

(50) st = 258 for ieZ,ne N,

0] —= 4 i —
_ sfl=i for ieZ,n =1,
(Dl) S!f;]i =

2#+igl for e, n = 2
(for definition of u refer to Seetion 3). .

Let S denote any partition of (—oo, o). The subspaces S8, +)
and ¥™(8, —) of the space of splines (of order m) #™(8), spanned by the
B-splines N with j >0 and j< 0 respectively are characterized by

Lemia 14. The spline function f belongs to $™(8; +) (¥™(8, —))
if and only if suppf < {s_1, =) (suppf = (—o0, 8,50)-

Proof. If f= SN (f=3aN™), then suppfc sy, o)

- j=0 i<o
(suppf = (— oo, sm>).] According to properties (P.2) and (P.5) ‘each
function f has the unigue decomposition f = f, + f_, where f, e« #™(8, &).
Thus it is enough to prove that suppf < {5_;; $md implies f(t) =0 for
all te( —o0, oo). But this is established in Lemma 2.

I § = {s;: ieZ} and & = {s;: 1¢Z} are two partitions of (—eco, co)
such that s;= sy for 4 =0,1,...,n,n=m+1, then the corresponding
spaces &7 (8) and & (S’) of splines on (s, 8,» coincide. The corresponding
spline partitions of unity N{™ = {N¥{J: jeJi} and N = (N jed7)
differ at most in the first m-1 and the last m+1 elements. According
to Lemma 14 i

N = Zcb,.,.z_v’,f;;.ﬂ for 5eJ2,
.

Jje £

NG = Do, N
jed ;,i

.
for iedy,,
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and )
N = N for ied),
where J¢,J2, J form the m-partition of J3' of the second kind. Since
each of the spline partitions of unity is a basis in #7'(8), we have
LeyMMA 15. The unique Jy XJn-matriz @, defined by the identity
N = Y @iy N for ied
JeJ
may be expressed as follows:
@, = Q;{(Z;{l)
where J stands for Jy.
Notice that SH =i for i =0,...,n, 1 =1,2,3. According to
the above remarks, for each n all the symbols &7 (SW) with 1 =1, 2,3,
denote the same space of splines of order m on ({0, n)> with knots at
0,1, ..., Let the J, xJ,-matrix ¥ be defined by the equality
Nl = 3 oA NE
jeJy,
where J, = J7 and N = N{™H
to <0,n). Lemma 15 gives
o = Sl LB + ol
for nzm-+1,1,k=1,2,3, with J = J, = J.
Since sl = sbl; for deJ2 =J%, , and sl¥ = sl . .. forieds,
1=1,2,3, we get by Lemma 1
BLLH]

n(a;0)

T XJ

TxT
+E{ -+ il

for jed,,netd", 1,k =1,2,3,

is the J,-system of B-splines restricted

— plLH

m+1(a;a)
and

‘151[11'1163 = @%i]l;i—n-pmﬂ,j—n—;-m«)-l
where I, k = 1,2, 3 and % > m-+1. Thus we have (cf. Lemma 10)
 Lmwwta 16. For each pair (I, %), U, k = 1,2, 8, the family of matrices
{80H: n>m+1} is a.d. (almost diagonal) and d.e. (diagonally empo-
nential).

The Gram matrices GIM = G, where
1
Giks = (N3, V)

are related as follows:

for 4, jedy,

(52) for i, jed,

Gl = a0 Gito (a7

for n>m+1, I,k =1,2,3. On the other hand, (@M)~ = @4 for
l,k=1,2,3, n>m+1, hence

A = (G1)~ = (@0 Ao BT,
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According to (50) and Lemma 1, G4 .

nt,J
AN =142 for mes .

=2GE  for i, jed,, ne s, ie.

Using Lemmas 11 and 16 we obtain

Levva 17. For each 1, 1 =2,3,4, {A¥: n>m+1} is d.e if and
only if {AP: n>m+1} is de.

THEOREM 3. For each 1,1 =1, 2,3, 4, the family {AD: ne s} is de.

According to Lemmas 6 and 17 it is sufficient to prove that
{48 n > m-+1} is d.e. and this will be proved in the next three sections.

