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STUDIA MATHEMATICA T. XLI. (1972)

On certain linear combinations of partial
sums of Fourier series
by
C. J. NEUGEBAUER (Lafayette, Ind.)

Abstract. Associated with each function ¢(#) of bounded variation is a multiplier
sequence {4j (g, )} which transforms f(»)eLlogL into I! and for which the transformed
Fourier series converges for a.e. i, .

1. For feLt, we let f ~ 3 A, (f, %) be its Fourier series, where 4, (f, #)
= a,c08nx+b,sinne. We write s,(f, %) 2 A;(f,2). Let ¢(z) =
= YA, (p,) be of bounded variation. The purpose of this paper is to study
the linear combinations 2 Agiyi (@, 1)8;(fy 2). Expressions of this type

were used in a study of dlfferenma,tlon of trigonometric series [3]. The
main result which we obtain is the following:

If feLlogL, i.e., if [ |fllog"|fldw < oo, then

n
IimZ'AZ,H((p,t)s,(f, x) = f,(t,) for every t and a.e. x,
—>00 0

fo(t, ®) e L; (dz) for every i, and the Fourier series of f,(¢, #) with respect
to , being obtained from } A, (f, #) via the multiplier sequence A,(p, ?)
= ) A,..(p,1), converges to fo(t, @) for a.e. t and a.e. .

izn

2. It f~) A,(f, @) is in I', then

1 N
L{z) =Z—n— (@ 5inn2 — b, cO8NE) = 2—; By (f, )
1 1

: x n
is-apart from a linear term [ f(t)dt. We let 5, (@) = 3 B,(f,#), and observe
0 1

that |s,(2)| + 5, (#)] = o(logn) for a.e. # [B;, p. 66]. It is easy to see,
using summation by parts, that for a.e. # the following formula holds
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1 —
?17; £T(w, 2) = —- [L{o+20) + L(@—2H) 2L (w)]

sin nh sin?nh __Ei"n”(n—i— ].)h}
_"Z Bul) - —22 T % { (n+1)h
2s8ink 5, (0)
2 2 gin(2n-1)h.
= — 2 %_{_ — sin2nh 4+ — W o (2

If feLlog L, then the conjugate function f ~ Y B, (f, #) is in I* [B;, p. 2667,
and applying the above formula to F we obtain with the obvious notation
2sinh X1 8, (f, @)

8, (f, @ $a (] #) 5
—-—AﬂLm 2h) ~22 ;’H’l - smﬁnh—T o fin (2n+4-1)h,

valid for a.e. # and h >0. ~
Let ¢ = Y a,(¢)cosna+ b, (p)sinne bein ¢* and consider the bilinear
functionsl 8(f, g, @) = 3 dyss(9)8(f; ). We let [l = gl +[i@'l-
THEOREM 1. 7=0
® 18U 25 My < Apllglllifllyy 1 <P < o0j

(i) 18(f ¢ M < Allel (} |fllog™ | fldw +1).

-7
Proof. We will first prove (i). By [57, . 266] we have |is,l,+ 8.l
< A, fllp-

We consider g(z, h) = 2 o 1) sin(2n 1)k, and we note that

g{z, hyeL*(dh) for ae. w, smce 8,(f, ) = o(logn) for a.e. x. Conse-
quently, by Parseval’s formula [5;, p. 157],

I

.. ».

| 180, 2,0 = —| [ 9@, ot myan,
Hence o

184595 My <5 [ loC WpIs' B

The expression [g(-, h)|l, can easily be estimated since

o0

S (fy®) o,
— T gin2nh
2 Z n{n+1)h

1
2 1)h
2 (271,—}—1 %-{—1)8111( e )L‘l

b

27 K
21 (5, 1)} <o {]“(”’2’)

2ginh 2h
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2 sin?nh
n(n+1)h
< K < o by [By, p. 10 (4.17)], the I”(dw)-norm of the middle term is
<A olIfllp. Finally,

The L?(dz)-norm of the last term is<< A4, fllp, and since

A2L(-, 2h)
| 2h

J < 2“,7”_’p < Ap”f”;ﬂ'
.

