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STUDIA MATHEMATICA T. XLI. (1972)

On Lipschitz mappings between Fréchet spaces

by
P. MANKIEWICZ (Warszawa)

Abstract. The connection between Lipschitz topoldgieal structure and linear
topological structure is investigated. It is proved that if a Banach space X is Lipschitz
embeddable in a reflexive Banach space ¥, then X is isomorphic to % subspace of ¥.
Some similar results for Fréchet spades are obtained. Only the real case is considered.

L. Introduction. Let X, ¥ be locally convex topological vector
spaces. A mapping F from a subset 4 of X into ¥ is said to satisfy the
first order Lipschitz condition iff for every continuous psendonorm P(-)
on Y there exists a continuous pseudonorm Q(-) on X and a positive
constant K, such that for every pair Ly, Byed

P(F (@) — F(2,)) < EQ (0, —y).

In the following we shall often use “F is a Lipsehitz mapping?” instead
of “F satisfies the first order Lipschitz condition”.

In the present note we intend, roughly speaking, to study the question
of the connection between Lipschitz topological structure and linear
topological structure of metrizable locally convex spaces over the
field of reals. Therefore our main interest will be concentrated on
invertible Lipschitz mappings whose inverses satisfy the first order
Lipschitz condition.

In Section 2 we prove first the extension of a theorem of Gelfand [8]
about the existence of the derivative of a Lipschitz mapping from the
real line into a reflexive Banach space. The result is that in many situations
the Lipschitz mapping from the Hilbert cube ¢ into a Banach spacé X
possesses the derivative in the direction a<C for almost all points in C.
For example this is the case if X is a reflexive Banach space. The rest
of this section is devoted to a study of the analogous property for arbi-
trary Lipschitz mappings from one metrizable locally convex complete
topological vector space into another.

In Section 3 we study Lipschitz embeddings of a separable metrizable
locally convex vector space into complete metrizable locally convex
vector space. It is a well-known fact that the existence of an isomorphic.
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embedding of a Banach space X into a reflexive Banach space i.mplies
that X is also reflexive. Similarly if a Fréchet space may be linearly
embedded in a Montel-Fréchet space (Schwartz—Fréchet space, nuclear
Fréchet space), then it is a Montel (resp. Schwartg, nuclear) space. We
shall prove, that under certain additional assumptions, the above state-
ments remain true provided that there exists a Lipschitz embedding.
In fact we shall prove that in those cases the existence of a Lipschitz
embedding implies the existence of a linear embedding.

™ In Section 4 we study Lipschitz homeomorphisms between Fréchet
spaces to conclude that if X is Lipschitz homeomorphic with a Montel-
Fréchet space Y, then X is isomorphic to Y. Since every Schwartz—Fréchet
space and every nuclear Fréchet space is a Montel-Fréchet space we infer
that in such spaces the linear topological structure is uniquely induced
by the Lipschitz topological structure.

In the last section we are interested in uniformly confinuous homeo-
morphismg between Fréchet spaces and we state that if a Fréchet space
X is uniformly homeomorphic with a Montel space, then X is Lipschitz
sembeddable in it. Combining this result with the statement obtained in
Section 3 we conclude that if a Fréchet space X is uniformly homeomorphic
with a Montel (Schwartz, nuclear) space, then X is a Montel (Schwartz,
nuclear) space too.

The method used in this note is very similar to the method wused
by Enflo in [6] in order to prove that every Banach space uniformly
homeomorphic with a Hilbert space is isomorphic to a Hilbert
space.

2. The derivative of Lipschitz mappings. Let # be a Lipschitz mapping
from a sobset B of locally convex space X into another locally convex
space Y, and let ae X, x<B be such that =+ iaeB for sufficiently small /‘.t,
AeR (R denotes the field of real numbers). We say that there exists a deri-
vative of F at the point 2 and in the direction o iff

m -—-—-F (m+/1a)_~—_11(_wl =1

A=>0 A .
(in the topology of ¥). In this case we write F (%) = . The classical
theorem of Rademacher states that if B is a cube in a finite dimensional
Banach space, then for every Lipschitz mapping I from B into another
-finite dimensional Banach space and every direction a¢X the derivative
F,, () exists for almost all z in B. In the following we ghall need an extension
of this theorem (Theorem 1).

Let ¢ be a Hilbert cube, ¢ = []I;, where I; = [ —27% 27°] with
=1
standard = metric go(+,+) defined for py,p,eC, P = (Pu1; Doy )y
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P2 = (Pr,2y Psay -..) bY the formula

00

0¢(P1, P3) = Z [P~ Dial -

i=1
Therefore we can consider ¢ as a subset of l,. Let us define the product
—_ o0
measuwre # = X g; on C, where for every ie¥, y; is a normalized Lebesgue
i=1

measure on I.. From the definition of u; we have #(I;) =1 for ieXN,
50 u(C) = 1. It is easy to see that z is a Radon measure on (. Let u be
the completion of u.

