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Tor ¢ > 0 given, by the preceding arguments, the two lagt terms in the
last member are less then £/3 for ¢ large-enough. For such an ¢ fixed, the
first term in the last member is less then /3 for m large enough, because
the 7; define a weak decomposition of T'E. Hence (&,),.x converges
weakly to Tf.

Moreover, hy, — by, < Ly, for each m > 0. Indeed, since 7'f® converges
10 (Mpmew 1D 1o (F), the sequence v, Tf® converges to h,,—h,_, for
each m > 0. Thus, since the L, are sequentially closed, h,, — h,,_,eL,,.

By virtue of the unicity of the decomposition into the IZ,, from

If = Z‘ (b —

hence Tf = (P men-
¢) By the closed graph theorem (see [2], p. 28), the map 7" is contin-
m

b))y, we deduce that h,—h,_, =7, If for each m,

uous from ¥ into I, (F). Thus, the sequence ( 3 TiT)msN is equicontin-
1

=
uous and, hence, each 7,7 i# continuous.
m
Since ( }' 7,7T),n s equicontinuous, the lagt assumption follows
1

=

from the Banach-Steinhaus theorem.
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A new definition of nuclear systems
with applications to bases in nuclear spaces

by
ED DUBINSKY * (Warszawa)

Abstract. The concept of nuclear system was introduced by the author in an
earlier paper in the same journal as a means of constructing examples of nuclear
Fréchet spaces. In this paper the definition is simplified by showing that a nuclear
Fréchet space on which there exists a continuous norm can be represented as a pro-
jective limit of imjective nuclear maps on a Hilbert space. This permits the solution
of two problems given in the first paper and the improvement of some results in that
paper.

These results are applied to the problem of existence of Schauder bages in
nuclear Fréchet spaces. An equivalent condition for existence is given and also
a test for when a given sequence is a basis. Also a theorem on perturbation of a system
with a basis is proved.

A subsequent paper will apply these results to concrete examples of nuclear
Fréchet spaces.

The concept of nueclear system was introduced in [2] as a means
of constructing examples of Fréchet nuclear spaces and studying the
basis problem. In the present paper we give a simplified definition of
nuclear system, somewhat anticipated in [2] (see problem 4° of [2]) and
obtain new results about nuclear systems and the existence of Schauder
bases in Fréchet nuclear spaces.

In Section 1, the new definition is given and it is shown that nuclear
systems still characterize full Fréchet nucledr spaces (see below for defi-
nitions).

In Section 2 the main results of [2] are restated according to the new
definition and new results about nuclear systems are obtained.

In Section 3, we prove new results on the existence of a Schauder
basis in the associated space of a nuclear system. We are able to-derive

* Most of the research described in this paper was done during academic year
1969-70 while the author held a research associateship at MoMaster University,
Hamilton, Ontario. This opportunity was made possible, under extraordinary
circumstances, through the efforts of B. Banaschewski and T. Husain. The author
retaing the deepest gratitude and highest respect for these colleagues, their depart-
ment and MeMaster University, whose actions in a crisis were exemplary.
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a test for deciding when a given sequence is a basis. The test requires
the computation of the norms of certain operators in I,. Also we give
sufficient conditions for a nuclear system generated by a perturbation
of a .diagonal matrix to have a basis.

The notation is generally standard and agrees with [2]. We denote
by 1, the usual separable Hilbert space of sequences. If M < 1, we denote
its orthogonal complement by M*. We denote by ¢ the subset of I, con-
sisting of all finitely non-zero sequences. By a diagonal operator D on I,
we mean & linear continuous map defined by De"=1,¢", n==1,2,..., where
¢" represents the n'™ coordinate vector and A, is & sealar. The adjoing
of an operator A on I, iy denoted by 4% and the composition of two
operators A, B is written AB. The end of a proof iy indicated by the
symbol B .

