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Tt follows from a theorem of Titchmarsh ([6], Theorem VII) that the

" set ¥ of all nilpotent elements of A consists of just those feA for_ which
there exists ¢ > 0 such that f(f) =0 (0<<t< &). So the closure N of N
is the set of fed such that f(0) = 0, and we observe that for all ged,
gre V.

Now let 4, = A@C.1 be the algebra obtained by adjoining an
identity to A4, and let 4" = 4, QL"[0,1] ®m1(~N), a8 above. Since the
set of all nilpotent elements of 4, is N,_Every 2ed(A’) has 2, (¢)eN a.e.
(almogb everywhere). So, for every e (A"), # (t) eN a.e. Thus, if s = 2Q
®1®1, with seA\N, then &¢#(4"). However, (7)*=a'®1®1 is in the
closure of the get of nilpotent elements of 4', and hence is in #(4’). Thus
A'|#(4A) has non-zero nilpotent elements. Since it is commutative, it
cannot be semigimple.
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An application of interpolation theory
to Fourjer series

by

YORAM SAGHER* (Rehovot)

Abstract. In this note we introduce a generalization of the weak interpolation
theory of Lions and Peetre. With the help of this generalization we present a unified
account of some theorems in the theory of Fourier series with positive coefficients.

The generalization consists in considering interpolation not of subspaces of
a topological vector space, but of what we call quasi-cones of it (see Definition I.1).
‘We ghall in this note present only the minimal amount of interpolation theory of
quasi-cones needed for the application to the problem at hand, and hope to return
to the general theory in a subsequent paper. We shall agsume familiarity with the
notion of L(p, g) spaces, as well as with the terminology of the Lions-Peetre inter-
polation theory.

I. Interpolation of quasi-cones.

DErFINITION 1. Let V be a (real or complex) vector space. A subset @
of V will be called a quasi-cone (QC) iff @ +¢ < Q. @ is a cone iff we also
have AQ < @ for all 0 < A. We shall apply our results to cones, but since

no additional work is involved, we shall state the results for quasi-cones.
Two cones which will be important in the -applications we give are:

Ql = {{'Tn.}clnl &, io} and Q2 = {{mn}({oi for some 13’ "—ﬁmn ‘L 0}'
DErFINITION 2. Let B be a vector space over C. A quasi-norm on B
is a funetion || ||: B — R* satisfying:
(a) (Bl =0 iff b = 0.
(b) For all 2¢C, beB: ||Ab] = [A][jb]|.
(¢) A number k& = k(B) exists, so that
1B+ sl < B([1baf] +1Dafl),  for all By, byeB.

A quasi-normed space is a topological vector space, whose topology is
given by a quasi-norm.

* Research supported by the Multinational Program in Mathematics of the
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DErFNIrIoN 3. Let (B, || |) be a quasi-normed space. Let {u,}%, be
a sequence of positive numbers. Define:

(a) {23 2wy = (‘);.o'flﬂ,,,bn?l};)l/p’ 0<p< co,
(b) ”{bn}”loo (B 1 = S'Llp {”/‘n bn”B

—~ D0 N0
¥ ScB l’7 (8, B) will denote the set of all sequences {,}%,, of elements
of 8, so that H{bn}ﬂzﬂ 1 < 1 (B, B) will be denoted by I (B).

Clearly if @ is a QO in B, 17 (¢, B) is a QC in i (B).

DErpINITION 4. Let (B, l] ;) be two quasi-normed spaces. If both
are continuously embedded in a topological vector space, we shall say
that (Bg, || llo; B1, |l l) is an interpolation pair. We shall omit, when
no confusion arises, the quagi-norms, and write (B,, By).

DrrINITION 5. Let (B,, B;) be an interpolation pair @, < B; quasi-
cones. Denote:

(@0 @10, = {bGQO+Q1/{vin}°—?cc€ZZ(12—0)11(Q1‘)7 80 that vy, + vy, = b}-
We may well have @), = B;, in which case we are back in the theory of

interpolation of quasi-normed spaces.
TrroREM 6. Inf {Max [{®~ " v} lamy /O + V1n =D} is @ quasi-norm
1=0,1

% (Bgy By)g,q- It 18 egm',mlem to

ey Int {{[{e~" vu} gl 6"~ " 010}l oo + V1 = U}

Proof. See [6], theorem II.12.

