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Some remarks on a theorem of S. M. Lozinski
concerning linear process of approximation
of periodic functions

by
A. K. VARMA (Gainesville, Fla.)

Abstract. Let T'y (v, f) be the trigonometric polynominal of order < n such that
Tn(@s ) = fl@), 4 = 0,1, 2, ..., 2n. Here z;’s are defined by (1.1). Consider the linear
process of approximation starting out with interpolation as defined in (1.4). 8. M.
Lozinski [3] proved under certain conditions on A’s that Ly (f; ) converges uniformly
to f(x) on the real line provided f(z)eO,,. Here, starting with weaker assumptions
on A’s, we give the estimate of L, (f; )— f (@) in terms of modules of continuity of
f(@). Our theorem is similar to Korovkin’s theorem on linear process of approximation
starting with partial sum of fourier series of f(=). * : :

1. The simplest and at the same time most natural example of
a linear process of approximation of continuous periodic functions by
trigonometric sums is the approximation by the sequences of partial
sums of their Fourier series expansions or interpolation (trigonometric)
by Lagrange formula. However, they do not provide a tool that yields
uniform approximation for the whole class of continuous functions. In
this connection there arises the question of how it is possible, starting
with a Fourier series expansion or interpolation formula of Lagrange,
to achieve by means of some variation of the given process uni-
form convergence of the resulting polynomials for any continuous
funetion. . ’

Linear process of approximation starting out with interpolation was
developed by S. N. Bernstein and 8. M. Lozinski [3]. Let

2kw
(1.1) :ck:w,m=m, kE=0,1,...,2n,
and
. n ' .
(1.2) T () =A™+ Z’ (a cos mas -+ b sinm)

m=1
be a trigonometric polynomial which concides at the nodes (1.1).
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Tt is known that

2n
1 2 1
_A(”) = — f(wla)}
(2n+1) i~
2

2 n
d%") = —— f(ivk) COR My,
(1.3) (2n+1) ]g

an
2 .
B = E flog)sinmae; .
@2n+1) L

Consider .
m) 4@ 4 Y 1M (oM B in ma)
(1.4) L.(f, @) = AV A +m%1 A (™ cosma -+ b
with ,: )
1
(1.5) =1, = f pION 2 zg")eoskt’dt <K,
e —1 =1

then a theorem of S. M. Lozinski [3] states that if f(2)eC,, and .ﬂ(,ﬂ”) sajtlsf%
(1.5), then L,(f, %) converges uniformly t(? f(m) on. the rea} lmz. Blu (11
may be remarked that the degree of appl:oxm-mtlon prf)blem. is not so. vs 1
However, other linear process of a,ppromma},tlon starting with the partial
sum of Fourier series of f(z) much more is known. Let

8olfs @) = 3ay+ ) (aco8ka+ bysinka),

k=1
where ay, b;, are Fourier coefficient of f(w). Denote
n
ba(t) = 3+ MPeoskt, Ay =1

k=1
and define .
U, (f;®, 1) = %ao%")+2 2 (ay, 008 ko + by, 8in ko)
k=1 .
we state the following theorem
TaeorEM (Korovkin [2]). Let f(x)e0,, and %, (t) = 0; then

|Talfy 2, H—f(@)| < w(—;—) (z#% ;/’““14@)
and if m =Vn,1—i{ = 0(%), then

U, @, H—F() < w(%)

icm°
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The object of this paper is to obtain the estimate of Ly, (fy @, Ay —f ()
in terms of modulus of continuity of f(z). The result turns out to . be
similar to Korovkin’s theorem although we will not need the condition
k,(t) = 0. We will replace this econdition by other general condition (see
1.6 and 1.7). We. will give some examples of L,(f; ®) for various choice
of 2. Thus our operator need not be a positive one. Further main role
is played by Fejer Kernel, a result of O. Shisha and B, Mond [6], and
Lemma 2.1.

Let the triangular‘matrix A of positive bounded numbers satistying
the following conditions

. 1
(1.6) Z'gn) =1, )*]('n) =0, )=zn+1, A;n) = 0(;)7
1
(.7 1—2 = 0(7)’ Hh—22 i >0, j=1,2,..,n,
or
1 R
A - =02, =1,

TrmoreM 1. Let 2" satisfy conditions (1.6) and 1.7) or (1.6) and
(1.7a); then we have

(1.8) (3 @ ) ~f()] < ewf(%)
and
(1.9) a(f3 @, 1)~ f(@)] < cllognw(%),

where ¢ and ¢, is a positive constant independent of n and w, w(0) being
the modulus of continuity of f(x).