This establishes (i). The proof of (ii) is the same using, instead of the
LP-inequalities, [s,ll, -+ [8all. < 4 ( [ [f|log* |f|dw-+1) and

A2L(-, 2R)
2h

“ <2(fl.<4( f lf!log*lflderl)
"1 -
[57, p: 266].

Remark 1. The constant A, appearing in (i) satisfies 4 ~Ap as

1 1
p—oc0 and 4, = A4,, E;T? =1 [5;, p. 261, p. 295, Problem 2].

Consequently, as p |1, 4, =0 ((p—l)“}. Hence [5;;, p. 119 (4.41)]
could also have been used to establish (ii). '
The next theorem can be viewed as the p = oo version of Theorem 1.

TEROREM 2. -Let feLlog L. Then for a.e.  there is 0 < M, < oo such
that |8(f, ¢, @) < M,oll, tpsO

~ A
Proof. We know that FfeI' and that Lz) = 2—"(%]{’—90) is ‘aparb

. z. ~ ~ .
from a linear term — [f({)di. Hence L'(z) exists a.e., and L(z) is
] :

continuous. With the same notation as in Theorem. 1 we have

1 T
8t @, 0l <= [ g, W)l1g’ () an.

We estimate |g(x, h)]. We only need to consider % > 0, and since g (z, h)
= g(x, n—h), we may further restrict ourselves to 0 < h < /2. Clearly,.

42T (z, 2h)
2k

<K, < oo, a.e. m, and since s,(f, #) = o(logn) for a.e. ,.

)

\' 2 N 1
e, S/ w)(an—f—l n+1

1

)sin(2n+1)h <K, ,< oo for a.e. .
| .
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) @)
To handle the term Z W

the referee (the writer’s origiyal proof only applied to 1L <p < oo apd

relied upon the Carleson—Funt theorem of the convergence of the Fourier

geries a.e.).
Since Y A,(f, ) is strongly summable a.e. [877, p. 184], we see that

gin?nh we use a suggestion of

iZ]sn(f,m)1<K1< oo, for a.e. @, n=1,2,... For 0 <h <72 we
% 1

let N = [i], and write

h
[ f )| N -]
SalJ = = Ay+B
sin®nh + N+ By-
Z (n+1)k 21: Jg;

Since |sinnh < nh, we see that Ay < K, < co for a.e. #. For By we use
summation by parts to obtain

M
1 1
2 ISn(qJ:; )| <K, _’;2_.{_1{30--—]‘?, for a.e. .

M
Hence L 2 [salf, @) < (N+1) S’ ls"(j’ 2l < 3-K,. Hence for a.e. &,
h n?

N+1 N+1
lg(@, )] < M, < oo, and the proof is complete.

3. The completion of O with respect to |ig] = llplla-+ll¢'l is the
space W of all absolutely continuous functions. Consequently, S(f, ¢, #
can be extended to p<W g0 ag to preserve Theorems 1 and 2. The purpose
of this section is to extend S(f, ¢, z) to p<BV, where BV denotes the
space of all 2r-periodic functions (p of bounded variation. We let V()
be the variation of ¢ over a period.

Levma 1. If f ~ 3 A, (f, %) is leogL and g = 3 a,( (p)cosnw—i—b (¢)
n

sinnw 48 in BV, then 3 ay ()8 (f, @) = 0(1) for a.e.  as n— 0.
0

n

Proof. Let o,(p,#) = 3 a;,008jz-by,sinje be the (0;1) means
0

Vig)

< g it follows easily that [4—ay,| < —
T .

of ¢. Since |ay el

From Theorem 2 we obtain

1Y ity (0| < By(Plonlell,  for e o
0 .
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Since

lonley Me<ligl and lon(e, i = Vion(@)1< Vi) = ],

we see that | 2 Uyj11,08; (fy 2)| < My (f)llgll. Next,

0

- K
| = tsnnalh, o) < o5 Sl 0l =0) for ae o

by strong summability. This completes the proof.
THEOREM 3. Let f~~ 3 A,(f, @) be in LlogL, and let ¢(z) = Ya,(p)

cosn@+ b, (p)sinne be in BV. Then Lm Y a,;., (@)s;(f, ) exists for a.e. .
n=00 0

Proof. We consider the sequence of operators defined by
(T @) = Dty (9)s5(f, ).
0

