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From (2), one has that for almost all reQ2

[1()7 0y ) p(ds) = [f(s)g(s)u(ds)(r)

whenever feL" is simple. Since simple functions are dense in LY, it follows
that for almost all 7€ Q. t*(2) (r) = [ h(s)§ (s, 7) u(ds)for he LY. Arguments
Q

the same as those used in the necessity show that
() = [ (s, rudn)  ae
Q2

for all feL®. The fact that ¢ is of finite double norm follows immediately
from (c). m
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On shrinking basic sequences in Banach spaces*

by

DAVID W. DEAN (Columbus), IVAN SINGER (Bucharest)
and LEONARD STERNBACH (8. Carolina)

Abstract. In § 1 we prove that a Banach space F with a basis {z,} contains
a subspaco with a separable conjugate space if and only if {z,} admits a shrinking
block basic sequence. Hence, a Banach space F contains a subspace with a separable
conjugate space if and only if E contains a shrinking basie sequence. In § 2 we prove
that if B has a subspace with a separable conjugate space, then E* (the conjugate
of E) has a quotient space with a basis. In § 3 we prove that if & has a basis, then every
shrinking basic sequence in E has a subsequence which can be extended to a basis
of . We also raise some related unsolved problems.

Introduction. A sequence {z,} in a Banach space F (we shall assume,
without special mention, that dim E = co and that the scalars are real
or complex) is called a basis if ¥ if for every reF there exists a unique

oo
sequence of scalars {a,} such that » = ) a,4;. A sequence {z,} = E is
i=1 B
said to be a basic sequence if {z,} is & basis of its closed linear span [z,].
A sequence {z,} c F is called a block basic sequence with respect to a se-

My
quence {y,} < B if it is a basic sequence of the form z, = Z By #=0
i=dy 141

(n =1,2,...), where {m,} is an increasing sequence of positive integers
and m, = 0; it is well known and easy to see that if {y,} is a basic sequence,
then {z,} is necessarily a basic sequence. A basic sequence {z,} = B is
called shrinking, it lim|jy |y ¢ ..l =0 for all yefz,1*. Say that a basic
n

sequence {z,} can be ertended to o basis of E if there exists a basis {2}
of B and a sequence of positive integers {k,} such thatz, = 2, (n =1, 2, ek

In §1 of the present paper we shall prove some results on the existence
of shrinking basic sequences. Among other results, we shall prove that
if B has a basis {x,}, then E contains a subspace & having a separable

i

* The work of the first author was partially supported by NSF Grant GP9037.
The second author was on leave from the Institute of Mathematics of the Romanian
Academy of Sciences.
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conjugate space if and only if {#,} admits a shrinking block basic sequence
{,}. Furthermore, we shall show that a Banach space E contains a sub-
space having a separable conjugate space if and only if ¥ contains a shrink-
ing basic sequence. We shall also raise some related unsolved problems.
In § 2, using the results of § 1, we shall make a contribution to the (un-
solved) problem of the existence, for every Banach space F, of a quotient
space with a basis, by proving that if F contains a subspace having
a separable conjugate space (in particular, if F* is separable), then E*
has a quotient space with a basis. Finally, in § 3 we shall make a contri-
bution to the (unsolved) problem whether every basic sequence in a Banach
space F with a basis can be extended to a basis of E, by proving, among
other results, that if ¥ has a basis, every shrinking basic sequence in
E has a subsequence ‘which can be extended to a basis of .

§ 1. On the existence of shrinking hasic sequences.

PrOPOSITION 1. Let {1,} be a basis of a Banach space E with a sepa-
rable conjugate space B*. Then {z,} has a shrinking block basic sequence.
Proof. Let {g,} be a dense sequence in B*. Then, since

(1) dim[@, 1) - Z (1) (n+2) 71] =n+1, codimglg, ..., g, <,
3

2

there exist (see e. g. [20], Lemma 1), elements

(2') ' zns[m n(n+1) 3009 w(n-l—l)(n—I—Z) ~1] N [gli ey gn]L (77‘ = l) 2’ )
2 2 .

such that |zl =1 (» =1,2,...), where G, = {zeH |g(2) =0 for all
geG}. Obviously, {2,} is a block basic sequence with respect to {,}. We
claim that {e,} is shrinking. Indeed, let ¢ >0 and ye[z,]" be arbitrary
and let g<B* be an extension of . Since {g,} is dense in B*, there exists
an index N = N(e) such that ||g—gyll <& By (2), we have gy(z,) =0
for n > N, hence gy [[zwznﬂ,m} = 0 for n > N. Consequently,

