STUDIA MATHEMATICA T. XLI. (1972)

is a real number A such that $\sigma(J^{i\gamma})$ lies in the annulus $A\leqslant |\lambda|\leqslant \exp{(\pi|\gamma|/2)}.$ Since $\sum\limits_{n=0}^{\infty}\lambda^{-n-1}J^{in\gamma}$ converges to $(\lambda-J^{i\gamma})^{-1}$ on $|\lambda|>\exp{(\pi|\gamma|/2)}$ and since $-\sum\limits_{n=0}^{\infty}\lambda^nJ^{-i(n+1)\gamma}$ converges to $(\lambda-J^{i\gamma})^{-1}$ in $|\lambda|<\exp{(-\pi|\gamma|/2)},$ we have the desired results.

References

- [1] V. Balakrishnan Fractional powers of closed operators and the semi-groups generated by them. Pacific J. Math. 10 (1960), pp. 419-437.
- [2] M. J. Fisher, Harmonic functions and their conjugates on Hilbert space, Trans. Amer. Math. Soc. 137 (1969), pp. 387-405.
- [3] Singular integrals and fractional powers of operators, ibidem (November, 1971).
- [4] H. Komatsu, Fractional powers of operators I, Pacific J. Math. 19 (1966),
 pp. 285-346; II. Pacific J. Math. 21 (1967), pp. 89-111; III. J. Math. Soc. Japan
 21 (1969), pp. 205-220; IV. J. Math. Soc. Japan 21 (1969), 221-228.
- [5] B. Muckenhoupt, On certain singular integrals, Pacific J. Math. 10 (1960), pp. 239-261.
- [6] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961).
- [7] K. Yosida, Functional Analysis, Berlin 1965, pp. 259-268.

THE UNIVERSITY OF MONTANA MISSOULA, MONTANA 59801

Received December 27, 1970 (283)

Some remarks on the Gurarij space

b

P. WOJTASZCZYK (Warszawa)

Abstract. Complementably universal properties of the Gurarij space of universal disposition are proved. Some linearly isomorphic equivalences between Banach spaces whose duals are L_1 spaces are stated.

A predual of L_1 is a Banach space X such that X^* is linearly isometric to $L_1(\mu)$ for some measure μ .

DEFINITION. A separable space X is a space of universal disposition iff for every finite dimensional Banach spaces $F\supset E$ and every isomorphism $T\colon E\to X$ and every $\varepsilon>0$ there is an isomorphism $\tilde T\colon F\to X$ such that $\tilde T\mid E=T$ and $\|\tilde T\|\cdot \|\tilde T^{-1}\|\leqslant (1+\varepsilon)\|T\|\|T^{-1}\|$.

Such a space was first constructed by Gurarij [1] and next by Lazar and Lindenstrauss [3].

In this note we prove the following

THEOREM. Let X be a separable predual of L_1 . Then there exists a Banach space of universal disposition Γ_X , $\Gamma_X \supset X$ and there is a projection of norm one from Γ_X onto X.

The proof of this Theorem is a slight modification of Gurarij's proof [1]. By [5], Theorem 4.2 there exists a Banach space Y such that:

(*) Y is a separable predual of L_1 and for any separable predual of L_1 , say X, and any $\varepsilon > 0$ there exist an embedding $T \colon X \to Y$, $\|T\| \|T^{-1}\| \le 1 + \varepsilon$ and a projection of norm one from Y onto T(X).

By [4] Remark c after Theorem 4 there exists a separable predual of L_1 , say W, such that any separable predual of L_1 is a quotient space of W.

If we apply the above Theorem for X = Y or X = W we obtain Corollary 1. The spaces Y and W can be choosen to be of universal disposition.

COROLLARY 2. Every space which satisfies (*) is isomorphic to every space of universal disposition.

The result follows from the isomorphic uniqueness of spaces satisfying (*) (cf. [5]) and the following fact due to Gurarij [1].

For any two spaces of universal disposition Γ_1 , Γ_2 and any $\varepsilon > 0$ there exists an isomorphism $U(\varepsilon)$: $\Gamma_1 \xrightarrow[\text{onto}]{} \Gamma_2$ such that $||U(\varepsilon)|| ||U(\varepsilon)^{-1}|| \le 1 + \varepsilon$.