8. The Gram matrices G, Let the J, X J,-matrices G be defined
by (52) with I =1, where NI = N is the J,-system of B-splines
(of order m) on {0, n) corresponding to the partition SI = {slil =i: i}
It is obvions that for each ne " and iedy, N = Nim = N,
where N{™ is the 4th B-spline corresponding to § = {s; = i: ieZ),
with equidistant knots, s;—s; ; = 1.

Let the numbers @, = G{™ be defined in terms of these B-splines
aceording to (4) and (5) for leZ. With use of properties (P.3) and (P.4)
we verify that '

m+1, -
(83) 2= 3 =1
. ez I=—m-1

Let J%, J%, and Ji form the m-partition of J, of the second kind for
n=m+1.
Luvma 18. The matrices G, n > m 41, have the properties

(T.1)  GYl; = @, whenever ieJ? or jeJ?,

(T:2) Gt Gh; = Gy for i,

(T.3) ngl,]tj = G;rﬂl—l;i,j for i,jedy,

(T.4) G is symmetric, r.s. (rotatively symmetric) and p.d. (positive
definite),

(T.8) {G¥: n=m-+1} is a.d. and d.e.

. Proof. Equality (T.1)
ie. for {ed? or jeJ?.
For the proof of (T.2) notice that, according to Lemma 1,

holds whenever supp NN < <0, n),

GJ%I]H + Gv[ll;]i+ﬂ,j+n

e

J+n

[ e,
0,7y
— f NS:m) Ng-m) +

<0,7)

f _NSm) _Ng.m) — f NSIM) N;m) — Gg"_l),‘
{—n,0) . {—n,m)
whenever supp NM™N™ < ¢ —n, n>; bub this holds for (4, §)eJE XL,
pp N N RO% 1
n=m-t+1. .

G

L1135 Mathamotinag T T 0
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(T.3) follows from the inclusion (supp NG (0, m)) = <0, m+1>
for ied® =dJg.q, n=m+1L

The symmetry of G§ is obvious. G4 is p.d. according to (24) and
(P.5). For the proof of r.s. notice that the B-splines corresponding to
a partition of (—co, co) with equidistant knots are symmetric in the
following sense:

Nt —s0) = (80—1)

The proof of (54) is quite similar to that of Lemma 1 and therefore
omitted. Applying (54) and Lemma 1 we get

f N(”:1)1+1 N(—”7Ln+7 =

.

N( m)

T m for te(— o0, 00),4eZ. -

(54)

= f Ny

1
Gy{z;]—m—}-i,—mﬂ‘

<0,m) (1,05
f N7("Z1L)’LN(m = Gn; n—i,n—f
£0,m)
for 4, =0,1,...,n-Fm.
Notice that
(55) i), =0 whenever [i —jl=m-+2

and that, aceording to (T.2), (53) and plopemes (P.1) and (P. 3), we have

(56) 1>65,;>0 whenever [i—j < m+1.
Thus (T.5) is a consequence of Lemma 10.

9. The Toeplitz matrix “inverse” to G. The function g(z) = g™ ()
defined for z¢%, 2 # 0, according to (7), is holomorphic in the annulus

(87

where re(|y_,|, 1) and y_, = »™ is the root of g defined by relations
(8)~(9). Moreover, there exist constants €, and C, such that

9 ;{ze(f: << l?] < 1/r},

0< 0, <lgR) <0y < co for ze?.
Therefore the function h, defined by
(58) h(e) = 1/[g(e)] for z¢9,

is holomorphic and bounded in 2. It follows from the Cauchy formula
for the coefficients of the Laurent expansion

(59) =) H7Z forze2
je&

that

(60) | Hy| < —1‘” for jeZ.

1
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= ZxZ, with
for j, ke

Thus the Toeplitz matrix H, 2 (H)
Hy, = H,

* forms a one-element d.e. family of matrices. It may be proved that H

is symmetric.

The product 1 = (g-h)(2) = g(2)k(2) for 2¢2 may be represented

as the Cauchy product of series (7) and (59),
1 = (g-h)(z) =2’ (ZGHk ,) " for 2¢9,
keZ  feZ
whence
ZGk 1HZ E*ZGIaHljk”‘él 10—5;1 for j,leZ.
keZ ke

The symmetry of G and H implies that
Zﬂk—ial—k =6 forj,leZ,
keZ

ie.
(61) Ho G = GoH = Ey .