19 syl = 91t
= =03 [ppn A < lg— gyl <& (n= ),

and thus {z,} is shrinking, which completes the proof or Proposition 1.
The converse of Proposition 1 is not valid, as shown for example by
B = ¢y I' and @,,_, = {e,, 0}, &, = {0, ¢,}, where ¢, = {0,...,0,1,0,...}

n—1
(n =1,2,...). However, we raise

ProBLEM 1. Let {x,} be & basis of a Banach space E. If every block
- basic sequence with respect to {w,} (respectively, every subsequence of {m,})
has a shrinking block basic sequence (rvespectively, a shrinking subsequence),
then is B* separable? Moreover, is {z,} o shrinking basis of B9
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From Proposition 1 we obtain the following result, in which the exis-
tence of a basis is no longer assumed:

PrOPOSITION 2. If F is a Banach space with a separable conjugate
space B*, then every basic sequence in E has a shrinking block basic . se-
quence. .

Proof. Let {y,} be a basic sequence in E. Then, since E* is separable,
so is [y,]%, whence, by Proposition 1, {y,} has a shrinking block basic
sequence.

PrOBLEM 2. Is the converse of Proposition 2 valid? That is, if E is
a Bamach space such that every basic sequence in B has a shrinking block
basic sequence, is E* separable :

Proposi’oibn 1 above gives a sufficient condition in order that a basis
{z,} of a Banach space ¥ have a shrinking block basic sequence. A neces-
sary and sufficient condition is given in

TuEOREM 1. A Banach space E with a basis {&,} contains a subspace
@ with o separable conjugate space G if and only if {x,} has & shrinking
block basic sequence. i

Proof. Assume that B contains a subspace G which G* separable.
Then, by [2], Theorem 3 and Corollary 2, & contains a basic sequence {Ynt
equivalent to a block basie sequence {u,} with respect to {z,}, i. e. there
exists an isomorphism T of [y,] onto [u,], such that T'(y,) = u, (n =1, 2,
...). Since G* is separable, so is [y,]", whence, by Eroposition 1, {y,} has

n

L
a shrinking block basis sequence {z,}, say 2, = > ey, (n=1,2,...).
. My, mf;mﬂ_ 1+l
Then, obviously, T(z,) = Y &T@y) = 23 a&u (w=12,..) i
{=my_y+1 i=my,_1+1

a shrinking block basic sequence with respeet to {u,}, whence also with
respect to {z,}.

Conversely, if {,} has a shrinking block basic sequence, say {z.},
then obviously G = [2,]is a subspace of F with @ separable, which com-
pletes the proof of Theorem 1.

We recall that a Banach space X is said to be somewhat reflevive
[5] if every infinite dimensional subspace of X contains an infinite dimen-
sional reflexive subspace. A basic sequence {z,} in a Banach space Fis

n

called boundedly complete if the relation sup | ¥ ;2] < co implies that
n i=1

o]
the series ) a;2; converges.
i=1
COROLLARY 1. If o Banach space B has a boundedly complete basis
{z,} and if B* is sevarable, then B is somewhat reflexive.
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Proof. Let G be an arbitrary infinite dimensional subspace of I.
Then by [2], Theorem 3 and Corollary 2, @ contains a basic sequence
{2,} which is equivalent to a block basic sequence {y,} with respect to
{2,}. Since by our hypothesis [y,]" is separable, from Proposition 1 it
follows that {y,} has a shrinking block basic sequence {u,}. Since {u,}
is also a block basic sequence with respect to the boundedly complete
basis {z,}, the basic sequence {u,} is boundedly complete. Hence, by
[7], Theorem 1, [u,] is a reflexive subspace of [y,]. Since {z,} ~ {y,}
it follows that [z,], whence also @, contains a reflexive subspace, too,
which completes the proof. .

We recall that & Banach space E is called [3] quasi-reflexive, if dim
B |z(B) < oo, where = denotes the canonical embedding of B into E**.
Since every quasi-reflexive Banach space with a basis satisfies the condi-
tions of Corollary 1 (by [4]), it follows that every quasi-reflexive Banach
space with a basis is somewhat reflexive, a result obtained with different
proofs in [5] and [21].