1. New definition of muclear system. In [2] we defined a nuclear
system as follows. Let (4;) be a sequence of nuclear operators in I, and

define the associated space B(4,) by
B(4y) = {(m): myely and w, = Ay, k=1,2, o}

With the induced product topology Bisa locally convex space. Let
Py - I,y k=1,2,..., be the usual projection map. We said that (4y)
was a nuclear system provided that ‘ :
(i) each A4, has dense range,
(i) each P, is injective.
Two nuclear systems are said to be equivalent if their associated spaces
are isomorphic as locally convex spaces. A nuclear gystem is dnjective if
- each 4, is injective. It was shown in [2] that there exist nuclear systems
which are not injective. However, the following result answers in the
affirmative question 4° which was posed in [2].
THEOREM 1. Bvery nuclear system s equivalent to am injective nuclear
system.
Proof. Let (4,) be a nuclear system and define B, =A4,... 4,
M; =XkerB,. Let m,: I, 1, be the orthogonal projection onto M.
Since each 4, has dense range it follows that each B, has dense range
and hence Mj is infinite dimensional so we can define an isometry 7,
b 1, with 7,(l,) = M. Let B, = B,r,. Clearly B, is injective and has
the same image as B;. Hence ﬁk(lz) < 1~3’,c_1(lg) since this is true for B,.
We consider the functions m,Bi': B, (L) -1, and B Bty — 1.
We claim that

Bt =i (m B Y).
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Indeed if # = ByzeBy(l,), then mezeM} so
Bi'ng m By (#) = By tm(2) = By,m(2) = By()
- and the result follows from the fact that ﬁk is injective.
Now we set 4, =B, and for each & >1 we define 4, = B4 B,.

Then we have
Ay = W;jl(”k—1Bl:711)Bk77k = 1 M Bty By Ay, = N T A g

Hence ﬁk = il fj:k for all % so that kerz{k [ kerf?,, 50 ik is injective.
Moreover, we have

Ay = mil (w1 BFL) By, = N1 Bt By Ay, = Ui ey Ay

which implies that ik is nuclear since 4, is nuclear and
continuous.
Next we observe that .

Bi'By = n; (m, By 1) By, = N 75

, -1
Ty Mg~y 7 ATE

S0 ﬁ;lBk is an isomorphism of I, onto itself. Hence we have,
Apl) = 4B By(b) = B BB By(l) = Bl B, 4, (1),

and since 4,(l,) is dense and ]§,;1Bk“1 is an isomorphism it follows that

4, has dense range. Thus we have shown that (f,f,c) is an injective nuclear
system.

It remains to show that (i,c) is equivalent to (4,) and for this purpose
we verify conditions (i), (ii)’, (iii)’ of Theorem 2, [2] with A, 4, inter-
changed and n, = k. We define (f,) by ‘

fes1 = BBy,
Note that by the above argument, each Jr 18 an isomorphism.
Condition (i). For k =1, we have

f, = identity, E=1,2,..

- Af,=BB'B, - B, = 4, =f,4,,
and for & >1,
Apfiepr = 4, B By, = E;ilBk = EIZ-I1Bk—1Ak = frdy-

Condition (ii). This is obvious since P, is by hypothesis injective
and f is injective so f,P, is injective.

Condition (ili). It zeP, (E(Ak)), then @ a sequence (m,)e<F(4,)>
2@ = @ Let y,=fi'w, Then JeAwYim = Apfrin Vi = Aty = m
=fu¥r 80 (yp)eB(4;) and o = %Py (B(4,). =

Studia Mathematica XLI.2 3
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The above theorem permits a simplification of the.definition of
nuclear system. The result which governs this definition is Th(?orem 1
of [2] which states that the associated space of & nuclear system s a full

(that is, admits a continuous norm) nuclear TFréchet space and every full

nudlear Fréchet space is isomorphic to the associated space of some fnual'etw
system. Thiy result remains true under the following definition which

we henceforth adopt. ) ) o
A nuclear system is a sequenece of nuclear maps in I, which are injective

and have dense range. The agsociated space T and the canonical projections
(P;) are defined exactly as before.

