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.Functional theory of geodesic fields
and its applications to the calculus
of variations of multiple integrals
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Abstract. The author, using the notion of a bundle of the Banach or Fréchet—
Schwartz type, formulates an abstract theory of geodesic fields. These fields lead to
some sufficient conditions for a minimum of a given function. The Fréchet—Schwartz
bundle variant of the theory is applied to the caleulus of variations for multiple inte-
grals. In this way a unified approach to the probléms with common and, with movable
boundary is obtained. For the problems with common boundary the classic Lepage
geodesic fields appear to be very special cases of abstract fields. The abstract condition
for a minimum turns out to be the old Weierstrass condition. For the problems with
movable boundary a class of abstract fields is construeted on the basis of classic Lepage
fields for common boundary problems and the sufficient condition obtained seems
to be reasonable. Thus not only Carathéodory fields but all Lepage fields prove useful
for problems with movable boundary.

1. Introduction. The notion of geodesic fields was introduced to
the calculus of variations by Weijerstrass already in the 19th century.
At first a geodesic field was defined t0 be a congruence of extremal curves
satisfying some additional conditions ensuring the existence of minimal
curves in the field. Attempts to give a similar construction for the common
boundary variational problems with multiple integrals resulted in two
different expositions: one given by Carathéodory (1926), and the other
by de Donder and H. Weyl (1936). It was in 1937 that Lepage showed
the "Carathéodory and the de Donder-Weyl geodesic fields only to be
examples taken from a continual variety of all possible cases. Lepage’s
ideas was developed by Boerner and obtained its final shape in 1953 in
Paul Dedecker’s paper [2]. Boerner, using the Carathéodory fields, for- -
mulated also a sufficient condition for an extremum for the problems
with movable boundary. In 1967 A. Liesen gave a local construction of
a broad class of Lepage geodesic fields, formulating at the same time
Dedecker’s results in the langnage of modern differential geometry.

In recent years systematic studies of non-linear analysis, started
by Eells, Palais, and Smale, have resulted in a series of papers by Kijowski,
Komorowski and Szczyrba ([5], [4], [3]), where a new approach to the
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calculus of variations has been presented. The notion of a manifold mod-
elled on a locally convex space of the Fréchet—Schwartz type has
become the basic notion of this approach.

In the present paper we attempt to formulate the theory of geodesic
fields in this language. In the first part of the paper, starting from
a functional definition of wvariational problems, we give an abstract
definition of a geodesic field which allows us to prove abstract
analogues of the two well-known theorems: one (formulated by Dedecker)
stating that a surface embedded in a geodesic field iy an extremal,
and the second giving the famous Weierstrass sufficient condition for
an extremum. ]

In the further two parts of the paper we study, as examples of abstract
problems, in turn: the common boundary and the movable boundary
problems with multiple integrals. The classic Lepage geodesic fields,
which lead to a useful Weierstrass condition for an extremum, are proved

. to be very special cases of abstract fields. :

There is an opinion, originating with Boerner, that among Lepage
fields only the Carathéodory fields are useful in the investigation of
problems with movable boundary. In the 3rd part of the present paper
it is shown, however that all Lepage fields may be applied in this field.
Namely, suppose we are given an extremal manifold of a problem with
movable boundary embedded in a Lepage field for the respective problem
“with common houndary. The author constructs a geodesic field for the
problem with movable boundary with the initial manifold embedded
in it. A reasonable sufficient condition for an extremum to which the
field just constructed leads comprises, besides the respective sufficient
condition for the problem with common boundary, a condition obtained
from the estimation of boundary expresions only. If the initial Lepage
field is a Carathéodory field, then our sufficient condition obtained in
the way described above admits a geometric interpretation. In the final
part of the paper, following Boerner's idea, we give an exact formulation
of this interpretation.

Thus our abstract theory of geodesic fields appears to lead to a-uni-
fied approach to the integral pmblems with a common and with movable
boundary.

. Some results published in the present paper were announced earlier
in the General theory of geodesic fields (Bull. Acad. Polon. Sei., Ser.
Sei. Math. Astronom. Phys., 7 (1970), pp. 363—366).

. The author is grateful to Professor K. Maurin for suggesting the
problem and for hiz valuable remarks and assistance in the preparation
of the present paper.