10. Construction of the matrices A, Let us define the matrices

C, as follows:

(Vk—l)i'Hn for (J: k)ed, XJ?H
(62) Coje = | Hyp =Hyy  for.(j, k) eJ, xJp,
(yn—m—-h+1)n—j fOI‘ (]1 k) GJ," X J:”

for n > m-1. Note that according to (8), (9) and (60) each C, is r.s. and
{Cp: n=m+1} is d.e. (cf. also Lemmas 7 and 8).
It will be shown that the matrices

(63) D, =G, 0C, fornz=m+l
have the following properties:

(64) Hach D, is of m-shape of the second kind;
(65) {D,} is d.e.;

(66) limDetD, > 0.

N—>00

For the proof of (64) let jeJb. Then, accordmg to Lemma 18, we have

for each I, led,,

j+m+1

'Dﬂ;:l',lz E 79k0nkl 2 Gk—-] ny ke,

kedy, k=j—m—1
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Hence, by the definition of y; (¢f. Lemma 3)

: F+m+1 J4m+1
ket _ +i Y=
Dyja= 2 Ghgnd™*™ =)™ 3 Gy
h=j—m—1 k=j—m~—1

= (r )" g(p) =0 = %
Similarly

for jeJb, leJ?.

Dyin=6.,=0 for jed’, leJs.

I (j, Dedb xJ, then aceording to (61)
J+m+1

D G Hy, —Zak_,Hz_k = 8.

k=f—m~1

D

gl =

The d.e. property of D, follows from Lemmas 11, 18 and the d.e.

property of C,.

Inequality (66) is verified as follows: Applying (T.1) and (T.3)
of Lemma 18 and (55) we get :
(67)

1
Dn(a; a = GV[L a) © Cn(;a) 'EI}L]-}—I(a;)O Cm+1(;a) = Dm—pl(a'u)'

+  Inview of the r.s. property of D, forn > m+1 (ef. (62) and Lemmas 5,
18) we have

(68) Det Dy ;0 Dt Dy = (Det D,y

n(e;c)

Let ﬁs consider the matrix

M= (C1n+1)TODm+1 = (Cm+1)TOGm-HOCm+1v

The ma;trix. Cyny1 18 non-singular as a product of the Vandermonde matrix
corresponding to the (different) numbers yff") = 41,..., +(m-+1),

and the diagomal J,,., XJ,,,-matrix I' with I, =1 for 'LeJm 4 and

=)™ £ 0 for iedl,, (Thy = ). Aecmdmg to (17) M is p.d.
and by (20) and (22') M, is p.d. too. But

1,1

(69) M(u;zz) = (_01{1+1)(a;)ODm'+1(;a;

— T )
= (Cm+1)(a;a)01)m+1(a~a)+(CrTn+1) (@00 Pry1) = P+Q,
Where P = ( m+1)(a, 10Dy 10y a0d Q = (Cm-)-l)(a ;) © Gm+1(c) © Cppipey-

Applying the propemes of G, ., given in Lemma 18 and the definitions
of C,,, and y,; (cf. (62) and Lemma 3 Tespectively) we may write (the

iom®
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subindex m+1 is dropped)

m+1 m+1
: Q= 3 00 3 6aOt S i sion )
l=—m
m+1 m+1 .m+1
= 2 Ok, (2 Gl kOZ:/ 2 Gm-)—l sk—m—1,1-m—1 Gl,y)
1=—m
m+1 2m+2 2m+2
n 1 m+1
= 2 Ok,z( Z‘ Grp ()™ y Gt 1—m—1,1-m—1 (¥j-1) )
=1 l=—m =1
m+1 m+1 )
L4 ml+m+1
= _Z (yi )™ Z Gnirp—m—1,1(77-1)
k=1 l=—m
0 m+1

I

(C— (71'_1)m+l) (7’7—1)’"+1

—e™ (3 D )

k=—ml=—m
—(I'oPoT)(

%, )
where 9(I') = Jg,1 XJ gy, and

for 4, jed 7,

Iy = (y;)™*6,;  for each (3, ).

