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is a real number 4 such that o (J%) lies in the annulus 4 < |A] < exp (=|y|/2).

Since Z‘wﬂ*“‘lJi”” converges to (A—J%)™* on |A] > exp(x|y|/2) and
n=0
since — 3 AJ M+ converges to (A—J¥)7 in || <exp(—=|y|/2),
n=0

we have the desired results.
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Some remarks on the Gurarij space
by '
P. WOJTASZCZYK (Warszawa)

Abstract. Complementably universal properties of the Gurarij space of universal
disposition are proved. Some linearly isomorphic equivalences between Banach spaces
whose duals are L, spaces are stated.

A predual of I, is a Banach space X such that X* is linearly isometric
to L,(u) for some measure u.

DEFINITION. A separable space X is a space of universal disposition
itf for every finite dimensional Banach spaces F o F and every iso-
morphism 7: B — X and every s > 0 there is an isomorphism T:F—>X
such that T| E = T and [T |T-Y < (L&) THTY.

Such a space was first constructed by Gurarij [1] and next by Lazar
and Lindenstrauss [3].

In this note we prove the following

THEOREM. Let X be a separable predual of L, . Then there ewists o Banach
space of uwiversal disposition I's, I'y > X and there is a projection of
norm one from I'y onto X.

The proof of this Theorem is a slight modification of Gurarij’s proof [1].

By [5], Theorem 4.2 there exists a Banach space Y such that:

(*) Y is a separable predual of I, and for any separable predual of L,
say X, and any >0 there exist an embedding I: X — ¥,
IT) 1T~ < 1+4¢ and a projection of norm one from ¥ onto T'(X).

By [4] Remark ¢ after Theorem 4 there exists a separable predual
of I,, say W, such that any separable predual of I, is a quotient space
of W.

If we apply the above Theorem for X = ¥ or X = W we obtain

COROLLARY 1. The spaces Y and W can be choosen to be of universal
disposition.

COROLLARY 2. Every space which satisfies (%) is isomorphic to every
space of universal disposition.
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The result follows from the isomorphic uniqueness of spaces satisfying
(*) (cf. [5]) and the following fact due to Gurarij [1].

For any two spaces of universal disposition Iy, I, and any >0
there exists an isomorphism U(e): F‘ZETE T, such that [U(e)|IT ()"}
< 1l+4e.

In connection with this we have

COROLLARY 3. The following alternative holds:

1) either there are two non-isomeiric spaces of universal disposition;

2) or there exists a space Y, which satisfies () for e = 0.

Proof. Suppose that 2) does not hold. Take Y satisfying (*) and
consider I'y. Then there exists a separable predual of Iy, X, such that X
is not isometric to any subspace X, of I'y so that there is a projection
of norm one from I'y onto X,. Then the spaces I'y and I'y are two non-
isometric spaces of universal disposition.

Now we pass to the proof of the Theorem. The followmg lemmas
are well-known.

Lruma 1 [11. The following melric spaces are compact:

a) @ (B) the set of all subspaces of a finite dimensional Banach space B, equipped
with the melric

£ (P, Pp) = mas(sup{dist(z, Sp)): ze8p,}, sup {dist (z, Sp,): zeSp}),

where Sy = {zcX: |lzl| = 1}.
b) 2 (k, n}, n > k, the set of all pairs of Banach spaces (P, R), P < R, diimP = k.
dim R = n, equipped with the metric

Z((Py, By), (Py, By)) = lninf| T IT-1],
where the inf is laken over all dsomorphisms T: B —> B, such that T'(P)) = P,.
¢) F(B,, By, c) the set of all isomorphisms from the finile dimensional Banack
space B, onio the Banach space B, such that ||T|||T~)| < ¢ equipped with the metric

C A (Ty, Ty) = max (T, — Tyl 1T =771,
LEMMA 2 {11. Let (P, R), (P R)e.%(k n) and let T be an isomorphism from It
onto R such that U = T| P: P —-—> P. Then for any U: P —— P there emists an iso-
morphism T: R pia R such thal T\P =T and # (1,7 ) < IM/'(U, ).

DerFiNtTION. A finite dimensional subspace E of a Banach space X is called

a subspace of a-universal disposition iff for any pair of finite dimensional Banach

spaces P < K and isomorphism T: P oo E there exists an isomorphism 7:R—>X
onto

such.that 7| P = T and |FYIT-1 < (1 +a)|T[IT-Y)-
LeMna 3 [1]. Let E be a subspace of a-universal disposition in X. Then for any

&> 0 there exists § = d(g, dimP) > O such that any Pec X, (P, 1;) < & is a-subspace
of (a -+e)-universal disposition.

icm°®
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LemMA 4 [1]. Let Banach spaces P < E, PcE and an isomorphisin T: P— r
be given. Then there emists a Banach space B > E’, dimB < dim E + dim E/P and an
isomorphic embedding T: E— B such that T|P = T, |[T|| = (T and [T~ = |71

The following lemma is an improvement of Lemma 4. It is an obvious refor-
mulation of Lemma 3.3 of [5].