It is our purpose to show that the hypothesis of Theorem 3 of [4] is satis-
fied with @ (t) = (t+1)log(t-+1), > 0. Since T, is translation invariant
and by the lemma, limsup |7, f(z)| < oo for a.e. #, we only need to verify
that T, is of type (D, @), i.e., there is a constant 4 such that

™

f ¢(lTnf(w)l)dw< [ 2(4|f(2)))de

-7

To prove this, we write T,f(z) = — ff(m—l—t {Z g1 D, }dt where

D;(t) is the Dirichlet kernel. Clearly 2] Gy5q| |D;(8)| < 0, < 0. If we apply
0 .

now Jensen’s inequality we obtain
B (| T.f(2)]) < f {20, |f(w+1)} dt.

From this the desired inequality follows with A = 2-C,.
By Theorem 3 of [4] there is a constant A such that

T

N :
o T > < [ (5 ift@)as,
where T*f(2) = sup |T,f(w)] )
n=0
This weak type estimate implies convergence a.e., and this can be
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verified in the following way. Let ¢(f, #) = limsupT,f(x), f(f, o) =
= liminf T, f(x). If # is & trigonometric polynomial we see that

0<5(f7m)—¢(f, -"Pf t, %) f i, %) 2T*(f—t7m)-
Let a >0 be given. Then
_ F 24
1to: 35, 0)-ptr,0)> i < [ 9% 174 ao
The last integral ean be made as small as we please by taking for ¢ the

(C, 1) means of f [5y, p. 1461
Remark. In the next section Theorem 3 will be used in the following

way. Let @(w) = 3'4,(p, ) be in BY. Then, for each %, 7,0 (%) = p(w-1)
is in BV and a,(z;¢) = An((p, t). Thus, if f~A4,(f, #) is in TlogL, then

for each 7, lim 34y (7, 99400, 0)

by f,(t, @).

4. We wish to study the integrability properties of f,(¢, #). For
that purpose it will prove useful to have the following easily Vemﬁed
properties of a function @eBYV. There exists a sequence {p,} = 0%, e.g.,
@ (@) = 0, (g, #) the (0,1) mean of ¢, such that

@) pul@) > lp(@+0)+g(@—0)] for each g,

(i) el < llolle and V(es) < V{p),

) Y @aa (@) = D @ya(9), a8 m —> oo, for each k.

>k ik

We denote by lglzr = lello+ V()
LemMMA 2. Let T be a trigonometric polynomial of degree n and let e BV.
Then for each t

”Z Az gyt

where ¢, = o(1).
Proof. Let ¢,<0° with the above properties. By (i) of Theorem 1

with ¢ replaced by =,¢,
I 2 Agya( s (T, ) FTC) 3 Aggialpey O <
41

27 |lplpy, We obtain

exists for a.e. . We denote this limit

2, ) o < Ay lelsy [Tl T, 1<p < o0,

Since [lpull = llgah+leuh <

HZ‘ A27+1 @, 8)8;(T

We let k — co and obtain the lemma with ¢, = | 2+‘1 Ayir (g, t)|.
n

s o< AplZl ez -+ 121, \ 2 Agggr (95 9

icm
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TaBOREM 4. Let ¢ = DA, (p, 1)
previous section. Then for each t,

@) Nfels My < 4, !I<P|lel}pr,
@) 1f0, k< Alfp]lw(f flog™ | f|do+1).
Proof. We apply the lemma to I' =s,(f,»

be in BV and let f,(t, x) be as in the

1<p< oo,

) and obtain

I 2 Aupaler Ol Vo < Ap Il (lpllzr +o(1))-

This proves (1). In the remark after Theorem 1, we have noted that
A4, =0 ((p—l)"l) as p | 1. Hence application of [5;, p. 119, (4.41)]
establishes (2) since we may assume, in view of the linearity of f, in ¢,
that [l¢llzr = 1.

Remark 3. If 1,(
w.(“’:m is Zl’ﬂ» ‘P,t f1

is a multiplier sequence. Since |A4;(p,?)| <

2 Ay (g, t), then the Fourier series of

) Where f~ 3 A4,(f, ®). This shows that {i,}f

0||¢]IBV, inequality (1) of

Theorem 4 could also have been obtained by the Marcinkiewicz multi-
plier theorem [5,;, p. 232].