TusorEM 1. Let X be a reflexive Banach space, T a Lipschitz mapping
Srom G into X, and let a = (ay, ay, ..., axy 0, 0,...)eC. Then the derivative
F,(p) of F in the direction a exists for p-almost all p in C.

The proof of this theorem is based on the following two lemmas.

Levma 1. Let f be a real valued function on G satisfying the first order
Lipschitz condition. Then for p-almost all p in C the derivative f,(p) exists.

Proof of Lemma 1. We put '

autp) = sup | LEEZAIE) y 2,

g (p) = it (JEHIDZI® A,

w

for neN. The functions {g,(p)}.y and {0 (D) }nex aTe semicontinuous and
therefore measurable. Since

| Flp 2 Ja) — E
IR < wait 41,0 & 3

it follows that these functions are finite for every nelN. Observe that

for peC the sequence {7, (p)}luy ({92 (PV}ney) 18 decreasing (increasing).
Let §(p) = lm 7,(p) and ¢ (p) = lim g, (p) and put

4 ={peC: §(p) =g (p)}.

Obviously 4 is measurable because the functions d(p) and ¢ (p) are
measurable. On the other hand, it is easy to see that ped if and only if
the derivative f,(p) exists.

Now we consider € as the Cartesian product of a k-dimensional cube

k ]
Cr = []1; and a Hilbert cube ;= | [ I,. In this interpretation the measure

=1 = ikl
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(o]
1 becomes the product of measures L = X u; and ,uk )ISLI u;- In addi-

tion we have that u, is absolutely contlnuous with respeet to the k-di-
mensional Lebesgue measure. Therefore we can consider f as a function
on the product O,c><0k putting p = (p,,p,) where p,eC; and p,be(‘,h
Since according to the assumption o = (a,b 0), where a,eC; and 0

=(0,0,...)e0;, we infer that the derivative f,(p) exists if and only if the
function f,,k(p,c) f(pk,pk) possesses a derivative in the direction a; at
the point py. It is easy to see that for every fixed p,c the function f],,
defined above is a real valued function satisfying the first order Llpbchltz
-condition. According to the Rademacher theorem we have that for every
fixed p;

ﬁk(—Apk) = /—"k ({plc ECIc: (.plm plc) E-A}) =
TFinally, applying the Fubini theorem we obtain
[ra@an = [( [ 1, @) = [ 100, =1
5} G O k Gk

which means that the derivative f,(p) exists for u-almost all peC and
therefore the lemma is proved.

TLuvMA 2. Let Y be a separable Banach space under the norm P().
Then there exists an equivalent norm ||-|| on ¥ such that the sequence {¥,}uey
c Y tends to yoe Y if and only if y, — Y, in the weak topology and |y,
= Iyl -

Proof of Lemma 2. Such a norm exists in C([0,1]) (it follows
immediately from Kadec’s renorming theorem [107). Since every separable
Banach space is isomorphic to a subspace of C([0, 1]) we infer that such
a norm exists in ¥ which concludes the proof of the lemma.

Proof of Theorem 1. Let ¥ = spanF'(C). Obviously ¥ is a sepa-
rable reflexive space. Let ||-|| be a norm on ¥ satisfying the conditions
of Lemma 2. :

Y* is separable. Let {z,},v be a dense sequence in the unit sphere
of Y*. For every neXN, z,(F (p)) is a real valued function satistying the first
order Lipschitz condition. Put

M = {pe0: (2,0 F),(p) exists for every neN}.
It follows from Lemma 1 that u(M) = 1. Since

HF@Ha)-«F(p)H

7 <sz'|a¢|

g=1
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and the ball {zeX: [z}l < K} is weakly compact we have that for pe M
there. exists a weak derivative F(p). Indeed, let pe M; then for neN
there exists

F(p+ ia)

lime, ( 7

-0

~20)),

Hence it is enough to observe that since {z,},.y is a fundamental subset
of ¥*, {7 (F(p+2a)—F(p))} is a weak Cauchy sequence (1 - 0).

Take an & > 0. The Lusin theorem implies that there exists a compact
subset M, = M such that for every medN, (2,0 F),(p) restricted to M, is
continuous and u(M,)> u(M)—e =1 —e. Since for pe M,

IF5 ) = sup{i(z,0 P, ()]

and for every n e the function (2,0 F),(p) is continuous in M, it follows
that ||F;(p)|| restricted to M, is measurable. Putting ¢, = 1/n we obtain

that | (p)]] restricted to M, w(M)

= U My, is measurable and 1>
n=1

= p(My,) > 1—=1/n for neN. Therefore the measurability of 1 (o)l

is established.