- We shall denote the expression appearing in (1) by || l|z,0,

DeriniTION 7. Let (44, 4;), (B,, By) be two interpolation pairs.
Q; quasi-cones in 4,, R; in B;. An operator T: Q,+-@Q, - Ro-+R; will
be . called a quasi-linear operator from (Q,,Q,) to (R,, B,) iff for every
ageQy, aeQ; we can find b,eR; 80 that
@) T(ao+a1) = by+0y [Dall s, << Kollatg) g, -

THEOREM 8 (INTERPOLATION TUEOREM). Let (4, Ad,), (B,, B, be
two interpolation pairs. Q; quasi-cones in A, R in B;. If T is a quasi-
linear operator from (Qq, @) to (Ry, Ry), then for 0 <0< 1, 0 < ¢ < oo,
T maps (Qo; Qu)o,q to (Ro, By, and
(3) 1Tallz,0,, < KOI“OK10H“||A,0,q-

Proof. Tet ac(Qy, Q1o {a’z‘n}eli(i—())n(Qi): Qo+ Gy, = 0. Liet by, be
given by (2). Then

1 Tallz,0,, < ||{3‘0"b0n}||%11”(1090) |]{6u~0mb1n}“!1)(1(1?1)

< Ky Ko™ ™ aon}lizgy 16"~ aun}lfoayy -

and
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Taking infimum of last expression over all pairs of sequences, we get (3).
That T maps (@, Qi)e, t0 (B, B, Jo,q 18 clear.

For many purposes the integral definition of the intermediate cones
is eonvenient:

DprinrrioN 9. Let (B, B,) be an interpolation pair @; quasi-cones
in B;. Define for beQ,+Q,

(4) K(t,0;Q) = Inf{Max ¢*|[b,)|;/b;Q;, by+b, = b}.
i=0,1
‘We then have

dat
THEOREM 10. be(Q,, @)y, 'Lfff [t°K(¢ b; Q)] ~ < oo. Further,

I llz,0,q s equivalent to (f [ "K(t b; N? dt)

Proof. This is well known. See for example [6], Theorems IIL.Z,
and IV.11.

The difficulty in applying the mtelpolamon theorems lies of course
in identifying the intermediate QC.

THEOREM 11. Let (B, B,) be an interpolation pair. Let Q be a QC in.
By+B,-Q; =Q nB;. Then

(@05 @1)o,q = @ N (By, B)oq-

Proof. Clearly K(t,b;Q)> K(i,b; B), from which the theoren
follows.

Motivated by this we make the following definition:

DEFINITION 12, Let (B, B;) be an interpolation pair @ a QC in
By+B;. @ will be called a Marcinkiewicz quasi-cone (MQQC) iff, for
Q; =@ n B;, we have

(5) (Qo: Ql)ﬂ,q = Q N (Bor Bl)ﬂ,q

THEOREM 13 (REITERATION THEOREM). Let (B,y, B;) be an interpolation
pair. @, a QC in B;. 0 < 6, <1, 0, #01,0<q1<oo By = (Qos @1)o,q;-
Then for 0 <A<1, 0 <g< oo we have

(Ru: Rl)l,q = (Qo: Ql)o,gs
where 6 = (1—2)6,-+16,. '

Proof. The beautiful proof of Holmstedt ([4], Theorems 2.1, 3.1),.
although stated for spaces rather than QC, actually proves the theorem.
above.

THEOREM 14. Let (B,, B,) be an interpolation pair. B, = (B,, B Vo050
where 0 < 6; <1, 0, % 0,, 0 < g;< co. Then if Q is a MQO in B+ B,
Qn (E’O—J—E’l) s a MQC wmn By+FH,.

forall 0<6<1,0<g< o
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=@ n F;. Since ¢ is a MQU in
Q n B Using the reiteration theorem

Proof. Let Q Q N (B,+EH),
B0+B17 Qi Ql]i QI 01:,((1:7 Wh'ere Q’L
we have:

Q— N (Byy By)sq
and the theorem is proved. )

TurorEM 15. Let Q@ be a QO in L(pg, ¢o)+ L(P1, 1)y where py# py,
0 < p; < 00,0 < ;< oo. Then if for every f<Q and every 0 < y the funclions

if y< 0 if y<|fl
6 f,zlfp LR L £
0 Ifl<y, Fififisy
belong to Q, then Q@ is a Marcinkiewics quasi-cone.