PRroposITION 1. If B is a full nuclear Fréchet space, thm there ew_ists
a fundamental system of neighborhoods of 0, (Vy), such that the canonical
maps ﬁVk B (on the completed quotient spaces) are injective. o

Proof. Let (4,) be a nuclear system whose associated space is iso-
morphic to E. Then by definition of the topology, a fundamental system
of neighborhoods is given by the sets,

n:l,...,k}.

A 1
7, ={w — @)ed: ol <7

H g, is the gage of V,, then we have,
A
05 () =in;f{l>0: ||mn|[<%, n=1, ,k}

=max{kllw,]: » =1, ..., k}
= kmax{lA; ... Ay (@)l5 - ooy Aoz (@5 l2ll}
and so we have

kllo < o(#) < Koy, where E = max{|l4; ... Ay, oy [l 1o

Thus we may conclude that g, is a norm and Py: By, —~1, is bico.ntin-
uous. Since P, has dense range ([2], Corollary) it follows that Py is an
isomorphism. Moreover, from the definition of nuclear system, the follo-
wihg commutes diagram

EVIC+1 —)Evk .
-Plc+1 'Pk
¥ +
Iyl

and the result then follows from the fact that 4 is injective. H
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We remark that the above result also shows that a full Fréchet
nuclear space can be constructed so that the canonical maps are any
preassigned sequence of injective nuclear operators with dense ranges.

2. Applications. In this section we observe that the new definition
of nuclear system permits us to restate the major results of [2] in a sim-
plified form. Also we are able to answer one more question raised in that
paper.

The following result is a translation of Theorem 2 of [2].

TuroreM 2. Two nuclear systems (4,), (Aﬂk) are equivalent if and only
if there exists a subsequence (ny) of indices and continuous linear maps fy:
l, =1y such that,

(i) -A'-kfk—ivl :‘kank Ank+1—17

(i) f, maps (M A, ... 4, (L) injectively onto N ANI s ﬁk(lz).
k=ny k=1

k=1,2,...,

The following result is a translation of the corollary to Theorem 2
of [2].

TaEOREM 3. The associated space of a nuclear system (4,) has a Schauder
basis if and only if there exist diagonal nuclear maps Dy: 1, -1, and con-
tinwous linear maps f: I, =1, k =1,2,..., such that

() Akflc-)—l =fpDpy b =1,2,...,
(i) fi maps (Y D, ... Dy(l,) injectively onto () Ay... A1)
k=1 k=1

The application of Theorem 3 to the basis problem would be con-
siderably simplified if one counld say anything more definite about the
maps (f). In every example known to the author, one can choose the
maps to be isomorphisms and usually isometries. We show now that
they cannot always be chosen to be isometries.

LevwA 1. Let A be a bounded operator on ly; U, W isometries; and D
a diagonal operator with diagonal elemenis (A,) such that D = UAW™.
Then the eigenvalues oflA*A are precisely (|4,]%). If, in addition, each
Ay # 0 and |2, # |4 for ¢ 5= j and A is symmetric, then U = VW, where V
i8 a diagonal operator each of whose diagonal elements has modulus 1.

Proof. For the first statement we have 4 = U™ DW = U*DW so

A*A = W*D*TUU'DW = W*D*DW
and this implies that the eigenvalues of A* 4 are precisely the diagonal
elements of the diagonal operator D* D which are (|4,[*).