Remark. If (1.7) is satisfied, then it is clear from (2.9) that L, (f; x)
=0 1if f> 0 for [—=, =]. But this may not be true if (1.7a) is satisfied.
To this end we will give examples at the end of the paper. Further, if

o 1\, .
(1.7) is satisfied, then A(™ =0(—ﬂ—> is automatically satisfied. Since,

n
D) K —2a A =12 i > 0.
iZ1

Therefore
A <1-ap,

1
but 20 < AP =1 and 1—2 = 0(;) hence

prog o(i).
N
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2. First we will express L,(f; #, ) in a suitable form. Substituting
(1.8) into (1.4) and assuming A =1 we get

(2.1) L(f; 0, 4) = Ly(f50) = ) F (@) An (@~ ),
k=0
where
A 1 )
(22 An(t) Il [1—|—22/1 cosmt]

From (L.1), (2.1) and (2.2) it follows that

2n
(2.3) D Aplw—my) = 1.
. : k=0
Now we will prove the following lemma concerning A, (¢).
LEMMA 2. Let A satisfy conditions (1.6) and (1.7)or (1.6) and (1.7a).
Then there exists positive constants ¢, and ¢, such that -

2n

(24) ZIA 8 — )] < 01,

2n
C.
(2.5) > 5int§ (0 — 1) A (0 B)| < -
k=0

Proof. We set [9]

2n N
v .
(2.6) by (@) =142 E (1—— 2n+1)eosm
i=1

which is the Fejer kernel. It is well known that

' 1 sin (n+ )@ \?
(2'7), bt (@) = (2n+1) ( sinjw )
(2.8) Z by (0 —Tpy) = 204+ 1

From (2.6) it follows that
(J 1)t (0) — 24t () + (§ — 1)#;_, (@) = 2cosjw.
Using this formula we find that

1 > I (4 1)t (2)
-t N o (P L)ty (@)
2.9) A, (@) Bt D) ;} o™it (@) + Py ,
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where we have seb
o = A — 25"+ 4.

In case A{™ is a convex sequence of positive numbers i.e. (1.7) is satistied
then it follows from (2.9) that 4, (x) > 0. But then on using (2.3) we obtain

D Hy@—a) = Y 4, (0—a,,) =1
k=0 k=0

Again, from (2.9) we have

A n+1
A = (") gin? Jw g _
n(®@) (2n—|~l) 2 o Gy )@

Therefore on using (1.6) and (1.7) we obtain
P 1 1 -
2 <0|l— n)
e 1, @ <0 () + Ty %’a;

> 1
2 =1 < = o (1),
7=1

But

Replacing 2 by z—m,, we obtain
2n
oy B— Ty, 1
> st ——2 |4 (0 — 0, < O (Z)
k=0

This proves (2.5) on the assumption that (1.6) and (1.7) are satisfied.
Let (1.6) and (1.7a) be satisfied. On using, (2.9), (2.8) we obtain

2n

D) Ma@—au) < 3 6+ (n-+1)] 7]

k=0 F=1

. =0(%)§;j+(n+1)0(%) —oq).

Again, from (2.9) we obtain

.2 LN e A
i 51 4,00 < s _Z’ 11+ T

1
on using (1.7a) and A = O(;), replacing « by —u, and adding for
kE=0,1,...,2n we get

2n

e P 4 () < o(i).

n
k=0
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This proves the lemma completely.

3.
Proof of Theorem 1. In view of (2.1) and (2.3) we have L, (f; »)—

—f(z) = 2‘ [f(#en) —f(2)]14, (2, —2). But from a known result [5] that

for any 2r perlodlc continuous function f(z
w(6) we have

) having modulus of continuity
2 p—a
o) =00 < (14 G in 2o

for all ¢ and #. Replacing ¢ by , in this inequality we obtain on using
Lemma 2

wm

ILy(3 ) —f@l < w(8) Y (1+ a2t

k=0
e,
0

Jate—a)

< ’W(d)(cl

1
Let § = — and (1.8) is proved.

Vn

It remains to prove (1.9). Let # be arbitrary but fixed. Let x,, is

the nearest to x; then obviously

- 9l —i|—1
(1) | — @] < EYERE [ — @t "

Since f(z) and 4, (#) are both periodic functions we have

w7c11| =

(4.2) L.(f; 2 [ (@) — F (@)1 A, (@3, — )
+n
= D [ (@) — (@)1 A (2, — 1)
k=i-n

Bub w(is) < (2+1)
11@)—F ()] < (mla— +1>w(—i;).