=Qn(E07E1)z —-Qﬁ(Bo,B Qn: Uq“‘(Qo; ;,(_,7

Proof. Since (L7, L%),, —L(
theorem for @ a QC in L7+ L%,
An inspection of the proof of Theorem IV.12 in [6], shows that for @
ag above we have for fe@),
K(tﬁf} Q) ~ If<t7f)L)
from which follows that @ is a MQC. A
II. Applications to Fourier series. For the sake of simplicity, we shall

denote the L(p, ¢) spaces over the positive integers with measure 1 carrvied
by each integer, by I(p, ¢). It can easily be shown that

>4

-1\ e

a0~ () artme=)",
1

where {a;} is the non-decreasing rearrangement of {|a,}. (Similarly for
' g = o.) As a first application, we give the theorem of Hardy and Littel-
wood:

THEOREM 1. (a)

,q), suffices if we prove the

If |0, a necessary and sufficient condition thal
Clx) = fakeos kx should belong to L(p’, q) 4s that {a.}<l(p, q). The obvious
norm melgualivy holds.

(b) T'he same result holds for 8(x)

1
Proof. The cone @, = {{z,}7 /2, | 0} is a MQC in "+1° by Theorem
L.15. Therefore:

o
= Y sinks.

i 1
(lellsglnlw)o,q=g1m(ll, Oq*‘lel(l 0,@1)

. o
The operator T'({ay}) = } a,coskw, is well defined, since the series con-
1 .

e ©
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verges for # = 0. Summation by parts also yields:

1T ({a})l <

50 T: @, NT® — L(1, co). Clearly also T': I* - L, and so for 1 < p < oo,
0<g< oo we have T: @, ni(p, ¢) - L(p’, q), with the obvious norm

inequality.

The proof of the converse theorem follows along the lines of the

original proof (see [9])

Take @ (x f(] t)dt =

Z——smnm
n—1 a —1
T a, . T
Gl—|= E e _mEn smm-—; E Lmin ) sinm
n = m m—+mn — m—!—n n

2n n an’
E 7 5 )
=B Y (L __am_ﬂ)ﬂg “n > Ba, ) —> Ba,.

m-+n

ma N s

Denote H (» f}G )| dt. CeL(p', q) if and only if

4 L dt
[ oyt arer < oo
‘Where: ’ . ,
(€)™ 1) =%of O*(u)du>%0f[0(u)|du =—:—H(t).

Therefore:

© *® q i T
\ T
§ alnt=1 < B >1G ) < B Y H(— palp=1
FARRU i \n
2 2

. T

oo n—1 n—1

dai 1 ? B

a—alp ZH(H)) @

<3 3] nwest - 3 [ [aof e

n 7

SH

Tl ¢ qt
=B (~H(t)) 12— < B|OJL,
e

Case (b) follows from ease (a), since the Hilbert transform maps L(p, q)
to L(p,q) for 1 <p < o0, 0 < g o0, Actua]ly we have shown more

than claimed in the theorem:

T t
1/ e gt ,
) f(~j iC(u)ldu) w7 %o o v fuyelw, ) = 0L, 0.

0

1, and
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THEOREM 2. (a) Let 4,0, 1<q< oo, O(w) =3 aco8kw. Then {a}<l(p,q)
1 .

< oo, with obvious inequalities,

7ff f IG(t Iatq/p‘ at

(b) Some result holds for 8(x) = 21 o 8inJw.

dt\'e
Proof. We shall denote [[|0]]l,, = ([ |0(¢ [’lt”’”-—t—) . The space

of functions such that |[|C]]|, , < oo will be denoted by Lfm. This is of
course the space L? with weight function 7,

When g == p’, the results of Theorem 2 coincide of course with those
of Theorem 1.

In one direction, the theorem is a consequence of Hardy's inequality
and remark (1); since

(f( fw uldu) " ‘”) <p(f}(}’ )|l £ dt)

For the proof of the other half, we make uge of the result of Stein and
Weiss on interpolation with change of measure. In terms of interpolation
spaces it can be stated in the following form:

2) (L3,

1, =
L’ﬁnﬂm - I’wé—owg’

1 1-0 0

where I, = {flIfIf, = (f [ufPdu? < o}, 0< 6<1,

We have seen {a;}eQ, N1™ =

a
JC’(u)[g—j. From this we have

deduced T: @, nI° — L(1, o). However, we can also express the result
by T: @, n1° - LY. Again 1nterpolammg between this and T': I* - L%,
we get

T: @y 0 (1,100, = (L%, L),
Taking ¢ = oo and using (2) we get: ‘
(8) T: Q0 Up, o) ~ L.
From Theorem 1, however:
(4) T: @ A l(r, ') - I,

Interpolating again, we get:

T: @0 (Ups o), Uy 1)), = (L, L)y g

e ©
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, 1 0
Further, (L, L")y o = Lia-oymt, where " = Therefore:

T: @, nl(s, q) = Liys—1sq.

ki3 , d
Finally, C(u)eLlys—1/¢ means fJO(fu){qu’”sl< oo, and the proof
0 1

of (a) is complete. The proof of (b) is analogous.