Now we shall prove that the set A of peC such that F,(p) exists
is measurable. Obviously the existence of F,(p) implies the existence
of ¥ (p) and we have F,(p) = Fi(p). Take an & > 0. We can find a com-
pact subset M, ¢ M, such that |[F:(p)|| and (2,0 F),(p) restricted to M,
are continuous and u(M,) > u(M)—e = 1 —e. It follows from the prop-
erties of the norm ||-|| that F(p) restricted to B, is continuous.

Define for neN and pe M,

7 ra)—F
7.(p) = sup {J[__(p_if_})___i@

: neN}

—Fip)|l: A< %}

It is easy to see that for every neXN,g,(p) is a semicontinuous measurable
bounded function and that the sequence {g,(p)}..~ decreases for peM,.
Therefore hm gn(p) g(p) for every peM, and g¢g(p) is measurable.

It follows ﬁom the definition of g(p) that for pe M,, F,(p) exists if and

only if g(p) = 0. Hence the set 4 n M, is measurable for every &> 0,

and in an analogous way as before we can obtain that 4 is measuarable.
The rest of this proof is similar to the final part of the proof of

Lemma 1, so we omit it. The only difference is that instead of the Rade-

macher theorem we use the following extension of Gelfand’s theorem:

(G) For every Lipschitz mapping F of an n-dimensional cube C, in R
wnto o veflexive Banach space X and for every direction aeR™ the
derivavive F,(p) exists for almost all peQ,.
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In fact Gelfand has proved this theorem for # = 1. However, the
n-dimensional case is an easy consequence of this result and the methods
used above.

TaEOREM 2. Lét X be o Fréchet space and let X, be a veflexive Banach
space for every neN. Then for every countable set of directions 4 = {a,},
in X and for every sequence {F,},.n of Iﬂjpschitz mappings, F,: X - X, ,
the set D of weX such that the derivatives F,, o, (%) emist for m, b =1,2,...
28 dense in X.

Proof. It is sufficient to prove that the closure of D containg the
origin. The case when z,¢X iy an arbitrary point may easily be reduced
to the previous one by the substitution

F(z) = F,(a—m,).

Since for every mapping F the existence of I (x) is equivalent to
the existence of F'y,(z) for every A different from 0 it follows that without
loss of generality we can assume that the set 4 is bounded (otherwise
we multiply each element a; of 4 by a sufficiently small congtant). Let
B = {b;};y be a maximal linearly independent subset of A. The mapping
F: O - X, defined for p = (ay, as, ...)eC by the formula

o0
i=1

satisfies the first order Lipschitz condition because for every p, qeC,

P = (ay, agy ...), ¢ = (B1, Bs, -..) and every continuous pseudonorm @ (-)
.on X

- F(p)

= F((aly Usy ))

0 o

a;—B)bi) < 3 oy — B Q (b))

< sup{Q(by): e} Yla;—Bd = Keo(p, 9)-

Hence for every neN the mapping F, = F,oF, F,: ¢ — X, satisfies
the firgt order Lipschitz condition (the composition of two Lipschitz
mappings is a Lipschitz mapping too). It follows from the definition of B
that every element of 4 may be uniquely written in the form

v

O = ak,lbl + o, abet.. .+ alc,mkbmk .

D1v1dmg each @, by A =max{ja,/2%: i< m} we have that @
= 1t ap e F(0) for every keN. It is clear that p, = (A7 ag,, A7 dpay -

R myr 050, ...) belong to € and F(p;,) = @, for every keN. Applying
Theorem 1 to the Llpschﬂ;z mapping F, and the direction p,, we obtain

icm
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that the set M, ; of those peC such that the derivative I

g (D) €XI8t8
has full measure for n, & =1, 2, ... Hence the set

M= (\ M, ={pC: F,,,

(p) exists for n, keN}
k=1

has measure equal to 1. It is easy to verify that for every n, keN and
for every 3 in the radial interior of C the existence of the derivative F, o(P)

= (F,0F), (p) implies the existence of the derivative Ky, py,, (¥ (p))
=T, o (#(p)) . Since every open subset of € has positive measure we infer
that there exists a sequence {¢,}men; Gme M, ¢ —(0,0,...). It follows
from the continuity of F that F(g,,) — 0 and the derwaxtlves 7, a (F(g)
exist for every m,n, keN, so the closure of D contains the origin. This
concludes the proof of the theorem.

DerFINITION 1. A Fréchet space X is said to be a super reflemive
F'réchet space iff the topology on X can be defined by a system of pseudo-
norms {Q, }ey Such that for every m e N the completion jm of the quotient
space X, = X/Q,, is a reflexive Banach space.