On using (4.3), (4¢.1) and (4.2) we obtain

w(d) we have

(4.3)

1a(f3 ) = (00 < () [1ato0— )] 0+ 0oz 0(1) 4
T4n
+n ) (@)l 2 —al ],
k=i—n

k#d

icm
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on using (2.4) and (4.1) we obtain
nw
[A ( n T ’(14"”’[39 a;'ml)gcl 1+-§7’H‘—1 gc}”

on using (2.9), (2.7) and later part of (4.1) we obtain

i+n 1 .
D (o= oy =] = [ Jog.
g

Thus we have
ITa(f30) ~f1)] < lognn( )
This proves the theorem.
4. Examples. Let us consider

1 2 n . .,
T en¥1) [1+ (,n_H)m; (n+1—j) cos;t],

where m > 1. For m = 1 this corresponds to Fejer kernel. It turns out
as it easy to see that 4,(¢)> 0 for each fixed integer m. Thus correspond-
ing to this choice of Z(") we obtain I, (f; #, 1) as positive operator. Here
A" satisfy eonditions (1 6) and (1.7). Next we consider

1 ' (n—ji+1)"
- Lo
Tl 2 g

4, (2)

A,(2) cos jt] .

Again for m =1 this also reduces to Fejer kernel, but here A,(f)> 0
is not satisfied for m > 1. Here it can be verified that Zg’” satisfy (1.6)
and (1.7a).

‘We consider

l n
- 2 g (n) i
A, (%) @ntD) [1+ pa A5 cosyt],

20 @n+2—§"—2(n+1—5)"—™
7 @n+2—§)"+ (v + 145" -3 {(n+1—j)"+5

where

Here, again for m = 3 this reduces to Fejer kernel. Again for m > 3
the property of positivity breaks down. But A(”) satisfy (1.6) and (1.7a).
The examples second and third oceurred to the author in another
i nterpolation problem.
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Fractional powers of operators and
Bessel potentials on Hilbert space

by
MICHAEL J. FISHER* (Missoula, Montana)

Abstract. Two candidates for the title <“the Bessel potential”’ over a real separable
Hilbert space are studied with the theory of fractional powers of operators and shown
to define equivalent Sobolev spaces L3 (H). Lg(H) is shown to be equivalent to D (1)

when (—T) is the infinitesmal generator of the Poisson integral and when D(79)
ie equipped with the graph norm. The Bessel potentials of purely imaginary order
are shown to be bounded on the reflexive L, (H) and to form a strongly continuous
boundary value group for the Bessel potentials J¢ with Re(a) > 0. :

Introduction. In [3] we defined the Bessel potential over a real
separable Hilbert space, H, and studied the family of singular integral
operators G*: Lj(H) — L,(H), where L;(H) is the image of L,(H) under

the Bessel potential J° J°(f)=I'(a)™" [ P,(f)t*e~'dt, where P;(f) is
0

the Poisson integral of f; [2]. The norm in Lj(H) is [igll,, = IIfll, When
g = J°(f). The purpose of this paper is to examine the Bessel potential
operators more closely than they were studied in [3]. Specifically, we shall
examine two prominent candidates for the designation of ‘“the Bessel
potential”’ over an infinite dimensional Hilbert space and show that
the spaces Ly(H) defined using these operators are equivalent to the
domain of a certain closed densely defined operator when this domain
is equipped with the graph norm. Secondly, we shall examine the semi-
group J° in Re(a)> 0 and show that the boundary values, J7, form
a strongly continuous group of bounded operators on L,(H) if 1 < p < oo.
The paper closes with a discussion of the infinitesmal generators of J?,
B >0, and J7.

Throughout this paper K, K (a), K (p, a) ete. (M, M (a), M (p, a), ete.)
denote positive (complex) constants which depend only on the parameters
shown. If T is a linear operator on a Banach space X, D(T') denotes the
domain of 7 and R(T) denotes the range of 7.
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NSF-GP-8839 and NSF-GP-24574.
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