We now take up @, = {{w}*|®,n "} 0 some > 0}. Sequences as
above are called quasi-monotone. See [2] where some of the results below
are proved by different methods.

THEOREM 3. Let {b,} be a quasi-monotone sequence. Denote:

w
(Z e nq’”‘l) H

= 1

Supn?b,,

o<n

We then have for 1< g, [[{bu}lp,q < 00 < [[{bn}llp, < 0.
Proof. Let 8 be such that b,n~?| 0.

Ni{aHlhe = ( h e e N R e & R [ Ty T
1 1

Using the multiplication theorem for L(p, g) spaces (see [5], Theorem 4.5);

”{b n ﬂ}”p’(pﬂ-rl) q \ ”{bn}”p q |{%“ﬂ}”11ﬁ 00 T =B ]|{bn}”1; a*
For the other half of the theorem, we can easily check that if {b,} is quasi-

g < o0,
[11{8a} 1 l2,q

g = oo.

) a
monotone, there exist 0 < n,, o, so that for all » > n,, b,,; < b, [1+ ;)
A finite number of terms will not affect the result, and so we assume

(1+ ) for all n. We then define:

1 b
Gy = 2';7'7 Ay, = bn‘l_ acy .

7=

bn+1
(6)

b
—a -2 < 0. We have b, <a,, a,{, and so
n

We have @, ~ @, = b1 —0b,

b} < a,. Therefore:

I{0n} im0 < [{an}lipe < 1R} lp,g + all{ea}lp,q-
By Hardy’s inequality, however:
[11{eatllp,e < BlI{PHp,00
and the proof is complete.
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TrrorEM 4. Let {b,} be a quasi-monotone sequence. Denote by O (u)
= > byeosnu, S(u)= Db, sinnu. We then have for 1<p <t oo, L g o0
1 1
(a) [{8adling < o0 <= [0 (W)l < oo,
(b)  [{PaMng < 00 = [18{(w)llyy < 02,
with the obvious norm inequalities.

Proof. We again define {a,}, {¢,} as in (6).
It [[{Balllyg < o0 [{6u}lq < o0, and so [{a,},, < oo Therefore, by
o0 o

Theorem 1, since both {a,} and {¢,} are monotone, 3 a,co5nu, Y 0,cosnu
1 1

belong to L(p’, q). Therefore also

o0 o
Clu) = 2 @, CO8 N1 — az e, cosnueli(p', g).
1 1

00

Conversely, let C(u)eL(p’, g). Define in this case () (u) = 3 ¢,cosnu.

-

We have, by summation by parts:

GI(u') ___2 sin (n+4) v

b’l
22D nrzl
" wlw), 2sinu /2

where ~ D, (u) =

n

Therefore:

00 o0
16, cosu/2 1 b
O (u) =% > = cosnu - ~'~/— 21 —= sinnu.
i n 2sinu/2 < M
n=

The first summand is in I®, with -L® norm bounded by a multiple of

the L(p’,q) norm of ¢(u). For the second summand, note that 0< 1
25inu/2

1 =
<E-E, and §0:

u

1
<B-= 1< BO™ (1
uﬂf 0(t)] dt < BC™ (u).

cosu/2 b
e |_cosuj2_ Stk g
) | 2sinu/2 & on s

Therefore

(=]
cosu/2 b, .
ekl > ~2 sinmu
=y

28inu/2 n < BlO(w)

254

|1)’,a ‘

n=1

NOtiD.g‘ that the coefficients of (’Lb) are monotone g .
S a 1 we  getl ™
< H (u)”*’ﬂ‘ 1 H k=] ”{(’77,}”1‘,11

0 © 00
Y
15 @, 08N = 2 b,,COSMU+ E eneo8nu = C(u)+ aly(u) e L (', q)
1 1 M

icm
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and 50 [[{a.Hh , < BlIC(w)lly, s since a, are monotone. Finally, since
b, = Gy— Cpy [{Bn}lnq < B0 (u)|ly4- The proof is complete.