The following theorem is a nearly immediate consequence of Defi-
nition 1 and Theorem 2.

THEOREM 3. Let X be a Fréchet space and let for every neN, X, be
a super reflexive Fréchet space. Then for every countable set of directions

= {3}y 0 X and for every sequence {F,},.x of Iﬂpschztz MAPPINGs,
F X - X, the set D of e X: such that the derivatives Fn,%(m) exist for
n,k=1,2,... is dense in X.

Proof. For every nelN, let {Q, .}mv be a sequence of pseudonorms
defining the topology on X, sueh that for every meN the completion
of X, n /Qn = 18 & reflexive Banach space. Consider a double sequence
{an},,,mw, ' = Lpm0 F, of mappings from X mto Xn my wWhere T, ..
denotes the canonical mapping from X, into Xn,m, n,m=1,2,...
It is clear that for every =, meN the mapping F,,, satisfies the first
order Lipschitz condition. Applying the above Theorem to the family
of mappings {F, n},mey and the set of directions 4 we obtain that the
set of we X such that the derivatives F,,,, , (v) exist for n,m, bk =1,2, ...
is dense in X. Obviously it is equal to D and this concludes the proof
of the theorem.

Theorem 3 implies the following corollary.

CorOLLARY 1. For every Lipschitz mapping F from a separable
Fréchet space X into a super reflexive Fréchet space the set of veX
such that the derivative F,(x) ewists for a demse subset of directions is
dense in X.
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3. Lipschitz embeddings into super reflexive Fréchet spaces.
DEFINITION 2. A mapping F from X into Y is said to be a Lipschite
" embedding of X into ¥ iff it is one-to-ome and both F and F~' satisty
the first order Lipschitz condition.

Let ¥ be a Lipschitz embedding of a Fréchet space X into a super
reflexive Fréchet space Y. Without loss of generality we may assume
that the topologies on X and Y are respectively given by increasing
sequences of pseudonorms {@, ). {Pnlney and that there exist sequences
of constants {K,}. and {M,},y such that for every neN and every
pair of points @, z,eX the following inequalities hold:

KnPn—H (F (ml) —F($2)),
MnQn. (ml -

(1) Qn(fﬁ*“’z) <
(2) Py (F(@2) — F(a)) <
and in addition the completion of ¥, = Y|P, for every positive integer
n is a reflexive Banach space. '

Let F be another Lipschitz embedding of X, = X into ¥. We say
that F satisfies the first order Lipschitz condition with the same set of

constants (or F is a Lipschitz embedding with the same set of constants)
ag F 1ff F satisfies the inequalities

'“F(mz))y
MnQ —5"2

) Q@
@9 Pn(F(wl) —F(a,) <

for @, #,eX,.

KnPn+1( ( 1)

Let F be a Lipschitz embedding of X into Y. We define for every
BoeX

Apy) = {aeX:

Suppose that A (z,) is dense in X. Let XU be the set of zeX of the
form o = x,+va, where veR, ae A (%,). Define the mapping F;O: Xo—>Y
by the formula

T (x,) exists}.

By (@y+va) = T (o) + 0, (w,).

It is clear that the mapping F;D is the Lipschitz embedding of X, into ¥
with the same set of constants as F. This lagt remark follows immediately
from the inequality

2@y (A0, 0 —

F(xg+ v, a,) —
A

Q1 (V101 —020,) = A0y @)

nj
< Kn——le.( F (wo’*‘mzafz))

Kn—— MnQn (”1 a,— "72“2)
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for v;, vy, AeR, |4] 5 0 and a,, ay<4 (2,), and from the identity
1"';0 (o +v104) "‘F::D (%o +1v58,) = 771F;1 (#0) — 772F;2 (20)
(F (wy+ia;)— F(mo)) “‘(F‘(mo + My a,) — F(-’”o))

= lim
10 2

- Tim F (2y+ Iv10,) — F (24 M0 a5)
-0 A

for vy, v,eR, a;, aye A (2,). )

Since 4 (#,) is dense in X, the set X, is dense in X and the mapping
F;O can be extended by continuity to the mapping ¥, defined on X.
Obviously F,, is the Lipschitz embedding of X into ¥ with the same seb
of constants as F.

‘We shall need the following result (Enflo [6]).

LevmmA 3. (On linearization of Lipschitz embeddings “step by step”).
Let F be a Lipschitz embedding of a locally convex space X imto a locally
convex space Y. If the following two statements hold,

(i) there exwists a linear subspace X, ¢ X with the property that for
every xe X the mapping F restricted to span {X,, «} is linear, and

(il) there exists woe X\X, such that A (x,) is a dense subset of directions,
then the above defined mapping F,, satisfies conditions

(i) #, 4s a Lipschitz embedding of X into Y with the same sef of
constants as F,

(iv) for every zeX,F,

(v) Py,
span{X,, ©,}.