" 2. Abstract theory of geodesic fields. Let X be a manifold of the
Fréchet-Schwartz (FS-manifold) type or of the Banach type of class C.
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Let f: X — R' be a ¢*-morphism and 4 — a distribution of subspaces
of the tangent bundle on X.

DEFINITION 1. We call #< X a critical point of the variational problem
(f, 4) if T,f|A(@) = 0.

Suppose we are given an additional structure: a manifold ¥ (of the
same type as X) and C*-morphisms II: ¥ — X, and D: X - Y (D being
a section of II, i. e, I o D = Tdy).

k DEFINITION 2. We say that (I7, D, g, s) is a geodesic field (g.f.) of

the problem (f, 4) if

@) g: YR is a C-morphism, goD =f,

(i) Tpng gives zero when acting on Il-vertical vectors (weX),

(iii) s is a (*-section of I,

(iv) T'(gos)|4 = 0.

We say that (II, D, g, 8) is a geodesic field in the weak sense (w. g.f.)
of (f, 4) if it satisfies (i) and (i), s: X+ Y, Ilos = Idy, and

(v) if t -, is an integral C'-curve of A, then {—s(w;) is of class
(¢! and the derivative of the mapping t— gos(x;) vanishes.

Remark 1. Obviously a g.f. is a w. g. .

TurorEM 1. Let (I1, D, g, s) be a g. f. and let 2 be embedded in the field
(i.e. s(w) = D(@)). Then » is a oritical point.

Pro of Let ée¢A(z). We must show that T,f(¢) = 0. Indeed,

Tof(6) = T(g © D)(6) = Ty g(LoD(e)) = Lo g(Tas(6)) = To(g 0 8)(6) = 0
as T, D(e)— T,s(e) is a II-vertical vector tangent to ¥ at D(w).
DrrFINITION 3. The Weierstrass function for a field (7, D, g, s) is
defined to be  =f—gos. B is a mapping of X into R
Now let us consider an integral C-curve of A: ]—1,1[21—> e X.
Let (I, D, g, s) be a w.g.f. and let D(x)) = s(w). Then

J{=) f(%) = f(#,)— g 0 D(m) =f(97t)”‘903(-’”o)
f 908(%)J

=f(@)—gos(z)+ dé = f(w)—gos(z).

Hencel ‘
(1) fm)—f(me) = Blzy).

‘ THEOREM 2. Let @, be embedded in a w.g. f. (I, D, g, 8) and
(2) B () >‘0 (B(x)<0) for &  m,.

Then f has at z, an essential minimum (maximum) in the set of all pnmts
connectable with z, by means of integral C*-curves of 4.

Studia Mathematica XL.3 K
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If we replace the condition (2) by
@" BE@)=0 (B@<0)
and cancel the word “essential”, the assertion given above will remain true.

Proof. Our statements are obvious in virtue of (1).

In the further part of the paper we study two examples of variational
problems, for which the conditions for an extremum given by Theorem
2 simplify the question considerably and are of practical significance.

3. Classical jmtegral varjational problems with common boundary.
Now we want to deal with variational problems (in the traditional sense
of the term) determined by integral functionals. Let X,: = Z.(Z) be
a C*-manifold of compact oriented m-dimensional submanifolds with
boundary of class ¢* of an n-dimensional Hausdorff (®-manifold .
P %) is of the FS-type. .

Remark 2. The construction of the differentiable structure on
Z, (%) has been given in [2]. The submanifolds considered there were
nob required to be oriented. However, this additional condition does

_ not- change the construction. -

From now on we assume our finite-dimensional manifolds and their
morphisms to be of class C*.

Lemva 1. A morphism . mapping a compact manifold with boundary
Q into Z is a diffeomorphism of Q onto a submanifold with boundary of &
if and only if it is an injective immersion. Then ((02) = 8(u(Q)).

Proof. Let z,eQ. There exist an open neighbourhood U of 2, and
an open neighbourhood V. of (%) such that ¢| U is a diffeomorphism of
U onto a submanifold with boundary of V and | U generates a bijection
of 82 n U onto 8 («(Q)) (a conclusion from the inverse function theorem).
Since ((Q2\ U) is compact, there exists an open subset V' of ¥V with
Hzo)e V' and V' A o(Q\TU) = G as ¢ is injective. Thus ¢|: (V") is a diffe-
omorphism of (V') (= U) onto a submanifold with boundary of V.
() is then a compact submanifold with boimdary of .