The proof for the case of sine series again is a consequence of the
properties of the Hilbert transform, or else can be done directly.

THEOREM 5. Let 1 < p < o0, 1 < g < oo. Let {b,} be a quasi-monotone
sequence. We have

(@) [[{Badlhg < 0 < [[{Ba}lllp,g < o < 10 W)lly, < 00 < [1C(®)ll]p,q
< oo.

(b) Same result for S(w).

Proof. Only the last equivalence remains to be shown. IE IO (w)lly,q
< oo. We again construct C;(u) as in the proof of Theorem 4. Since we
have

L e EY s e

(the last inequality from Hardy’s inequality). The proof then proceeds
along same lines as those of Theorem 4, using Theorem 2 rather than
Theorem 1. ‘

For the converse implication: If [1{ba}ip.q < o0, then both {ea}lp,q < o
and [[{a,}|}, < co. From this we have by Theorem 2,

o [+
H |
1§ E ¢, COS N “p,‘q < co, h}: aneosnu\%m,’q < co.
1 T,

From this, however, the result follows. The result for the sine series follows
similarly. From these theorems follows that if {b;} is a quasi-monotone
sequence {b;} its non-inereasing rearrangement, then

2 bicoskweL(p, q) < 2 bicoskreL(p, q)
k=1 k=1

for L<p< o0, 1< g o .

We shall deal now with the connection between the U(p, ¢) norms
of quasi-monotone sequences, and the differentiability properties of the
corresponding series. It is in this context that quasi-monotone sequences
are natural: The class of trigonometrieal series with coefficients in @,
is closed under term by term differentiation. The results generalize results
of Askey [1]. We sha]l need some results about the interpolation between
Sobolev spaces. We refer the reader to [3], for the details. We include
statement of the results:

DEFINITION 6. feL(p, ¢) will be said to belong to the Sobolev space
Wr,p,q)yr=1,2,3,..., iff 9 eL(p, g) for j = 1,2,...,7. On W(r,p, q)
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we define the norm

-
D
i=0

We will denote W (r, p, p) = W(r, p).
We will deal only with the case 1 < p < o0, 1 K g < co. With respect
to the norm defined above, W(r, p, ¢) is then a Banach space.

1F@) = 5 (= 1y @) (@ -+ k).

1=0
() w,(t, f; p) = sup {HAUHW/U” <t

DerinirioN 8. Lip(a, 7, ¢; p) is the spaee of all funetions in I? so
that (0 <a<7)

(f(t"” 0,4, f3 ) dt)1m< o i g< oo,

sup {I™ w6, fip) 0<t<w} if ¢ = co.
Lip(e, 7, p; q) is a Banach space with the norm

I+ f (e

These are the Besov spaces. The basic theorem we shall use is the fol-
lowing:

THEOREM 9. (L‘f’, W, D)ajrg = Lip (a, 7, g; D).

Proof. See [3], Theorem 4.3.6.

TaEoREM 10. Let 0< a <1, 1< ¢ << 00, a = k-+p, where 0 <f<

Feliv(a,r, g3 p) if and only if f<W(k, p), and j”‘ eLip (8,1, q; p) when
0<pg<1, and f®eLip(1, 2, ¢; p) when g = 1.

Proof. See [3], Theorem 4.3.8.
TreorEM 11. Let {b,} be a quasi-monotone sequence.

(=]
u) = >'b,sinnu,
1

”fHW(r,p,q) =

DEFINITION 7. (a)

5o

0
0(%)=Zb,LOOSﬂu, 1<])<oo, lgoo
1

Then

@ W20 i By~ Lo g)
(b) Same result for §(u).

Proof. Let O(u)eW(r,p,q). Then an {;"}f:ﬁf} eL(p,q). I

now {b,} is quasi-monotone so is {b,n"}. Therefore {b,n"}el(p', @). By
Theorem 3, |[|{b,n}||, < . Bup Han e = 1114831

I_ s

icm°
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- . P’
Again using Theorem 3, {b,}el[———, q].
g g Theorem 3, {n}e(p,yﬂ,q)
The converse is proved similarly: If {b,} El(—f)’-f?—_l—’ q) using Theorem
3 twice, we get {n'b,}el(p’, q) from which we conclude C©(u)eL(p, q),

and go O(u)eW(r,p, q). The Hilbert transform preserves W(r, p, q) for
1 < p < oo, from which the result for the sine series follows.

m——of f preserves Lip (a,r, q;p) for L <p < co.