Now incorporate the additional assumptions and set ¥V = UW™2.
Then we have

VD'V = UW'D*UW™ = U(U*DW)* W' = UAW™' =D
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o VDV = WO DWU- = WAU-? = D*.
Therefore it follows that V.D* = DV* and V*D. = D*7V. o
Suppose that ¥V has the matri).z representation (v;) al}d take ¢ ;é e
First suppose that |4 < |fj|. Then if v; # 0 and vy # 0, it follows that
vk = Aoy and vudy = A vy, 80
—_ _I_zil,_ ]’U | < I@ I — Ei_l_
[oyl = Il it 14 ]
which is a contradiction go one and hence both vy, Uy; AT@ ZOro. A s'imilar
argument works if |4, > |4,| so we have shown‘ that V is clmgongul. Since V
is clearly an isometry it follows that its diagonal elements all have
modulus 1. &
PRrOPOSITION 2. There exist nuclear sysiems for which Theorem 3 does
not apply with all of the maps (fy) isometries. .
Proof. Let (4;) be a nuclear system in which each 4, 'is gym]{netnc,
its eigenvalues are simple and have distinet moduli, and if ¢ + j, then
the set of eigenvectors of A; is not identical to that of A,.. ‘
Now suppose we have diagonal maps (D) and isometries (f;) with
Alcflc+1 = f3 Dy, k=1,2,...
Then by the first part of Lemma 1, the cigenvalues of 4} = 4}.4, are
precisely the moduli of the diagonal elements of D?C.and these are then
the squares of the eigenvalues of 4,. Hence the diagonal fslements Qf
D, have distinet moduli. Moreover, none of them are zero since (D) is
a nuclear system so that Dy(l,) must be dense.
Thus we can apply the second statement in Lemma 1 and assert the
existence of diagonal operators V, with diagonal elements of modulus 1
and such that

fit =Vafiin or

fk+1 =f1V1 Vlcy

o] < |0yl

Jorr =FuVe B =1,2,..,

E=1,2,...,

whence

80
(Vieee Vi) M AR Ve Vi = Dy,
or, since diagonal operators commute,
P fy = Ve Vi Dp(Vy oo Vi)™t = Dy Vi
80 that the eigenvectors of 4, consist of the images under f, of the co-
ordinate vectors in I,. In particular the set of eigenvectors of 4, is inde-
pendent of %k and this contradicts our choice of A W
ProsrEM 1. Does Proposition 2 remain valid if we replace isometries
by isomorphisms ?

k=1,2,... (V,=Iidentity)

k=1,2,...,
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As another application of the simplified definition of nuclear system
we answer question 3° of [2] in Proposition 3. This result shows thas
if we consider a full nuelear Fréchet space to be a certain dense subspace
of I, (indeed, Pl(if?)), equipped with a cerfain metrie topology, then we
are dealing with a dense subspace somewhat more complicated than the
image of a econtinuous operator.

ProrosITION 3. If (4,) is 0 nuclear system, then there ewists no continuous
operator A: 1, -1, such that

kéAl..-Akuz) —AQ).

Proof. If we have such an 4, then we can replace it by an injeetive
operator which has the same range so we may assume that 4 is injective.

Because each A, is injective, we can define 7': ZQ»E(A,C) by
Ty = (Am, AT Az, (4, 4,) Az, i)

Moreover, if T# = 0, then in particular, Az — 0 so # — 0. Thus 7T is
injective. )

Next we show that T is continuous. By definition of the product
topology, it suffices to show that each map (4;... 4;,)"* 4 is continuous.
By our hypothesis we know that (4;...4,)74(1,) = 1,. Now suppose
that (#”) is a sequence in I, such that it converges to # and the sequence
((Ay... 4;)7  4a"), converges to y. Then we have,

Ay Ay (A ... ) A = Ap = Alima® = lim Ao
=lmd, ... 4,(4, .. 4,)" A’
=4 A lim(A4, . AT A = A, Ay

Since 4, ... A, is injective it follows that (d1... 4, "4z = y so by the
closed graph theorem, (4,. .. 4,)7' 4 is continuous and hence T' is contin-
nous.