Tmplication (i) = (iii) was proved, and the other properties of F
can be easily verified.

THEOREM 4. If a separable Fréchet space X is Lipschitz embeddable
in a super reflexive Fréchet space Y, then X is isomorphically embeddable
in Y with the same set of constanis.

Proof. Let F' be a Lipschitz embedding of X into ¥ and let {a,},.v
be a dense sequence in X. Let [n, m](k) = [n(k), m(k)] be one-to-one
funetion from the set N of positive integers onto N x N. By Corollary 1
there exists a point z,eX such that A4 (z,) is a dense set of directions.
‘Without loss of generality we can assume that z; = 0 and F(0) = 0.
It was shown that F, is the Lipschitz embedding of X into ¥ with the
same set of constants as F. It is easy to see that F, is a linear mapping
on each one-dimensional subspace of X, so it satisfies the assumption
of the previous lemma. We shall define by induction the sequence {F}ix
of Lipschitz embeddings. Suppose that we have defined the embeddings

restricted to span{X,, z,, 2} is linear, and

restricted to span{X,,w,} is equal to F resiricted io
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Fy, Fyy Fay ..., Fry. Lt gx be an arbitrary fixed metric on. X. It follows
trom Corollary 1 that there exists a point @, X such that :

1° the set A () of directions for which the derivatives of Fj,_, exist is
dense in X, :

1
2° 0x (ngzy s %) < W .

Define Fy = Fy_y4,- BY Lemma 3 we have that 7, is a Lipschitz
embedding of X into ¥ with the same set of constants as F'. In this way
we can assume that we have defined the whole sequence {Fyliy. Put

X, = span{z;: i< k-+1}.

It follows from the lemma on linearization of Lipschitz embeddings
that for every k,leN
3° T, is a Lipschitz embedding with the same set of constants as F.
49 T, restricted to X, is a linear mapping.
5° Fy(x) = Fy(w) for zeX;, N X;

Put for e X, = U Xy
k=1
Fo(2) = lim Iy, ().
F—co
According to 5° the limit on the right-hand side is unessential because fo;
zeX, we have Iy (z) = F,(2) for k> n. Tt is clear that the mapping B

from X, into ¥ is a Lipschitz embedding of X, into ¥ with the same set
of constants as F. Obviously ¥, is a linear mapping. Since according to 2°

—_— o—
{mk}lneN = {a%}'n,eN > X ’

the closure of X, contains {@,}.- Hence X, is a dense subspace of X.

Therefore there exists a unique extension F,, of F_, to the Lipschitz

embedding of X, = X into ¥ with the same set of constants as F. Since
P, is linear on X,,, we infer that F,, is linear on X. Hence I, is an iso-
morphic embedding of X into ¥ with the same set of constants as I
s0 the theorem is proved.

COROLLARY 2. If & separable Fréchet space X is Lipschite embeddable
in a super reflewive Fréchet space, then X is a super reflexive Fréchet space.

This corollary is an easy consequence of Theorem 4.

Since every Montel-Fréchet space is separable, we have the following

CororuaRY 3. (i) If a Fréchet space X is Lipschite embeddable in
a super reflexive Montel-Fréchet space, then X is a Montel space.

(ii) If a Fréchet space X is Lipschitz embeddable in a super reflewive
Schwartz—Fréchet space, then X is a Schwartz space.
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(i) If a Fréchet space X is Lipschitz embeddable in a nuclear space,
then X is a nuclear space.

(iii) follows from the fact that the topology on a nuclear space can

. be given by a system of prehilbertian pseudonorms (Pietsch [12]). Hence

every nuclear space is a separable super reflexive Fréchet space.

Similarly we have the following

THEOREM 5. If a Banach space X is Lipschitz embeddable in a reflexive
Banach space Y, then X is a reflexive Banach space.

Proof. It is an immediate consequence of Theorem 4 and the follow-
ing well-known fact: a Banach space X is reflexive if and only if every
separable closed subspace of X is reflexive.

Remark. Observe that since for 1 < p < o0, p # 2, L, is not iso-
morphic to any subspace of 7, it follows from Theorem 4 that L, is not
Lipschitz homeomorphic with 7, for 1 < p < oo, p = 2.