According to (69), M =P —TI'cPol and therefore the assumptions
of Lemma 4 are satisfied (of. Lemma 3). Hence P is p.d. It follows that
D, i 1(a) i nON-gingular. '

In view of (68), in order to prove (66) it is sufficient to show that
4, -0 a8 » — co, Where 4, = Det D, —Det Dy 0y Det D,y . According

to Lemma 12
Z sgn.z H Dasjnisys

aell” jeTd o

4,
C

n

where IT'" = JINIT', IT =II(J; O dJy, s U Je), II' = {nell: n(J%) = J%}.
For each mell” there exists j,eJj; such that k, = n(j,)eJ;,. Writing
I = (I UJIIN{j,} for mell” we obtain

2 Dosticn] | [ 1Py

jed 5

Hu C q¥ [P G("m—H

[l <

< (2m+2)1CE™ g,

where | = min{]j,—k,|: well”} = n—m — o as n - oo, hence 4, — 0.

Now we may complete the proof of Theorem 3. The inverse of G
equals A}l = C,oD;". Indeed, GPoC,0D;' = D,oD;* = E Tnxdy The
family {(D,)™*} is (according to (64)-(66) and Theorem 2) d.e. and of
m-shape of the second kind, i.e. of a.n.c. Thus {0, 0D;} == {41} is d.e.
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11. The dual bases. Liet N, denote the J,-system of B-splines of
order m corresponding to the partition 8 = {s;: 42} restricted to <s, s,).
The J,-system N, where. N,(i)= Nyie S(8), ted, = Jy, is called
a dual basis to N, whenever

(70) Nt o) = [ NoaNay = 8y for i jed,.
{8ps5p
Tf G denotes the Gram matrix of N, then
(71) Ny = D AigNyy  foriedy,

jel
where A = {4,;:
(71) that
(72) A,

)

(4, §) e, X Iy} is the inverse of G. It follows from

= (N,N;) for i,jed,.

According to (24) both 4 and G are positive definite, for any ne#
and any S.

For further considerations we recall the notation introduced in the
preceding sections. The integers u and » for each n are defined by the
equality 2¢+» =n, p>0, 1<r<2*; Nil=N{ denotes the splme
partition of unity which is a basis in S = ym(s}fl for ne #, 1 = 0,
where the partitions S are defined in (10) and (47 )~(B1).

Tt is obvious that NZL = N{|; , where I, = (siih, sb,> and N = (N[
ieZ} is the Z-system of B-splmes corresponding to 8. GY is the Gram
matrix of NM.AD = (GH)~! is the Gram matrix of NL”, for me ',
1=0,...,5, where N”] is the dual basis to N

Lma 19. The magimal eigenvalues of the (p.d.) mdtmlces Al and
G are uniformly bounded in n for 1 =1,2,3, 4.

Indeed, applying properties (P.1)-(P.4)
inequality (23) we may estimate

jedg<max{ [ (X NP jed )

Spspd

.of the B-splines and

Ane(G) < max{ 36
iedy,

(==}
<max| [ NP jez} < max(sf—ol} ) <2
—00

for each ne A, 1 =1,..., 5. Similarly,

Ay ( A[l] <2]A[l] <0y 1+QA

e, — 04
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for me A, 1 =1,2,3,4, where U, and ¢, 0 < g, < 1, are the constants
from the inequalities (cf. Theorem 3)

AW | < Cud for 4, jedy,me 1 =1,2,3, 4.
12. Estimates for the elements of A, The aim of this section is to

prove

TEEOREM 4. The family of matrices {AF: ne A7} is d.e.

