Since $s_N(f, x) = o(\log N)$ for a.e. x, we see that $s_N(f, x)\lambda_N(\varphi, t) = o(1)$ for a.e. t, x as $N \to \infty$. By summation by parts we have

$$\sum_{n=1}^{N} a_n(\varphi, t)A_n(f, x) = \sum_{n=1}^{N} A_{n+1}(\varphi, t)\varphi_n(f, x) + \sum_{n=0}^{N-1} A_{n+1}(\varphi, t)\varphi_n(\varphi, t),$$

and thus Theorem 3 completes the proof.

6. We conclude with two remarks.

Remark 4. If one were only interested in the validity of the existence of $\sum_{n=0}^{N} A_{n+1}(\varphi, t)\varphi_n(f, x)$ for a.e. $t, a.e. x$ (instead of every t, then an appeal to the Carleson–Hunt [1, 2] result would suffice. More precisely, if $f \in L^q$ and $\varphi \in BV$, or just $|a_n(\varphi)| = O\left(\frac{1}{n}\right)$, then since $s_n(f, x) = o(\log n)$ for a.e. x, the trigonometric series $\sum A_n(\varphi, t)\varphi_n(f, x)$ is for a.e. x in $L^2(dt)$.

Hence $\lim \sum_{n=0}^{N} A_n(\varphi, t)\varphi_n(f, x)$ exists for a.e. $t, a.e. x$.

Remark 5. It is natural to ask for what subsequences (t_j) it is true that $\lim \sum_{n=0}^{N} A_n(\varphi, t_j)\varphi_n(f, x)$ exists for every t and a.e. x. Here $\varphi = \sum A_n(\varphi, t)$ is in BV and $f \in L_1$. The reader does not know whether $t_j = j$ or $t_j = 2j$ are sufficient. However, it is easy to see that one cannot choose t_j arbitrarily. For, if $\varphi(t) = \sum_{n=0}^{N} a_n(\varphi, t)$, which is in BV, and $t_j = 4j + 3$, then

$$\sum_{n=0}^{N} \sin \frac{t_j}{2} a_n = -\infty,$$

and the above limit does not exist for $f = 1$.

References

Received August 10, 1970
(b) the sequence \(\sum_{i=1}^{n} \tau_i T_{t_{mN}} \) is equicontinuous in \(\mathcal{L}(E, F) \).

(c) \(T = \sum_{i=1}^{n} \tau_i T_i \), the series being convergent in \(\mathcal{L}_{mb}(E, F) \) [resp. in \(\mathcal{L}_{mb}(E, F) \)].

In the last assertion, \(\mathcal{L}_{mb}(E, F) \) denotes the space of linear continuous maps from \(E \) into \(F \), equipped with the topology of uniform convergence over the precompact sets of \(E \).

Corollary 1. If \(F \) is bornological and sequentially complete and admits a net of type \(\mathcal{V} \), any weak decomposition of \(F \) is a Schauder decomposition.

Since \(F \) is sequentially complete and bornological, it is ultrabornological.

Applying the theorem with \(E = F \) and \(T = I \), we obtain that the \(\tau_i \) are continuous. Moreover, the sequence \(\left(\sum_{i=1}^{n} \tau_i f \right)_{mN} \) is equicontinuous. Thus, by the Banach-Steinhaus theorem, it converges to \(f \) if \(\left(\sum_{i=1}^{n} \tau_i f \right)_{mN} \) converges to \(f \) for any \(f \) in a total subset of \(F \). Since the series \(\sum_{i=1}^{n} \tau_i f \) are weakly convergent, the set \(\bigcap_{m=1}^{\infty} L_m \) is weakly total, hence total in \(F \). Moreover, for any \(f \in L_m \), \(\tau_i f = \delta f \), hence \(\sum_{i=1}^{n} \tau_i f \) converges to \(f \).

Corollary 2. Let \(E \) be ultrabornological and let \(F \) be sequentially complete and admit a net of type \(\mathcal{V} \). If \(F \) admits a weak base \(\{ e_i \} \), \(i = 1, 2, \ldots \), such that

\[
q = \sum_{i=1}^{\infty} \lambda_i(g) e_i, \quad \forall g \in F,
\]

and if \(T \) is a continuous linear map from \(E \) into \(F \), then the \(\lambda_i(T \cdot) \) are continuous linear forms on \(E \).

It is an immediate consequence of the theorem, because each \(L_i \) is here the linear hull of \(e_i \) and hence it is closed.

Proof of the theorem. a) Assume that the topology of \(F \) is defined by the system of semi-norms \(Q \).

We denote by \(l_{mb}(F) \) the space of all bounded sequences \((f_m)_{m \in \mathbb{N}} \) of \(F \), equipped with the system of seminorms

\[
g^*(f_m)_{m \in \mathbb{N}} = \sup_{m} g(f_m), \quad q*Q.
\]

Since \(F \) is sequentially complete and admits a net of type \(\mathcal{V} \), it follows from \([3]\) that \(l_{mb}(F) \) admits a net of type \(\mathcal{V} \).