5. We wish to investigate the convergence of the Fourier series of
fy(t, #). We need the following lemma:
1
LemMA 3. Assume that feL' and |f(2,-1)—F()] =o(|10—gt|2)
t — 0. If the Fourier coefficients of f are O (n™

1
—flw,) =0 Togn
‘Proof. The proof is, apart from obvious modifications, the same as
[5;7, p. 63, theorem 10.7].
ZA P,

THEORDM 5. Let f ~ 3 A,(f,) be in LlogL, and let p(t) =
be in BV Then for a.e. t the Fourier series of hmZA27+1((p, 1) 8;( f,

n—>

%) for some & > 0, then s, (f, 2o) —

as 1 — oo.

= f,(t, @) converges for a.e. .
Pro of. From Theorem 4,

Aoy T Z Ay (g, 7).

_Z‘A%—H @, 1)
obtam that

1
el ) = $O—ewosle ) = 0o

fq)(ti @) ~ Zln(% t)An(fv ), where
It is easy to see that u(f) = 3[p(t)— e+ )]

Since w'(f) exists a.e. we can apply the lemma aJnd

) for a.e. t.
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Since sy (f, #) = o(logN) for a.e. #, we see that sy(f, #)in(p, ?) = o(1)
for a.e. t,# as N — co. By summation by parts we have

N
D hale, ) 4,(f, )

and thus Theorem 3 completes the proof.

N-1
= D7 gy (9s 0)5;(f, 0) +x(F5 0) Ax (0, 1),

§=0

6. We conclude with two remarks.
Rema.rk 4. If one were only interested in the validity of the exigtence

of hmZ Aoy, 0)85(fr @
an appea,l to the Carleson—Hunt [1, 2] result would suffice. More precisely,

) for a.e. ¥, a.e. » (instead of every ¢), then

if feI* and peBV, or just |a,(p) = O (Z)’ then, since s, (f, #) = o(logn)

for a.e. x, the trigonometric series >4, (¢, £)s,(f,
Hence hm §‘ A, (¢, 1), (f, 2)
T

) is for a.e. » in L2(dt).
exigts for a.e. ?, a.e. .

Remark 5. It is natural to éJsk for what subsequences {7} is it true
that Ex:ozo‘ 4;,(9,0)8(f, v) exists for every ¢ and a.e. . Here ¢ = 3'4,(p, 1)

isin BV and feLlogL. The writer does niot know whether 4; = j or 4, = 2j
are sufficient. However, it is easy to see that one cannot choose {i;} arbi-

trarily. For, if ¢(f) =2 st

,Whlch is in BV, and 4 = 4j+-3, then

sing; /2
2~—f~/— = —oo, and the above limit does not exist for f = 1.
3 ‘
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On weak and Schauder decompositions

by
M. DE WILDE (Lidge)

Abstract. We prove a general result about weak and Schauder decompositions
which extends the well-known equivalence between weak and Schauder bases in
Fréchet spaces.

All the spaces considered in this paper are locally convex topologmal
vector spaces.

Let F be such a space. Consider a vector subspace L of F' and assume.
that there exists a sequence of vector subspaces L; such that, for each

feL, we have  w
f=2Ffu feli
i=1

where the f; are uniquely determined by f and the series converges in
the topology (or the weak topology) of F. We write F,, for F equipped
with its weak topology.

The maps 7; defined from L into L; by =,;f = f; are trivially linear.
Moreover, each 7; is the identity in L nL; and 7, =0 in L nI; for
each § #14. .

The sequence L; is called a decomposition (resp. a weak decomposition)
of I into the L,. It is a Schauder decomposition if the v, are continuous.

In this paper, we shall use the closed graph theorem of [2], which
states that if T is a linear map from an wultrabornological space E into
a space F admitting a net of type € and if the graph of T is sequentially
closed in E X F, then T is continuous.

We refer to [2] for the definition of nets.

TEEOREM. Let B be an ultrabornological space and let F be sequentially
complete and admit a net of type %.

Let T be continuous from B inio F and assume that its range TH admits
a weak decomposition ('resp a decomposition) into sequentially closed sub-
spaces L; of F,

= yT«cg: Tigelsy,
Then, =1
(«) the ©,T are continuous from H into F,

VgeTE.
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