In connection with this we have

COROLLARY 3. The following alternative holds:

- 1) either there are two non-isometric spaces of universal disposition;
- 2) or there exists a space Y_0 which satisfies (*) for $\varepsilon = 0$.

Proof. Suppose that 2) does not hold. Take Y satisfying (*) and consider Γ_Y . Then there exists a separable predual of L_1 , X, such that X is not isometric to any subspace X_0 of Γ_Y so that there is a projection of norm one from Γ_Y onto X_0 . Then the spaces Γ_Y and Γ_X are two non-isometric spaces of universal disposition.

Now we pass to the proof of the Theorem. The following lemmas are well-known.

LEMMA 1 [1]. The following metric spaces are compact:

a) $\mathcal{G}(B)$ the set of all subspaces of a finite dimensional Banach space B, equipped with the metric

$$\mathscr{L}(P_1, P_2) = \max(\sup\{\operatorname{dist}(x, S_{P_1}): x \in S_{P_2}\}, \sup\{\operatorname{dist}(x, S_{P_2}): x \in S_{P_1}\}),$$

where $S_X = \{x \in X : ||x|| = 1\}.$

b) $\mathcal{R}(k, n)$, n > k, the set of all pairs of Banach spaces (P, R), $P \subset R$, $\dim P = k$. $\dim R = n$, equipped with the metric

$$\mathscr{L}((P_1, R_1), (P_1, R_2)) = \ln \inf ||T|| \, ||T^{-1}||,$$

where the inf is taken over all isomorphisms $T: R_1 \rightarrow R_2$ such that $T(P_1) = P_2$.

c) $\mathscr{F}(B_1, B_2, c)$ the set of all isomorphisms from the finite dimensional Banach space B_1 onto the Banach space B_2 such that $||T||||T^{-1}|| \le c$ equipped with the metric

$$\mathcal{N}(T_1, T_2) = \max(||T_1 - T_2||, ||T_1^{-1} - T_2^{-1}||).$$

Lemma 2 [1]. Let (P,R), $(\tilde{P},\tilde{R}) \in \mathcal{R}(k,n)$ and let T be an isomorphism from R onto \tilde{R} such that $U=T|P:P \xrightarrow[]{} \tilde{P}$. Then for any $\tilde{U}:P \xrightarrow[]{} \tilde{P}$ there exists an isomorphism $\tilde{T}\colon R \xrightarrow[]{} \tilde{R}$ such that $\tilde{T}|P=\tilde{U}$ and $\mathcal{N}(T,\tilde{T}) \leqslant k\mathcal{N}(U,\tilde{U})$.

DEFINITION. A finite dimensional subspace E of a Banach space X is called a subspace of a-universal disposition iff for any pair of finite dimensional Banach spaces $P \subseteq R$ and isomorphism $T \colon P \xrightarrow{} E$ there exists an isomorphism $\tilde{T} \colon R \to X$ such that $\tilde{T} \mid P = T$ and $\mid \mid \tilde{T} \mid \mid \mid \mid \tilde{T}^{-1} \mid \mid \leqslant (1+a) \mid |T| \mid \mid |T^{-1}| \mid$.

Lemma 3 [1]. Let E be a subspace of a-universal disposition in X. Then for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon, \dim P) > 0$ such that any $\tilde{P} \subset X$, $\mathscr{L}(P, \tilde{P}) < \delta$ is a subspace of $(a + \varepsilon)$ -universal disposition.

LEMMA 4 [1]. Let Banach spaces $P \subset E$, $\tilde{P} \subset \tilde{E}$ and an isomorphism $T: P \to \tilde{P}$ be given. Then there exists a Banach space $B \supset \tilde{E}$, $\dim B < \dim \tilde{E} + \dim E/P$ and an isomorphic embedding $\tilde{T}: E \to B$ such that $\tilde{T}|P = T$. $||\tilde{T}|| = ||T||$ and $||\tilde{T}^{-1}|| = ||T^{-1}||$.

The following lemma is an improvement of Lemma 4. It is an obvious reformulation of Lemma 3.3 of [5].