Proof. The transformation clearly preserves L” and W(r, p). By
interpolation the result follows. We shall need the theorem in the following

form:
T,: b,sinnu 1 Z (1—cosnu),
i e -
2 2smu/9

T, E b cos'rm—>———_ — E —"sinnu
: ™ 2sine/2 n !

preserve Lip(a,r, g; p). .
- THEOREM 13. Let {b,} be a guasi-monotone sequence.

u) = D bycosnu, S(u) = 3 b,sinnu.

THEOREM 12. T': f —
(8)

Then: for1 < p < 00, 1< ¢ < o0, 0(u)Lip(a, 7, ; P) iff ba fl( 1 ’4)
Same result for S(u).

Pl : B , '
PT‘OOf' Let {bn}EZ (M7 Q) = (l(]) ’ P), (’I’p +1 L Z’))a/r’g- QZ
is a MQQ, and T{b,} = 3 b,cosnu is linear and maps I(p’,p) to L7,

and 1 ( p'p_:_ T p) to W, p). It therefore maps 1 (——%, q) to
Lip(a,7, ¢; p)-

Conversely, let C'(u)eLip(a, r,q; ). @ = k—}—ﬁ, with 0 < << 1. Then
C® (u)eLip(B, 1, q; p) if 0 <p <1, C®(u)elip(L, 2, g;p). If the coeffi-
cients of 0¥ (u), i.e. {b,n*} are monotone decreasing, from Askey’s results
[1], we have {b,n"}l (ﬁ_—}:’ q) from which follows {b,} el (p—,f—_rl-, q) .
Using the decomposition (6) the problem is therefore reduced to showing
that if {b,} is quasi-monotone,

O(u)eLip(a, 7, ¢; p)

then

o« o

b .
2 (271) cosnueLip (a, 7, ¢; P)-

n=1 ‘j=n
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Using summation by parts
o

bf
(2

< oo follows from O(u)eL”,1 <p),

o 2] [e4]
. b c08 % [2
E ] cosnu = E 2 D, () = " ginnwy -+
j n 2s1nu 1%
n=1 ‘J=n 1

b
+3 E — coS MU .
n

Using Theorem 12, the proof for the cosine series is complete. The proot
for the sine series ig similar. Let us remark that, comparing Theorems 13
and 11, we get for Fourier series with quasi-monotone coefficients:
feW(k, p, q) itf felip(k, 7, ¢;p) (k< ). The assumption of quasi-mono-
tonieity is crucial: The Weierstrass function ' 27%cos2*x belongs to the
k=1

Zygmund class Lip(1, 2, co;p) but does not have a finite derivative
at any point. In particular it does not belong to W (1, p, co).

1. A remark on quasi-monotonicity. We have seen that the class
of Fourier series with quasi-monotone coefficients, being closed under
differentiation, is in some problems more natural than the class of Fourier
series with monotone coefficients.

The decomposition I1.6 we employed for quasi-monotone sequences
seems guitable for generalizing results on Fourier series with monotone
coefficients, to those with quasi-monotone ones. Since this is outside
the scope of this note, we limit ourselves to one example.

‘We shall present a simple proof of a theorem of Shah [7]. This theorem

generalizes a theorem of Chaundy and Jaulliffe who proved it for series:

with monotone coefficients. See [9], Chapter V.

TaroREM 1. Let {b,} be quasi-monotone. A necessary end sufficient
condition that 8(u) = D) b,sinnu should converge uniformly is nb, = o(1).

oo
b,
Proof. Assume nb, - 0. Then n }’L!- -0, and we therefore have
]‘~-n
na, — 0. By the original theorem of Chaundy and Jaulliffe, Y'e,sinnu

and Z'unsmnu converge uniformly, and hence 3'b, sinnw does.

b,
Conversely, if >'b,sinnu converges uniformly, ‘}J ~% < oo,
J

, b, b
chsmnu - Z—ED,,,(M) = %eotu/zzwv(l

o
The last series converges uniformly, while, denoting SV (1) = > b, sinnu,
n=N

L\
— cosnw) -+ § i L ginnu.
n

icm
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we have

u
1 .
—cosnu) = 5 cotu/2f 8¥ @)z,
0

1 < b
n~t2g»ll
280%/,\]9@(

and so is small uniformly in «. We therefore have also uniform conver-
gence of D' a,sinnu. From these follows by the original theorem na, — 0,
ne, — 0 and finally b, — 0.
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