Lemma 5. Lel Banach spaces P < F, Pc i, projections Q: E— P, (Q: E->P
and an isomorphism T': P—>Pbe given. Then there exists a Banach space B, B > B.
dim B<dim B + dim E/P an isomorphic embedding U: E— B, U|P = T, ||I) = |IT|l.
7= = |T-Y and projections S: B->T(E), §: B—E, ker § = ker Q. ker §=
= U(ker @), IS1 = 101, 151 = @il

Proof of the Theorem. By [2] we can choose a sequence of finite
dimensional subspaces X, c X, X;c...c X such that JX,=X

n
and X, is isometric to I;). Let us choose two sequences of positive numbers
i+ln-1
» = 0 and a, - oco. Consider sets #Z; = | {J Z£(%, n). They are compact
n=1k=1
metric spaces.
‘We construet a sequence of finite dimensional spaces (B,,), n=1,2,...,
satisfying the following conditions:
(i) B,c B, with X, cB, forn=1,2,...,
| (i)
(i) ., B, ==, for n =1,2,.
) for any (P, R)eZ, and any 1somorphlc embedding 7': P - B,
ITINT-) <

there are projections of norm one =,: B,l -X,,n=1,2,...,

(iv
with [|T)|T"") < a, there exists T: R— B,y
< (1+en)||£’ﬂ1’“{] and T/ P =T.

The space B = | JB, has the desired properties. Obviously there is

a projection of norm one from B onto X. To check that B is of universal
disposition consider a pair of finite dimensional spaces E — F and any
positive number &, and an embedding 7': F ~ B. We can choose n in
such the way that a, > | T)||IT', €, < €/2 and there is a subspace Bc B,
such that .Q’(B,T(E)) < 6(¢/2, Aim E) (cf. Lemma 3). By Lemma 3 T(E)
is a subspace of s-universal disposition and our statement is proved.

Construction of spaces (B,). :

We set B, equal to the one dimensional space. Suppose we have

. 1 i
constructed B,, ..., B,. Consider an ;s,,—net (P;, R}, in £, such that

1
= (X Xpya).- Let (B)72, be an — et in 9(B,

(Pnys Br) ) and E, =X,.

. 1 .
Let (¢{*")2s%9) be an —&y-net in F(P;, By, a,) and let gin2, , be the
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identity map on X,,. We apply Lemma 4 for spaces P;, B;and isomorphisms
¢+ except for P, , By, and g:("l'"z) . Thus we obtain the spaee B> B,.
Sinee B, > X, and X,, is 1sometne to 12 the projection w,: B, - X,,
Il = 1 can be extended to a projection 7 B — X, of norm one. Thus
we apply Lemma 5 to obtain the space B, which containg X,., and
there is a projection =,,; of norm one from B,,, onto X,., and
Fns1lBn = m,. The space B, sabisfies (iv) in view of Lemma 2. This
completes the proof.

Remark. By the same method one may establish the following
statement:

For any finite set of separable preduals of Ly, Xy, ..., X, there exists
a space of unmiversal disposition Iy x, such that X,cIx 5,
i=1,2,...,k and there are projections of norm one from I'x  x onto X,
fori=1,2,...,k
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Construction of an orthonormal basis in ¢™(I% and W7 (I%)

by
Z. CIESIELSKI (Sopot) and J. DOMSTA (Sopot)

Abstract. The space 0™ (I%) is equipped in the natural scalar product induced
from I,(I%). A special orthonormal set of functions in O™ (I9) is constructed. This
set of functions turns out to be a basis for the Banach spaces C™(I%) and W (I5).

1. Intreduction. The sequence (,,7n =1,2,...) of elements of
a given Banach space X is called a basis Whenever each zeX has unique

expa.nsmn
o
€T = 2 a,, o,
n=1

convergent in the norm. It is known that the coefficients a, = a,(x)
are linear functionals over X.
In this paper we shall deal mainly with the following two real Banach
spaces:
The gpace O™ (I%), m > 0, d > 1, of m times continuously differentiable
functions on I¢, I = (0,1}, with the norm
IfIf™ = max max|D*f(2)],
Ikl<m tel
where k= (k;,..., k;), k;, and 1<f<d, being non-negative integers,
k| = k+ ... +7o,1 and D* is the differential operator corresponding
to E, ie.
'l
T od otk

The Sobolev space Wm(ld) with m >0, d>1 and 1 < p < oo, which
is the set of all feL,(I%) such that the gemeralized derivatives D*f are
functions and belong to L, (I%) for each E,|k|<<m. The norm is defined

as follows
171G = ( 3 10" fl) ™

{kj<m

where || ||, is the usual L,-norm over e
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