For any \(f \in E \), the series \(\sum_{n} \tau_n T f \) is weakly convergent to \(T f \). Therefore, the sequence of partial sums is weakly bounded, thus bounded, by Mackey's theorem. Hence that sequence belongs to \(l_{mb}(E) \).

Let \(T' \) be the map which, to each \(f \in E \), associates the sequence \(T'f = \left(\sum_{n} \tau_n T f \right)_{m \in \mathbb{N}} \). It is a linear map from \(E \) into \(l_{mb}(F) \).

b) The graph of \(T' \) is sequentially closed in \(E \times l_{mb}(F) \).

Assume that \(T'f \) converges to \(f \) in \(E \) and that \(T'f(m) \) converges to \(\left(h_m \right)_{m \in \mathbb{N}} \) in \(l_{mb}(F) \). Let us prove that, if we write \(h_0 = 0 \), then \(\tau_n T f = h_n - h_{n-1} \) for each \(m > 0 \). It follows therefrom that \(T'(f) = (h_m)_{m \in \mathbb{N}} \), hence the conclusion.

The sequence \((h_m)_{m \in \mathbb{N}} \) converges or converges weakly to \(y \) according as the \(\tau_i \) define a decomposition or a weak decomposition in \(F \). Indeed, let \(q \) be fixed. We have

\[
g(T_f - h_m) = g(T_f - T'_f(m) + \sum_{n} \tau_n T f(m) - h_m) + \sum_{n} \tau_n T f(m) - h_m) \leq \varepsilon/3, \quad \forall m, \quad \forall k \geq k_0.
\]

Since \(T f \) converges to \((h_m)_{m \in \mathbb{N}} \) in \(l_{mb}(F) \), we have

\[
\sup_{m} g(\sum_{n} \tau_n T f(m) - h_m) \to 0
\]

if \(k \to \infty \). Moreover, since \(T \) is continuous, \(T f \) converges to \(T f \) in \(F \). Therefore, for \(\varepsilon > 0 \) given, there exists \(k_0 \) such that

\[
\sup_{m} g(\sum_{n} \tau_n T f(m) - h_m) \leq \varepsilon/3, \quad \forall m, \quad \forall k \geq k_0.
\]

Let us take \(k = k_0 \). If the \(\tau_i \) defines a decomposition of \(TE \), there exists \(m_0 \) such that

\[
g(T f - T f(m)) \leq \varepsilon/3, \quad \forall m \geq m_0,
\]

hence

\[
g(T f - h_m) \leq \varepsilon, \quad \forall m \geq m_0,
\]

and \((h_m)_{m \in \mathbb{N}} \) converges to \(T f \).

Let us consider now the case of a weak decomposition. Let \(S \) be an arbitrary continuous linear form on \(E \). There exist then \(C > 0 \) and \(q \) such that \(|S(g)| \leq C q(g) \) for each \(g \in F \). We have

\[
|S(T f - h_m)| \leq |S(T f - T f(m))| + |S(T f - T f(m) - \sum_{n} \tau_n T f(m)| + |S(\sum_{n} \tau_n T f(m) - h_m)|
\]

\[
\leq |S(T f - h_m)| + C q(T f - T f(m)) + C q(\sum_{n} \tau_n T f(m) - h_m).
\]
For \(\varepsilon > 0 \) given, by the preceding arguments, the two last terms in the last member are less than \(\varepsilon /3 \) for \(i \) large enough. For such an \(i \) fixed, the first term in the last member is less than \(\varepsilon /3 \) for \(m \) large enough, because the \(\tau_i \) define a weak decomposition of \(TX \). Hence \((h_m)_{m=1}^N \) converges weakly to \(T \).

Moreover, \(h_m - h_{m-1} \in I_m \) for each \(m > 0 \). Indeed, since \(T'f^{(i)} \) converges to \((h_m)_{m=1}^N \) in \(L_i (F) \), the sequence \(\tau_m T'f^{(i)} \) converges to \(h_m - h_{m-1} \) for each \(m > 0 \). Thus, since the \(I_m \) are sequentially closed, \(h_m - h_{m-1} \in I_m \).

By virtue of the unicity of the decomposition into the \(I_i \), from \(T \sum \tau_i T' \) we deduce that \(h_m - h_{m-1} = \tau_m T' \) for each \(m \), hence \(T' = (h_m)_{m=1}^N \).

o) By the closed graph theorem (see [2], p. 28), the map \(T' \) is continuous from \(E \) into \(I_0 (F) \). Thus, the sequence \(\sum \tau_i T' \) is equicontinuous and, hence, each \(\tau_i T' \) is continuous.

Since \(\sum \tau_i T' \) is equicontinuous, the last assumption follows from the Banach–Steinhaus theorem.

References

UNIVERSITÉ DE LIÈGE
INSTITUT DE MATHEMATIQUES

Received August 20, 1970 (245)