Finally let y = (y,)<B. Then y,e MN4,... A1) = A(l,) so there is
an xel, with y, = A2, But then E

To = (y, A7y, (A, 4,) My, ) =¥ Y2 Y5y -) = ¥.

Hence T' is onto so T is an isomorphism but this is impossible since I,
is a Banach space and ¥ is a nuclear space-and both are infinite dimen-
sional. B

3. Some basis theorems. In this section we give some additional
theorems characterizing the existence of a Schauder bagis in the associated
space of a nuclear system. We shall make use of the following well-known
result. For a recent proof see [3].
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Tmama 2. If () is @ total sequence in a Fréchet space B and (o) z:s
a fundamental system of seminorms for I, 'thm (@,) is o Schauder basis
for B if and only if for cach k there ewists § =k and M >0 such that for
any sequence t of scalars and integers p < g, we have

op(bid 4 oo Fl3p) < Moy (@ oo +1,8,).
Let (4;) be a nuclear system and write B, = 4, ... Ak’_k =1,2,...,
B, = identity. If (b,) is a linearly independent total sequencein B = f (,.A,ﬂ)
and (s,,) is an infinite matrix of scalars we say that (s,) 18 a regularizer
for (b,) if the following conditions are satisfied.
(R,): For each v, (S,)ucep.
In view of (R,) we may define the operator §: ¢ —1, by

S(t) =228/wtvb1ﬂ7 tE(p7
]

where we use the notation, b* = P.b, <l,. Note that §(p) is contained
in the vector subspace generated by the sequence (b'#), and hence

S(p) = (’] By, (L) -

This permits us to write,

(Ry): B;'8(p) is dense in 1, for each &t > 0.

(Ry): S is injective.
Now for each p = 1,2, ..., let m,: I, > ¢ be the projection onto the fi_rst
p coordinates. If v<B;'8(p), then by (R,) there exists unique feg yv.ﬂ;h
v = B;y*8(t). Hence if j, k are non-negative integers and p is a pos.mve
integer, we can apply this and the fact that S(p) = By (L) to define a linear
map T =Ty, ;: B;'8{p) =1, by the relation,

TB'8(t) = By Smy(t), tep.

‘We may then write the final condition which completes the definition,

(R,): For each k=0 there ewists j =% such that each Ty, ; can be
extended 1o a continuous operator on Iy and the sequence (T4, ,, ), is @ bounded
sequence of operators in 1.

The following result might be considered as analogous to the Gram-—
Schmidt orthogonalization process for constructing orthonormal bases in
separable Hilbert spaces.

THEOREM 4. If (4,) 48 @ nuclear system, then B has o Schauder basis
if and only if there ewists a total linearly independent sequence which possesses
a regularizer. In this case, every total linearly independent sequence possesses
a regularizer.
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Proof. Assume that F has a basis and (b,) is a total linearly inde-
pendent sequence. By the Krein—Milman—Rutman theorem for full Fréchet
spaces (see [1], Theorem 1), the vector subspace generated by (b,) contains

& basis (¢). Hence we have an infinite matrix (s,,) satisfying (R,) such
that '

6 =D'sub, »=1,2,..
“
Let k> 0 and fep. Then
B 8() =D D st bir = 34, Mg, prhe = P T
el 4 ;

But (q,) is total in £ and P, (E) is dense in I, so (¢**”), is total in 1,
and hence by the above equation, B;'S(¢) is dense in I, so (R,) is satisfied.
Next, if S(f) =0, we have

;‘ t,e" = 2 ‘;‘ 1,5,0" = 8() =0

and sinee P, is injective and (¢,) is linearly independent it follows that
(¢"), is linearly independent so ¢ = 0. Hence (R,) is satisfied.

Finally we apply Lemma 2 to (¢,) to assert that for each k> 0 there
exists j >k and M > 0 such that for tep and integers p < ¢ we have

orpma(tiort oo F,0,) < Moy (fey+ ... +i,0,),

where (g;) is any fundamental sequence of seminorms for #. By the
argument used in Proposition 1, we can take g, to be defined by gg(z)
= [lz;]|. Hence we have, .