THEOREM 2. A Banach space B contains an infinite dimensional
subspace having a separable conjugate space if and only if B contains a shrink-
ing basic sequence.

Proof. Assume that F contains a subspace G with dim ¢ = oo
such that G* is separable. By virtue of [1], p. 238 (for a proof see, f01:
example, [2]), & containy a basic sequence {z,}. Since @* is separable
{®,} has a shrinking block basic sequence, by Proposition 2. 7

Conversely, assume that B contains a shrinking basic sequence {z,}.
Then [«,]* is separable, which completes the proof of Theorem 2. )

Let us now raise some related unsolved problems.

. PROBLEM 3. If F has o basis and B* is separable, does E have a shrink-
ing basis %

. By Proposition 1 and [22] it is known that if ¥ has a basis and E*
is separable, then F has a shrinking basic sequence {¥,} which can be
extended to a basis of E. However, we do not know whether {y,} can be
extended to a ghrinking basis of E. ‘ i

We recall that a basis {f,} of a conjugate Banach space I* is said
to be al'rejtro—bas@'s of E*, if there exists a basis {z,} of B such that f,(a)
= 0y (4,5 =1,2,...). If the answer to Problem 3 were affirmative LSenjy
{,} would be a shrinking basis of B, then the sequence {fu} = B 7Wit]l
fi(arj) = 0y (i,J = 1,2,...) would be a retro-basis of B, Thisnwould solve
in 1;Jhe a.Efirmat;ive the following two problems ([18], Ch. IT, § 4, Problems
%.15’;01)] :I]Illdg 24 ), the second of which is obviously equivalent to

(1) If E has a basis and E* is separable, does E* have a bagis?

(2) If F has a basis and B* is separable, does E* have a retro-b;nsis?

©
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Since in the above case {f,} is also a boundedly complete basis of
E* (by [17]), the following question arises naturally:

PROBLEM 4. Let B* have a basis. (a) Does E* have a boundedly complete
basis ? (b) Does E* have o boundedly complete basic sequence ! ({197, Ch.
111, § 2, Problem 3.8). (¢) Does E* have a boundedly complete block basic
sequence? (4) Is E* isomorphic fo the conjugate space of « Banach space
with a basis?

Tf the answer to Problem (4a) were affirmative, then by [81, Theorem
10, the answer to Problem (4d) would be affirmative, too. Let us also
mention the following related problem of S. Karlin [8]: If E* has a Dbasis,
does F have a basis? Again, if the answer to Karlin’s problem were
affirmative, then, obviously, the answer to Problem (4d) would be affirm-
ative.

PROBLEM 5. Let B* be separable. (2) Does E* have a boundedly complete
basic sequence? ([19], Ch. ITII, § 2, Problem 3. 8). (b) Does every subspace
T of B* have a boundedly complete basic sequence

As has observed W. J. Davis, the answer to problem 5(a) would
be obviously affirmative if E would have a quotient space E|G with
a shrinking basis.

In order to give another approach to these problems let us observe
that the technique of the proof of Proposition 1 gives the following result,
which is also useful for other applications:

PROPOSITION 3. Let B be a Banach space with a basis {z,}. Then every
sequence {y,} = B with dim [y,] = has @ block basic sequence which
is equivalent to a block basic sequence with respect to {®,}.

Proof. We may assume (omitting, if necessary, a suitable subse-
quence of {y,}), that dim [¢ ups 1]: nt+l(n=12,...).

Yoo Yy

E)

Then, as in the proof of Propo_sition 1, there exist elements

(3) Zy € [.7/_11()1+1) ?

---ayml;)@ﬂ_l]n[fn“-:fnh, (n=1,2,...)
3 )

such that e, =1 (n =1,2,...), where {f;} < B, fi(x;) = 6. Hence,
by [2], Theorem 3, {z,} has a basic subsequence (which is obviously a block
basic sequence with respect to {y,}) equivalent to a block basic sequence
with respect to {«,}, which completes the proof.

COROLLARY 2. Let E be a Banach space with a basis {x,}.

(a) If {m,} i an unconditional basts of B, then every sequence {y,} = B
with dim[y,] = oo has en unconditional block basic sequence.