Lemma 5. Let Banach spaces $P \subset E$, $\tilde{P} \subset \tilde{E}$, projections $Q \colon E \to P$, $\tilde{Q} \colon \tilde{E} \to \tilde{P}$ and an isomorphism $T \colon P \to \tilde{P}$ be given. Then there exists a Banach space B, $B \supset \tilde{E}$. dim $B < \dim \tilde{E} + \dim E/P$ an isomorphic embedding $U \colon E \to B$, $U \mid P = T$. ||U|| = ||T||. $||T^{-1}|| = ||U^{-1}||$ and projections $S \colon B \to T(E)$, $\tilde{S} \colon B \to \tilde{E}$, $\ker S = \ker \tilde{Q}$, $\ker \tilde{S} = U(\ker Q)$, ||S|| = ||Q||, $||\tilde{S}|| = ||\tilde{Q}||$.

Proof of the Theorem. By [2] we can choose a sequence of finite dimensional subspaces $X_1 \subset X_2 \subset X_3 \subset \ldots \subset X$ such that $\bigcup_n X_n = X$ and X_n is isometric to l_n^∞ . Let us choose two sequences of positive numbers $\varepsilon_n \to 0$ and $a_n \to \infty$. Consider sets $\mathscr{R}_i = \bigcup_{n=1}^{i+1} \bigcup_{k=1}^{n-1} \mathscr{R}(k,n)$. They are compact metric spaces.

We construct a sequence of finite dimensional spaces (B_n) , $n=1,2,\ldots$, satisfying the following conditions:

- (i) $B_n \subset B_{n+1}$ with $X_n \subset B_n$ for n = 1, 2, ...,
- (ii) there are projections of norm one π_n : $B_n \to X_n$, n = 1, 2, ...,
- (iii) $\pi_{n+1} | B_n = \pi_n \text{ for } n = 1, 2, ...,$
- (iv) for any $(P,R) \in \mathscr{R}_n$ and any isomorphic embedding $T \colon P \to B_n$ with $||T|| ||T^{-1}|| \leqslant a_n$ there exists $\tilde{T} \colon R \to B_{n+1}$, $||\tilde{T}|| ||\tilde{T}^{-1}|| \leqslant (1+\epsilon_n)||T|||T^{-1}||$ and $\tilde{T}|P = T$.

The space $B=\overline{\bigcup_n B_n}$ has the desired properties. Obviously there is a projection of norm one from B onto X. To check that B is of universal disposition consider a pair of finite dimensional spaces $E\subset F$ and any positive number ε , and an embedding $T\colon E\to B$. We can choose n in such the way that $a_n>\|T\|\|T^{-1}\|$, $\varepsilon_n<\varepsilon/2$ and there is a subspace $\tilde{B}\subset B_n$ such that $\mathscr{L}(\tilde{B},T(E))\leqslant \delta(\varepsilon/2,\dim E)$ (cf. Lemma 3). By Lemma 3 T(E) is a subspace of ε -universal disposition and our statement is proved.

Construction of spaces (B_n) .

We set B_1 equal to the one dimensional space. Suppose we have constructed B_1,\ldots,B_n . Consider an $\frac{1}{n}\,\varepsilon_n$ -net $(P_i,\,R_i)_{i=1}^{n_1}$ in \mathscr{R}_n such that $(P_{n_1},\,R_{n_1})=(X_n,\,X_{n+1})$. Let $(E_i)_{i=1}^{n_2}$ be an $\frac{1}{n}\,\varepsilon_2$ -net in $\mathscr{G}(B_n)$ and $E_{n_2}=X_n$. Let $(\varphi_k^{(i,j)})_{k=1}^{n_3(i,j)}$ be an $\frac{1}{n}\,\varepsilon_n$ -net in $\mathscr{F}(P_i,\,E_j,\,a_n)$ and let $\varphi_{n_3(n_1,n_2)}^{(n_1,n_2)}$ be the