”tlek-l-l,l_l_ _I_tpcm-l,pH < _M||t107+1-'1—}— —{—tch"‘l’ql]

or

[ (3 0o < (3 o)

so that for any tep we have

185 8, (D]l < M ||B;* 8 (1))
or
1T, B7 S| < M||B;* S (1)

and this inequality immediately implies (R,). Hence (s,,) is a regularizer
for (d,).
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Conversely, let (b,) be a total linearly independent sequence in R
which possesses a regularizer (s, ). Define the sequence (¢,) in A by

6, = 2 Sy bye
13
Then for each k> 0 and tep, we have

B 8() = D t,d

50 by (R,) we conclude that for each % > 0, ("), is total in 1, and this
implies that (e,) is total in A.

Finally, using the same seminorms as in the first half of the proof,
we conclude from (R,) that if % > 0, then there exists j >k and M >0
such that

15,5 B S ()] < MBS (8)].

Reversing the steps in the lagt portion of the firgt half of the proof, we
obtain the inequality required by Lemma 2 so we may conclude that
(¢,) is a basis for H. @

There are two interpretations of Theorem 4 which are wugeful in
applications. The first, given in Proposition 4 relates the existence of
a basis directly to an operator independently of matrices and the second,
given in Proposition 5 iy a test for a given sequence o be a basis.

Concrete examples illustrating these applications will appear in
a subsequent paper.

" PROPOSITION 4. If (Ay) is a nuclear system, then B has a basis if and
only if there ewists o linear injective map, §: @ = (B (L) with B;*S ()
k
dense in 1, for each k=0 and such that Sfor each = 0 there exists j =k
such that

sup || By ' 8z, 8~ B, .
pp” k np ]IBj_lS(q:)” <

In this case, if we consider I to be represented by (MB,(l,) via
~ I

Py (H), then the basis is the sequence (8(")
Proof. Suppose we have § as above. Since 8(6™) (M By (lo) = Py (&),
k

we can define b, = P18 (¢"). Since S is injective, (b,) is linearly indepen-
dent. Also for any %> 0 we have
" = Pib, = P8 (e") = By, 8(e)

80 (6™, is total in 1, for each % Hence (b,) s total in 1,.
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Now let (s,,) be the identity matrix. Hence

80) = D' 1,8(") = 3 ¥ s, 1,5, teq,
n s v

so that § is the same as in the definition of regularizer. Thus (Ry)y (R),
(Ry) are obviously satisfied and for (R,) we observe that for tep,

By 8m, 87 B;B; ' 8(t) = By S, (t)

80 Ty = By'8m, 87 Bjlp-1g, and (R,) is satisfied. The conclusion
then follows from Theorem 4 and by the proof of Theorem 4, the basis
is (b,) so the last statement is proved.
Conversely if (b,) is a basis for E’, then by the proof of Theorem 4
the identity matrix is a regularizer for (b,) and this gives 8: ¢ — M B, (1)
k

with §(&") = b"" Then (R,), (R,) and (R,) immediately yield the desired
properties for S. @
PROPOSIZION 5. Let (4;) be a nuclear system and (b,) @ total Linearly

independent sequence in E. Then (b,) is a Schauder basis for B if and only
if for each k> 0 there exists >k such that

Sup “BEIST‘ZZS_IB:,IB;IS@F)H < o0,
»

where 8: ¢ —1, is defined by 8(&") = b=,

Proof. It suffices to show that this condition is equivalent to the
identity matrix being a regularizer for (b,). Clearly 8 is the map given
in the definition of regularizer when (s,,) is the idemtity matrix. (R,)
and (R,) are obvious. (R,) follows from the fact that (B7'8(6™)y= ("1™,
which is total in I, since (b,) is total and Py ., has dense range. Finally,
(R,) is clearly equivalent to the given condition. B

Remark. Without going into details, we observe that the results
of this section can be adjusted to take into consideration the well-known
fact that in a nuclear Fréchet space every Schauder basis is an uncondi-
tional basis. Using a perfectly straightforward generalization of Lemma 2,
we can replace, in (R,), the index p, running through the positive integers
by the index o, running through the eollection of finite subsets of the
positive integers and =, is then the orthogonal projection onto the sub-
space of I, generated by {e"},.. Appropriate adjustments in Proposi:
tions 4, 5 can then be easily made.