(b) If {w,} is a boundedly complete basis of B, then every sequence
{y,} = B with dim[y,] = oo has a boundedly complete block basic sequen e.
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By Corollary 2(b) the answer to Problems 5 and 4(b), (¢) would be
affirmative, if the answer to the following problem, suggested by W. J.
Davis, is affirmative.

ProBLEM 6. If B* is separable or if B* has a basis, can B* be embedded
into & Banach space with a boundedly complete basis?

Let us also mention the following related question of A. Pelezynski
{[13], Problem 1): If B is separable, can E* be isomorphically embedded
into a conjugate space with a basis ? '

CoroLLARY 2. Let E be a Banach space. Then every sequence {y,} < B
with dim[y,] = oo has a block basic sequence.

Proof. It is sufficient to embed [y,] into O([0,1]) and to apply
Proposition 3.

COROLLARY 3. Let E be o Banach space with a basis. -

(@) If B contains an wnconditional basic sequence, then every basis
. of B has an unconditional block basic sequence.

(b) If B contains a boundedly complete basic sequence, then every basis
of E has a boundedly complete block basic sequence.

Indeed, this follows from Proposition 3 and from the fact that every
block basic sequence with respect to an unconditional (boundedly com-
plete) basic sequence is unconditional (respectively, boundedly com-
plete).

-From Corollary (3 b) it follows that Problems (4 b) and (4 ¢) above
are equivalent. On the other hand, it is an open problem raised by C.
Bessaga and A. Pelezyniski [2], whether every Banach space I satisfies
the assumption of Corollary (3 a), i. e. whether every Banach space contains
an unconditional basic sequence. By virtue of Corollary (3 a) and of the
fact that every Banach space contains a subspace with a basis, this prob-
lem becomes now equivalent to the following:

PROBLEM 7. Let B be o Banach space with a basis {®,}. Does {x,} have
an unconditional block basic sequence ? ’

By a well known theorem of B. J. Pettis [16], a separable Banach
space B is reflexive if and only if B is separable and F is weakly complete.
This, together with Problem 3 above and with [7 1, Theorem 1, suggests
the question, whether every weakly complete Banach space with a basis
has a boundedly complete basis. The answer is negative, since there
exists a subspace of I* which has ‘a basis but has no boundedly complete
basis [9]. However, since this space obviously has a boundedly complete
basic sequence, it is natural to ask

PROBLEM 8. (a) Does every weakly complete Banach space contain
& boundedly complete basic sequence ? (b) Does every basis of a weakly
complete Banach space have a boundedly complete block basic sequence %

©
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While Theorem 2 above characterizes Banach spaces which contain
at least one shrinking basic sequence, it is known that all basic sequences
in a Banach space F are shrinking if and only if ¥ is reflexive ([17], [11]).
It is natural to raise the problem, what intermediate situations occur.
We recall that a basis {z,} of ¥ is called [20] k-shrinking, where k = 0
is an integer, if codimg[f;] = dimE*/[f,] =k, where {f;} = Ei‘, filx)
=6;(4,j =1,2,...). For k =0 the 0-shrinking bases are nothing else
than the shrinking bases [7]. Combining the results of [12], [20] and
[4] (see also [21]), we obtain the following result: Let n > 0 be an integer.
All basic sequences in E are k-shrinking, where k< n, if and only if F
is quasi-reflexive of order < (this result is intermediate bety%n 13.he
above two results, since if all basic sequences in E are %k-shrinking, with
k< m, then F has also a shrinking basic sequence [21], [4]).

Let us introduce the following generalization of k-shrinking bases:

DEFINITION 1, We shall say that a basis {z,} of a Banach space E
is quasi-shrinking if the subspace [f,] of E*, where f;(z;) = 0 (i,]
=1,2,...), is complemented in B*.

Obviously, every k-shrinking basis (k> 0) is quasi-shrinking. Thus,
for instance, the unit vector basis of ¢, is quasi-shrinking. On thg other
hand, ¢, also has non-quasi-shrinking bases, e. g. such is f‘the Llndens--
trauss basis” [6] of ¢,. Let us also observe that every basis of a quasi-
reflexive Banach space ¥ with a basis is quasi-shrinking (and hence so
is every basic sequence in any guasi-reflexive space) [20]. On the other
hand, every basis of I* is non-quasi-shrinking, since no separable s“ub{‘spja.ce
of m is complemented in m. It is also easy fo see that every (infinite)
basic sequence in I* is non-quasi-shrinking. :

PROBLEM 9. Characterize those Bamach spaces with bases in which
(a) there ewists’ a quasi-shrinking basis; (b) all bases are quasi:shrmkvi'r},g.
Characterize those Banach spaces B in which (a) or (b) holds, with “basis”
replaced by “busic sequence” (we do not assume that B has a basis).‘(c)Cham?w-
terize those spaces B with a basis {&,} in which (a) or (b) holds, with “basis”
replaced by “block basic: sequence with respect to {®,}".