Notice that SF = 817 and that 8 = 8% whenever n = 2+,
i.e. v = 2* Thus according to Lemma 6 and Theorem 3 it suffices to
congider the matrices with n > 2 for which

(13) o<y <2t

nolds. Till the end of this section we shall say “for each n” instead of
«for each n for which (73) holds”. The subsets Ji = {—m, ..., 2v—m—1},

={2v—m, ..., 20}, Jy = {2v41,...,n} form an. m-parition of J,
of the first kind for each n. According to (73) none of the subsets is empty.
Notice that SE = 81 and that si = sl s, for each ie %. Further
Iy =dJ2 U JE and J,_g, = {I—21: el UJE

For each n let us define the J,-system of functions M, = {M,;: ieJ,}

as follows:

Nﬁil.i(t) for  te(0, 20D,
(14)  Myalh) = { ST, N8, 0, (=) for  te(2, 27D,
’ 7‘st

’

for ie JE U JE and
Z W, NEL(t)  for 1e{0, 29,
Mn;i(t) = M

1[1-—21' 1,——21/(

(74")
§—92v)  for te(2v, 271,

for 4eJ°. Bach system M, has the property

(75) (M NUL) = 8y, for dedy, hedy U T
Tor the proof of (75) notice that according to Lemma 1 we have
6 v C L e kU,
wil o = ‘ 0o for keJs,
and
(76") ey B ‘O for kedy,
mklanath = ym o or,  for kedh U,

where 7,,(t) = t—2» for te(2v, %) and o denotes the superposition
of functions.
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Let for fe #8 and ge ¥, f4+ g denote the direct sum of f and g, i.e.
) f(&)  for {0, 2v)
(77) (f+9)) = ’

g(t—2v) . forite(2v, 24y,
Now, (76) and the linear independence of B-gplines give
Lzvma 20. The function 4 g, where

} = Z a’iNE,!i g = 2 bﬁNJﬁZv;i—ﬂw

w3 1e70078

and

is & spline function with knots at 0 = sf1 << ... < s = 2% if and only
if a; =b; for ieJ2.

The coefficients W, ; in (74), ieJ,, j eJ5,, may be chosen in such a way
that M,;e %), Indeed, applying (71) and the notation (77) we may
rewrite (74') and (74"} in the form

D ARNEL 3 MW, AN,

keJ®ogb keJVugC jerb

for teJ2UJE,

(8) My, = * ATl el 14 Al ;
D YW ARND D AYNH,,  for ied;
TeeJ¢o g jegb ke P JC
where A = APl J*=J5 for a=a,b,0, and AW = AW, iy the

(J5 U IS X (JE U JE)-matrix with
(79) Zg?)}c = gz['ﬂZv; Wk T -AE:H—EH; =20, k—2

According to Lemma 20 we have

for each (i, k).

(80') AR = YW A for ied® U I, e
Jegb
and
(80" Al = D WAPL for ied®, ke,
jegb
Let us introduce for each n the maitrix W, with
0 for ied,, jed2 U JS,

Wisss = . .
Wi,]' for ¢ EJm J EJm

the numbers W,; being the solution of (80). In this notation (80)

: may be
rewritten as follows

(817) Agav](a,b; b = IVn(a,b; n)© Uy,
(81”) Agﬂz»(c; b) I'Vn(c; p) © U1[L3]’

where Ul = Al o and UP = AR}, 4. Aceording to (20) and Lemma

19 there exists 0 < oo such that for each 7

(82) P< (U <2 (UM <O for 1 =3, 4.
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Therefore the assumptions of Theorem 2, condition (i), are satisfied,
and hence the inverses VI = (UM~ form a d.e. family of matrices,
I =3,4. According to Lemma 11 the family of matrices W,, where
(ef. (81)) "Vn(a,b; b) = A‘Ei}u,b;b) OV,[f], Wn(c;b) = AE]—'.'v(c; b)OVg], “’n(;a,c) = 0(;a,c)7
is d.e and of a.n.r. For the unique spline functions M, ; given by (78) we
have