We end this section with some basis theorems of an entirely different
nature. For simplicity, we consider only singly generated nuclear systems.
It is obvious that if 4 is a diagonal matrix, then B has a basis. Moreover,
if 4 is similar to a diagonal matrix, that is, if there exists an isomorphism U

such that U™' AT is diagonal, then F has a basis. Indeed one can apply
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either Theorem 3 with f, = U or Theorem 4 with b, =P U(e") and
(s,,) the identity matrix (so that 8 = U). A natural question that one
nught consider is what happens if A is a ‘‘perturbation” of a matrix
that is similar to a diagonal matrix. We can apply Proposition 4 to obtain
the following results.

PROPOSITION 6. Let A = T+J be a nuclear map, where T = UDU*
for some isomorphism U and injective diagonal map D. Assume further
that for each % 2= 0 we have

[D~*(D+ T IOV —1I]| < 1.
Then A generates a nuclear system whose associated space possesses & Schauder
basis. .
Proof. In order to show that 4 generates a nuclear system, it suffices

to show that A and A* are injective.
Suppose A (z) = 0. Let y = U~'(») so that we have

0 =T(x)+J (@) = UDU(@)+J (@) = UD(y)+JU(y)
and hence sinee D is injective,
y = —D'U1JU(y).
But, applying our hypothesis for k¥ =1, we obtain, if y #0,
Iyl = [P~ (D + U T)

so it follows that y = 0 and hence, & == 0.
Now suppose A*(x) = 0. Let y = D*U*(z) and we have for each
Zelz, 2 # 0,

—I))|| <yl -

(D~ (D+ U‘IJU)—I)(U“lz), y)| < (U@, )]
S0

l(4— UDU“ y 8) < |[(T(2), )]
80

(UDU™(e), af| < [[UDU(e), g,

and this implies that « is orthogonal to UDU™* ( o). But sinece D is an
injective diagonal operator, it has dense range so it follows that » = 0.

Thus we have shown that 4 generates a nuclear system. To obtain
the existence of a basis, we apply Proposition 4 with § = U. By hypo-
thesis, if we define for each k> 1 the map

B, =D D4+ UJUY-1I,
then E; is a continuous operator and (|7, <1 so I+ B, is invertible.
Moreover, we have,

UT'B,U = (U AU = (D+ UJUY = DHI+Iy).

icm°®
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Since ¢" is in the range of D* and I+ F, is an isomorphism it follows
that ¢ is contained in the range of U 'B,U .which equals the range of
U~ 'B,. Hence S(p) = U(p) = (M B(l,). Moreover, we have,

k

B:'8(¢) = AT*U(p) = U(UTAU) M) = U(I+E,) D" (¢)
= U(I+ By (p)
and sinece U (I + B,)~" is an isomorphism, it follows that B;'8(g) is dense.
Finally, we compute for j >k and any p,
IB78m, 8 B| = |A~* Un, U A = |UI+E) ' D *n, D'(IT+ B,) U
S NTNIT +B) DM + Bl 1T < o0
so the result follows from Proposition 4. B

COROLLARY 1. If A =D-J is a nuclear map, where D is an imjective
diagonal map and for each k we have

II+J Dy
then A generates a nuclear system whose associated space has a Schauder
basis.

Proof. This is immediate from Proposition 6 if we take U to be
the identity map. B

—I <1,
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