DEFINITION 2. We shall say that a basis {z,} of a Banach space ¥ ii
co-shrinking, if it is quasi-shrinking and eodimg. [ f,] = oo, where {f,} =« E
filwy) = 8y (4,5 =1,2,...).

Thus, a quasi-shrinking basis is either k-shrinking for some %, 0 < k
< o0, Or oo-ghrinking. )

An example of an co-shrinking basis of ¢, can be obtained as follows:
Let B = (B, X By X ...),, = 6, where B, = ¢ (n =1,2,...). Then the ba-

7
i 2 () — = 0,0,...
sis {w;} = {2V} X {={} X ... of B, where z}" _kg; er = {1, : ,1,0,0, ...}

! -
(j,m =1,2,...; ¢ = the k-th unit vector in ¢), is an oco-shrinking
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basis of E = ¢,.. Indeed, {#®} is a I-shrinking basis of E, = ¢,
[171, whence {#;} is a basis of B = ¢, [15], with codimyu[f;] = oo, where
file;) = 8; (4,5 =1,2,...). Finally, since there exist uniformly bounded
projections of I} onto [f®™1, where f{@) =6y (h,d,n =1,2,...),
the subspace [f;] = [fPIx [fP1x ... is complemented in B (D*
X By x ...)p [10], and hence {»;} is an oco-shrinking basis of E =
On the other hand, every basis (and every basic sequence) in a qmmsi-
reflexive Banach space is non-oo-shrinking [20]. One can ask the ques-
tions of Problem 9 with “quasi-shrinking” replaced by *oo-shrinking”.

§ 2. Existence of quotient spaces with bases. The following problem
hag been raised by A. Pelezyiski [13]: Does every Banach space have
a quotient space with a basis? Using Theorem 2 of § 1, we shall prove
now that for a large class of conjugate Banach spaces, containing all
separable conjugate spaces, the answer is affirmative.

TarOREM 3. If a Banach space B contains o subspace hoving o separable
conjugate space (in particular, if B is separable), then B has a o(E*, B)-
losed subspace I" such that the quotient space B* |I" has a boundedly complete
basis. '

Proof. By Theorem 2, F containg a shrinking basic sequence {z,}.
Then, by [17], the sequence {(pn} < [2,])" with L}’)l( ;) = 0;; is & boundedly
complete basis of [p,] = [#,]". Hence, since [z,]* = E* /[z 1., the subspace

= [x,]* of E* has the required properties, which comple’ce,s the proof.

CoROLLARY 4. If a Banach space I contains a subspace having a sepa-
rable conjugate space (in particular, if B* is separable), then there ewists
a continuous linear mapping of B onto the conjugate space X* of « Banach
space X having o basis.

Proof. By Theorem 3, F* has a o(H, )-closed subspace I" such
that B*/I" has a boundedly complete basis {g,}. Then, by [8], B*/I" is
isomorphic to the conjugate space X* of a Banach space X having a basis
and there exists a continuous linear mapping of B* onto F* /I (namely,
the canonical mapping). .

PrOBLEM 10. Let B be either (a) o Banach space such that E* is sepa-
rable or (b) a subspace of @ separable conjugate Banach space X*. Does E
have o quotient space with « basis ?

§ 3. Extension of basic sequences to bases. A. Pelezyniski [14] has
raised the problem whether every basic sequence in a Banach space B
with a basis {z,} can be extended to a basis of B (see the Introduction)
and has conjectured that the answer is negative. Recently M. Zippin
[22] has given an important class of basic sequences which can be extend-
ed to a basis of B, namely, he has proved that every block basic sequence
with respect to {#,} has this property. In the present section we shall

icm
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prove that for a large class of sequences, containing, among others, all
shrinking basic sequences, there exist subsequences which can be extend-
ed to a basis of H.
TororeM 3. Let {x,} be a basis of a Banach space E, with biorthogonal
functionals {f,} and let {y,} be & sequence in E such that inf|y,| >0,
n
lilnfj(?/n) =0(=12.