(83) Mys = D) By,
Mﬂ

where for each n for which (73) holds

Bn(a,b; ab) = Ag](a,b; ab)s
(84) Bn(a,b;c) = Wn(a,b;b) OAElzv(b;c)7
. Bn(c;a) = IVn(c;n) 0A£ﬂb;a)7
Bn(c; be) = Ag‘:l—zv(c; b,e) "
Applying Lemmas 11 and 7 to (84) we infer that the family {B,}
is d.e. Substituting (83) into (75) we get that the J, XJ,-matrix F, with
Fn;i,j = (Mn;ii N'E;]j)
has the properties: F, =B,oGE, F,,. 00 = Bagaeg and Fug,,
= O; 00, 16 each F, is of m-shape of the first kind. Obviously {F,}
is d.e. Further, DetF, = DetF,,,, where according to (76) and (78)
(the subindices %, n—2v, 2y are dropped)
Foyy= [ M 0N
0,20+l
D oAflep+ Y Nwaflel,, .,
keJTo gl kb0 1eg
= 0,;+Wi; = (B + Wapn)is)
According to (81') we have W, = 4L, ;0 V1 and hence
—Fn(b;b) = (IJ%]'I'UE])OVE]'
According to (21) and (82) we have
DetF, = DetF,,,, = Det (U1 + ULl)- DetV]!
S (@R O 3

13O

for 4, jed,

It

for i,jed%.

¢

Thus the assmmptions of Theorem 2, condition (iii), are satisfied for
the matrices F,, and therefore the inverses P, = (F,)~" form a d.e. family.
Further, according to Lemma 13 each P, is of m-shape of the first kind,
thus the matrix P, 0B, is (i) inverse to G¥1 and (ii) {P,oB,} = {45} is d.e.

Thus the proof of Theorem 4 is complete.


GUEST


icm°

314 J. Domsta

13. Proof of Theorem 1. Formulae (10) and (51) which define
S and S respectively allow us to state that (using the detailed
notation)

GMIE! — orHIGIMIIL oy g > 2

and therefore

AN — grti Bl for 5> 2.

Now, 2* < n < 2*™ for n > 2, hence

| AT | =AM | < 20 A

N 5 2.7 1,7

for ¢, jedy, ne N .

According to Theorem 4, for each m, m > 0, there exist constants
C,, and g, 0 < g, <1 such that

AT | < 0, gl for 4, 5ed™, ne .

Thus Theorem 1 is proved.

The author would like to express his gratitude to Professor Zbigniew
Ciesielski for a suggestion of the problem and his help in the preparation
of this work.
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Applications des ultraproduits i I’étude des espaces
et des algébres de Banach

par

D. DACUNHA-CASTELLE et J. L. KRIVINE (Paris)

Sommaire. Un certain nombre de notions précisant les rapports entre les pro-
Dblémes de caractérisation des classes d’espaces de Banach, et les problémes de la
théorie de la dimension linéaire. Nous posons le probléme de caractérisation: une
classe ¢ d’espaces de Banach est-elle caractérisée par un ensemble de conditions du

type .
n
Vo, Va,... Vm,,((uglaz;mimi:l’m’meﬁ’)

ou F est un fermé (cdne) de (Rlﬁ.) et (a) des matrices réelles données?

La notion d’ultraproduit donne un critére d'étude de telles caractérisations
3 titre d’exemple nous donnons la caractérisation des espaces isomorphes & des sous-LP.
La méthode permet de bien situer le probléme de la dimension linéaire en fonetion
des propriétés des sous-espaces de dimension finie. Nous I'appliquons & certains espaces
a'Orlicz et aux sous algdbres de Banach des algébres IP.

Dans cet article, nous donnons des applications de la notion d’ultra-
produit dans les espaces de Bamach. Les classes d’espaces” de Banach
stables par ultraproduit, isomorphismes (ou isométries) et sous-espaces
se caractérisent par des conditions d’un type simple portant sur la norme.
Nous étendons par exemple & une classe # d’espaces d’Orlicz la propriété:
8i B est un espace de Banach, pour qu'il soit isomorphe (avec des bornes
données)-» un espace O de la classe %, il faub et il suffit que tout sous-
espace de dimension finie de B ait cette méme propriété. Ce type de con-
ditions, a été trouvé sous des formes particulirement simples par Grot-
hendieck pour les espaces isomorphes & des espaces de Hilbert [1] et dans
[2] et [3] pour les espaces isométriques 3 des sous-espaces d’espaces IL7.

Le probléme est évidemment; lié au probléme de la dimension linéaire.

Le plan est le suivant: .

§ 1. Notion d'ultraproduit dans les espaces de Banach.

§ 2. Compléments sur les Banach réticulés.

§ 3. Rappels et compléments sur les espaces d’Orxlicz.

§ 4. Ultraproduits d’Orlicz.

§5. Probléme de plongements et de finitude.
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