4. The Lipschitz homeomorphisms of super reflexive Montel-Fréchet
spaces. Let F be a Lipschitz homeomorphism(') between two Fréchet
spaces X, ¥. Suppose that one of them, say X, is a Montel space. The
definition of Lipschitz mappings implies that the image of a bounded
set is bounded. Hence Y is a Montel space. Assume that ¥ is a super
reflexive Fréchet space. Let 2o¢X be such that A (z,) is dense in X. Con-
sider Fy (for the definition of 4 (z,) and Fxo see above). Then we have
the following

LEMMA 4. Fmo is a Lipschitz homeomorphism between X and Y with
the same set of constanis as F.

Proof. Without loss of generality we can assmme that z, = 0 and
F(0) =0. Since X and Y are complete and F, is a Lipschitz embedding,
it is enough to show that Iy (A(O)) is a dense subset of Y. Assume the

contrary. Let y,¢F,(4(0)). Since F,(0) = 0 we infer that y, = 0. Hence
there exists neN and & > 0 such that P,_;(y,) > 0 and

(3) inf{P, (yo—Fo(m)): 2eA(0)} > e.
Let us define

(%) ' V= U {yeT: Palyyo—y) < e}

It is easy to see that V is radial. Moreover, V = V. Indeed, suppose that
YpeV,y, - 7. Hence there exists a bounded sequence {y,,},.x of scalars
such that

(5) Pn(:"myo - ym) < EVm-

() Which means that F is a Lipschitz embedding of X onto I.


GUEST


236 P. Mankiewicz

T {yutmey tends to zero, then we have P,(7) =0 and gjeV Ot.herwise
we can choose an increasing subsequence {my}i.y of positive integers
such that the sequence {y;;;}kEN is convergent to some y;*. Therefore

it follows from (5) that -
-Pn(yo—'yoilg) :iiln Pn(?/o_?’ﬁ,lc?/mk) <e.
~+00

This implies that P, (y,yo—7) < &y,. Hence FeV.
Put )
A7(0) = A(0)—{acd(0): @,.,(a) = 0}.

Sinee A4 (0) is dense in X and the set {weX: @, () = 0} -is nowhere
dense in X we infer that 4~ (0) is dense in X. Since F,(4 (0)} is radial we
obtain, using (1), (2) and (3), (4) that V n Fy(4d”(0))= @. Since V is
closed and

F(2a) :

Fy(a) = F,(0) = lim for aed” (0)

A0

we obtain that for every aed” (0)there exists 6(a) > 0 such that
V1P (Ja) ¢V for |A| < 8(a), 2 # 0. Hence F(ia)¢V and

(6) inf {—-——r——P”‘(W“‘;lF(M)—l: y * 0} > e

Observe that according to (2) we have for y # 0

0 <P, i(yye) < Jl[n——lQn—l(Fﬁl(Vyu)) .
Define x(y) = F~(yy,) for y 5 0. AIiplying (1), (2) and (6) we obtain
the following inequality for 0 = y,acd” (0) and |2 < d(a),
Qulo(y) —2a) _ Pylyyo—F(la))
-
Mo K1 Po(vyo)

Qn—l (9}' (7))
_ _Palpwo—Fa) e
J’InI(n~1Pn (f‘/o) b’l ]lntfn—an(yo)

M

On the other hand it is easy to verify that the set B

b= {an((;()y))” }y;éo

is bounded. Indeed, for every pseudonorm @,, on X we have

) ( z(y) )< KoMy 1 Prya (7Y0) — K M 1P (o)
" Qn—l (56 ('y)) B Pn—l(yyo) Pn»l (yo)
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for yeR, y # 0. Since X is a Montel space it follows that the set B is .

precompact. Leb {y,}r.xy be a sequence of scalars such that the sequence

tends to certain point 24X, and v, - 0. Observe that @,_,(x,) = 1.
Since 4~ (0) is dense in X we infer that there exists a4 (0) such that

—limo. [ E
> Qulzo—a) = ,}f_ﬁQ”(Qn_l(’w(n)) a)

_ g 2200 = Qs (o) o)
k00 L (w (Vk))

Since y,y, = F(zv(yk)) tends to the origin (as k¥ — o), we have tha
#(y;) > 0. Thus @, ,(#(y)) =0 (k — oo). Therefore there exists &, such
that for &> %y, @,_,{#(y)) < 8(a). From (8) we have that there exists
ki > k, such that

@n(# (1) = Quos [2(71)) a) e
Qﬂ,—l (x(yk)} MnKn—l-Pn(yO)

for k> ki, aed” (0) and also @, ,(x(y,)) < &(a), so we obtain the con-
tradiction with (7) which concludes the proof of the lemma.

THEOREM 6. Let a Fréchet space X be Lipschitz homeomorphic with
a super reflexive Montel—Fréchet space Y. Then X is isomorphic to ¥ (with
the same set of constants). » .