identity map on X_n . We apply Lemma 4 for spaces P_i , E_j and isomorphisms $\varphi_k^{(i,j)}$ except for P_{n_1} , E_{n_2} and $\varphi_{n_3(n_1,n_2)}^{(n_1,n_2)}$. Thus we obtain the space $\tilde{B} \supset B_n$. Since $B_n \supset X_n$ and X_n is isometric to l_n^∞ the projection $\pi_n \colon B_n \to X_n$, $\|\pi_n\| = 1$ can be extended to a projection $\tilde{\pi} \colon \tilde{B} \to X_n$ of norm one. Thus we apply Lemma 5 to obtain the space B_{n+1} which contains X_{n+1} and there is a projection π_{n+1} of norm one from B_{n+1} onto X_{n+1} and $\pi_{n+1}|B_n = \pi_n$. The space B_{n+1} satisfies (iv) in view of Lemma 2. This completes the proof.

Remark. By the same method one may establish the following statement:

For any finite set of separable preduals of L_1, X_1, \ldots, X_k there exists a space of universal disposition Γ_{X_1,\ldots,X_k} such that $X_i \subset \Gamma_{X_1,\ldots,X_k}$, $i=1,2,\ldots,k$, and there are projections of norm one from Γ_{X_1,\ldots,X_k} onto X_i for $i=1,2,\ldots,k$.

References

- V. I. Gurarij, Space of universal disposition, isotopic spaces and the Mazur problem on rotations of Banach spaces, Sibirskij Mat. Zhurnal 7 (1966), pp. 1002-1013.
- [2] A. J. Lazar and J. Lindenstrauss, On Banach spaces whose duals are L₁ spaces, Israel J. Math. 4 (1966), pp. 205-207.
- [3] and Banach spaces whose duals are L₁ spaces and their representing matrices, Acta Math. 126: 3-4 (1971), pp. 165-195.
- [4] J. Lindenstrauss and D. E. Wulbert, On the classification of the Banach spaces whose duals are L. spaces. J. of Funct. Analysis 4 (1969), pp. 332-350.
- [5] A. Pełozyński and P. Wojtaszczyk, Finite dimensional expansions of identity and the complementable universal basis of finite dimensional subspaces, Studia Math. 40 (1971), pp. 91-108.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Received January 14, 1971 (285)

Construction of an orthonormal basis in $C^m(I^d)$ and $W_n^m(I^d)$

bу

Z. CIESIELSKI (Sopot) and J. DOMSTA (Sopot)

Abstract. The space $C^m(I^d)$ is equipped in the natural scalar product induced from $L_2(I^d)$. A special orthonormal set of functions in $C^m(I^d)$ is constructed. This set of functions turns out to be a basis for the Banach spaces $C^m(I^d)$ and $W_n^m(I^d)$.

1. Introduction. The sequence $(x_n, n = 1, 2, ...)$ of elements of a given Banach space X is called a *basis* whenever each $x \in X$ has unique expansion

$$x = \sum_{n=1}^{\infty} a_n x_n$$

convergent in the norm. It is known that the coefficients $a_n = a_n(x)$ are linear functionals over X.

In this paper we shall deal mainly with the following two real Banach spaces:

The space $C^m(I^d)$, $m \ge 0$, $d \ge 1$, of m times continuously differentiable functions on I^d , $I = \langle 0, 1 \rangle$, with the norm

$$||f||^{(m)} = \max_{|k| < m} \max_{t \in I} |D^k f(t)|,$$

where $k = (k_1, \ldots, k_d)$, k_f , and $1 \le f \le d$, being non-negative integers, $|k| = k_1 + \ldots + k_d$ and D^k is the differential operator corresponding to k, i.e.

$$D^{m{k}} = rac{\partial^{|m{k}|}}{\partial t_1^{k_1} \dots \partial t_n^{k_d}}.$$

The Sobolev space $W_p^n(I^d)$ with $m\geqslant 0$, $d\geqslant 1$ and $1\leqslant p<\infty$, which is the set of all $f\in L_p(I^d)$ such that the generalized derivatives D^kf are functions and belong to $L_p(I^d)$ for each $k, |k|\leqslant m$. The norm is defined as follows

$$||f||_p^{(m)} = \left(\sum_{|\mathbf{k}| \le m} ||D^{\mathbf{k}}f||_p\right)^{1/p},$$

where $\| \|_p$ is the usual L_p -norm over I^d .