N=r00

be extended to a basis of H.
Proof. Let 0 < ¢, <6<

). Then {y,} has a subsequence {4} which can

<yl (n =1, 2, ...) be such that

K+1
" PEEA §,

n=1

where K is the consta,nt of the basis {#,} (i. e. the.infimum of all 3/ such

that || 2 a2 <

By [2], Theorem 3 a,nd its proof, there exist a subsequence {u,7 Y oof {y.}
and a block basic sequence {z,} with respect to {x,} such that

M|| 5‘ a;z;)| for all sealars a, ..., @,y and all n, m).

H?/p,ﬁzan—a—"— n=1,2,...).

We shall show that {yz, 1 can be extended to a basis of B, which will
complete the proof. Since s, < d < |yl (» =1,2,. ..), we have
’ é
el 1, 1= 0, =2l 125 (2 =1,2,...
By [22], the block basic sequence {z,} can be extended to a basis {u,}
of K, hawng basis constant no larger than 18K (K1), say u, = 2,
n=1,2. Let {g,} = E* be the sequence biorthogonal to {u,,} Then
for every er we have

my (2)2,]| 218K (K+1
(g, ) = LDl  BISHEED)
n leal B
2
2 K{K+1
whence [g,,, || < ~‘——((3—J—r~l (n=1,2,...). Put
”‘n Jp“ (‘n = 17 27 )7
u o= (Je{m}).
Then, taking into account (),
(72K(1L+1)

& < 1,

5’ ol oy sl = 2 160, 195, 20l <

Whenee (see e. g. [2], Theorem 1) {v,} is a basis of B, which completes
the proof.

n=1
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COROLLARY 5. Let B be o Banach space with a basis. Then every infin-
ite dimensional subspace G of E contains o basic sequence which can be
extended to a basis of H.

Proof. By [2], proof of Corollary 2, @ contains a sequence {y,}
satisfying the conditions of Theorem 3.

For its special interest, let us state séparately

COROLLARY 6. Let B be o Banach space with « basis and let {y,} be
a sequence in B such that int|ly,| >0, y, =0 weakly (e.g., in particular,

n
a shrinking basic sequence). Then {y,} has a subsequence which can be extend-
ed to a basis of B.

Proof. Obviously, {y,} satisfies the conditions of Theorem 3.

CoROLLARY 7. Let E be a Banach space with a basis {,}. Then every
sequence {y,} < B with dim[y,] = co has a block basic sequence which
can be extended to o basis of E.

Proof. As in the proof of § 1, Proposition. 3, there exists a sequence
{e,} = B satistying (3), where {f,} = B* fi(#;) = 6. Hence, by Theorem
3, {2,} has a bagic subsequence (which. is obviously a block basic sequence
with respect to {y,}) which can be extended to a basis of E. This completes
the proof.

Finally, let us give the following sharpening of Proposition 1 and
Corollary 7:

THEOREM 4. Let B be o Banach space with a basis {x,} and with a sepa-
rable conjugate space B*. Then every sequence {y,} < B with dim[y,]= oo
has o block basic sequence which is shrinking and which can be emtended to
a basis of H.

. Proof. By Proposition 3, {y,} has a block basic sequence {z,}. Since
B is separable, by virtue of Proposition 2 {z,} has a shrinking block basic
Uy

[lecal
U,

respect to {z,}, whence also with respect to {y,}. By Corollary 6, {” lﬁ}

u,
ha.s & subsequence {v,} (which iz obviously a block basic sequence wﬁth
respect to {y,}), which can be extended to a basis of B. This completes
the proof of Theorem 4.

sequence {u,}. Then{ }N a shrinking block basic sequence with

) Remark. In the results of this section, if the initial basis {x,} of
E is k-shrinking (k-boundedly complete), then one may choose the 'new
(extended) basis of F to be k-shrinking (respectively, k-boundedly com-
plete). Indeed, as observed in [4], Remark 1, in the Zippin extension of
block basic sequences to bases the orders of shrinkingness and of bound-
edly completeness of the new (extended) basis are the same as the corre-
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sponding orders of the initial basis {x,} and, obviously, the property of .
being a k-shrinking (%-boundedly complete) basis is conserved by iso-
morphisms.
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