Proof. Observe that if X is Lipschitz homeomorphic with a Montel
space, then it is a Montel space. Hence by Corollary 3 we have that X
is a super reflexive Montel-Fréchet space.

The idea of this proof is similar te the idea of the proof of Theorem 4.
The only difference is that having Lemma 4 we can modify the proof
to derive the linear embedding ¥, of X into Y which is onto. Let F be
a Lipschitz homeomorphism of X onto ¥ such that F(0) = 0 and 4 (0)
is dense in X. Let {a,},.; be a countable subset dense in X and {b,},n
be a countable subset dense in ¥. Let Fy and [n, m] (k) be the same as
in the proof of Theorem 4 and o, be an arbitrary fixed metric on Y.
‘We shall define the sequence {F},, of Lipschitz homeomorphisms
between X and Y by induction. Suppose that we have defined the Lipschitz
homeomorphisms Fy, Py, F,, ..., F_; (with the same set of constants
as F). Consider [, m](k). If m(k) is even, then we define #, as in the
proof of Theorem 4, and by Lemma 4 we obtain that ¥, is a Lipschitz

£
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homeomorphism with the same set of constants as F. Otherwise using
Corollary 1 we can find @, such that

1° the set A(w,) of divections for which the derivatives of
F,_, exist is dense in X,

2° oy (bn(k)a Fk—-l(m]c)) < 1/m(k).

In this case we define Fy = Fy_,, . By Lemma 4, F) is a Lipschitz
homeomorphism with the same set of constants as F. In this way we can
assume that the whole sequence {F.}. of Lipschitz homeomorphisms
is defined. Putb

X, = span{z;: ¢ << k41}.

Tt follows from the Jemma on linearization of Lipschitz embeddings that
for every k, leN
3° F, is a Lipschitz homeomorphism with the same set of constants
ag F,
4° T, restricted to X, is linear,
5° P (x) = Fy(x) for veX; N X;.

Put for weX, = U X}

k=1

Fo(z) = lim Fy(x).
k00

By similar argument as in the proof of Theorem 4 we can obtain
that X, is dense in X and ¥, is a well defined Lipschitz embedding of
X, into Y with the same set of constants as F'. In addition since according
to 2° {bn}nsN = {F; (mk)}!‘csNﬂ it fO]lOWS that {F;(mk)}ke]g = {bn}nsN =Y.
This and 5° yields that F (X)) is dense in ¥. Since F,, is a Lipschitz
embedding of a dense subset of a complete space X onto a dense subset
of a complete space Y it follows that F. can be uniquely extended
to a Lipschitz homeomorphism F, of X onto ¥ with the same set of
constants as . Observe that F, is a linear mapping on X,. Hence F, i3
linear mapping and so the theorem is proved.

Since every nuclear Fréchet space is a super reflexive Montel-Fréchet
space we have the following

COROLLARY 4. If o Fréchet space X 4is Lipschitz homeomorphic with
a nuclear space, then X is isomorphic to this space.

Remark. The results of the Sections 2 and 3 remain true if we con-
sider the Lipschitz mappings defined on an arbitrary non-empty open
subset of X. For the results of the present section to remain true in this
case is sufficient to assume that there exists a Lipschitz embedding of
an open non-empty subset of X onto an open non-empty subset of Y.
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5. Uniformly continuous homeomorphisms between super reflexive
Montel-Fréchet spaces.

DEFINITION 3. An embedding F' of a Fréchet space X into a Fréchet
space Y is said to satisfy the first order ILipschitz condition on large
distance iff the topologies on X and Y can be respectively defined by two
increasing sequences of pseudonorms {Q,},-, and {P,},.y and there exist
sequences of constants {K,},.y and {M,},r such that for z,, z,¢X the
inequality Q (%, —x,;) > 1 implies that for every neN

(9) Q@ —) < K, P, (F(ml) "F("”?.))
and
(10) -Pn (F(wl) '“F(-’l"z)) < MnQn(wlqa’z)-

Thé following lemma states the well-known property of uniformly
continuous homeomorphisms between Fréchet spaces.

LeMyMA 5. Let F be an uniformly continuous homeomorphism of a Fréchet
space X onto a Fréchet space Y. Then F satisfies the first order Lipschitz
condition on large distance.

Proof. Let {U,},»e and {V, ), denote respectively bases of
symmetric convex neighbourhoods of the origin in X and Y. Let Q, be
the Minkowski functional of U,. Since F is a uniformly continuous homeo-
morphism, there exists a symmetric convex neighbourhood V; <« ¥
of the origin such that for every <X, 7YV, +F(»)) ¢ U,+». Without
loss of generality we can assume that V; <V,. Let P; be the Minkowski
functional of V; . It is easy to see that if @, (@, —®,) =1, then Py(¥ (x,) —
—F(z,)) > 1 and

Qolwy—xs) < 2P, (F(%)"F(v%))'

Using a similar argument we can find a symmetric convex neighbourhood
U; < U, such that for every zeX

; F(U; +2) = V; +F(2)
and if @Qy(x,—2,) > 1, then
Qo2 —m,) < 2P (F(ml) _F(mz)) L 22Q (w3, —,),

where @, is the Minkowski functional of U, . Continuing this process
we can define systems of pseudonorms {Q,},-, and {P,}..y such that
if Q¢(w;—2,) > 1, then inequalities (9) and (10) hold for » =1,2, ...
(with a certain set of constants). Hence the lemma is proved.

LevMA 6. A subset Z of a separable Fréchet space X is Lipschits. em-
beddable in a Montel-Fréchet space Y with the given set of constants if and
only if every finite subset of Z is Lipschitz embeddable in Y with this set of
constants.
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Proof. The necessity is trivial. Conversely suppose that every finite
subset of Z is Lipschitz embeddable in ¥ with the given set of constants.

Let {@,},-, be a sequence of points dense in Z and let F, be a Lipschitz

embedding of the set 4, = {z,, 4y, ..., 2,} into ¥ for » =1, 2, ... with
the given set of constants such that F,(x,) = 0 for n<l. Since for every
fixed noeN the set {Fy, (2, ) }msn, I5 bounded it follows that {F,, (ng)tmsn,
is precompact for n, =1, 2, ... Hence we can choose an inereasing subse-
quence {my i}z of positive integers such that the sequence {If’mm(ml)}kw
converges to some y;¢ Y. Further we can choose a subsequence {my,},.

of the sequence {m;, 1} such that the sequence {Iﬂmk,z(mz)},bw converges’

to some y,e¥. Continuing this proeess and then using “the diagonal
procedure” we can definé a sequence of embeddings {Fmy, Jues Such that
forn =0,1,2,... and f>=n :

ka k(wn) > Yns
* k00

where additionally we put y, = 0. It is easy to see that the mapping
T, defined by formula

F;(wn) = Yn

is a Lipschitz embedding of {z,},~, into ¥ with the same set of constants.
Since the sequence {#,},s, is dense in Z then by the same argument as
before we obtain that the extension ¥, of F is a Lipschitz embedding
of Z into ¥ with the given set of constants. This concludes the proof of
the lemma.

TEROREM 7. If o Fréchet space X is uniformly homeomorphic with
a super reflexive Montel-Fréchet space Y, then X is isomorphic to a subspace
of Y.

Proof. Let F be a uniform homeomorphism from X onto Y. It
follows from Lemma 5 that the topologies on X and Y can be given
respectively by sequences of pseudonorms {@,}.s, and {P,}ner sSuch that
F satisfies the first order Lipschitz condition with some set of constants
it @o(w,—m,) > 1. Obviously X is a separable space. Let {@,} ey DO 2 sE-
quence of points dense in X with the property that Qo(z;— ) > 0 for
1.7#],4,jeN. The existence of such a sequence follows from the fact
that the set {zeX: Qy(x) = 0} is nowhere dense in X. Put

Ay =i {Qg (2, —2): 1 < j < m}
for n =1, 2,.... Tt follows from the definition of the numbers A, that
QoA w— 2 m) > 1 for i <j<<n. Since P satisties the fitst order

Lipschitz condition on large distance, the embedding T, defined by the
formula ’

(@) = 4, F (A7 ;)
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for i< n of the set {zy, Zs,...,,} = X into ¥ satisfies the first order
Lipschitz condition with the given set of constants for meN. Observe
that for every positive integer n the embedding ¥, is Lipschitz with the
same set of conmstants. Hence by Lemma 6 there exists a Lipschitz
embedding F~ of {z,},.y into Y with the same set of counstants, and this
implies the existence of the Lipschitz embedding F' of X into Y. Applying
Theorem 4 to the Lipschitz embedding F we obtain that there exists
an isomorphic embedding of X into ¥ and so the theorem is proved.

As an easy comnsequence of this theorem we obtain

CoROLLARY 5. If a Fréchet space X is uniformly homeomorphic

(i) with a super reflexive Montel-Fréchet space, then X is a super

reflexive Montel-Fréchet space;

(ii) with a super reflexive Schwartz—Fréchet space, then X is a super
reflexive Schwarte—Fréchet space, ‘

(ili) with a nuclear space, then X is a nuclear space.

Remark. In [2] it is proved that every infinite dimensional subspace
of the space of all sequences s is isomorphie to s. This result and Theorem 7
imply that every Fréchet space uniformly homeomorphic to s is isomorphic
to s.
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