Let @ be a finite-dimensional Hausdorff manifold and m: @ — &
— a morphism. )

LevwMa 2. The set ¥, of poinis Qe (¥) for which mou, satisﬂes the
assumption of Lemma 1 is open in 2. () (1o being the canonical injection
of Q into @),

Proof. Let &, be the space of all diffeomorphisms of Q into # (i. e.,
on1.3o submanifolds with boundary of %) equipped with the topology of
um.form convergence of all derivatives. We divide the proof into two
parts: first we prove that ' v

(a_b) thg-e exists a neighbourhood @ of tp in &, such that if %<0 then
® 02 1§ an immersion; then we prove that

icm
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(b) there exists a mneighbourhood @ of i, in &,(¢' < 0) sueh that
if #¢0 then = ox is injeciive.
The set

{Q' e, (#): there exists xe@ with Q" = x(Q)}

will possess the required properties.

“Ad (a). Let (U;) be a finite covering of (= 0 1,)(2) by domains of
charts of 2. Let us consider three finite coverings of io(f2) open in
: (n7'(Uy), (V;), (V;) — the second finer than the first, V; — being
a relatively compact domains of a chart of #, and compact ¥; being
a subset of V; for every j (%, as a locally compaet manifold is
normal).

Moreover, let {7 (V})), (W), (W;) be three finite coverings of Q
open in @, the second finer than the first, W; being a domain of
a chart of Q and compact W, being a subset of W; for every I (2, as
a compact space, is also normal). '

For every ! there exists a continuous function (= 0) of image points
and first derivatives of mox|W; which is positive if and only if mox|W; is
an immersion {e.g., the sum of- moduli of decomposition coefficients of

the image by xT(m:m) of an m-vector field tangent to £ in the base
generated by the chart of Z defined on U;). This function takes in W;
a minimom value >0 when calculated for mo:,. Now we can take
a mneighbourhood of ¢, in &, such that, for » from this set and for.
every I, image points and first derivatives of mo x|W; and = o p|W;
(taken in the coordinates) differ wuniformly sufficiently little (these
differences, by the mean value theorem, can be estimated from above
by the upper bound on W; of the differences of image points and first
derivatives of » and i, and the upper bounds of first and second-order
derivatives of & on the corresponding V,). Thus our test function will
remain positive when applied to mox if » is taken from the selected
neighbourhood of ¢, just selected (since it is uniformly continuous on
a compact neighbourhood of the compact set of its arguments taken
when ¢, |W; is considered).

Ad (b). The covering (U,) in the proof of (a) can be chosen so that
in the loeal coordinates for every I a common subspace supplementary
80 L'y (T 2) o1 every 2<W; can be selected. Now the inverse funetion’
theorem states that, for every ze¢f, mo x(xedy) is a diffeomorphism on
a neighbourhood of » common for » such that s o » and its derivatives
to the second order inclusively do not differ largely from = o ¢, and its
corresponding derivatives (uniformly on every W;), which is guaranteed,
in virtue of the mean value theorem, by the analogous requirements
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for » and s(m is of class C® and so its derivatives are bounded on
every V;).

Now suppose that for every neighbourhood of i in &, subordinated
to the one just selected there exist its element x and ] # a5 (points in Q)
such that mo x(#¥) = wox(x}). Let a— (z7e, 45%)e 2 X 2 be a sequence
convergent t0 (@, %,) (21s compact) with #, —> 15 in £,. As n(a morphism)
is of class C', w 0 #, —» 0 o uniformly (by the mean value theorem). Thug

O 9%, (27%) > wor,(m), =oO 2 (05%) —> 750 1o (),

j.e., 0 to(y) == O 1p(@,). Bubt mo ¢, isan injeetﬁon. Hence o =%, =: 2.
‘We have shown, however, that there is a neighbourhood of # in Q 0(z)
such that, for every » sufficiently close to io, | &(2) is a diffeomorphism.
Thus we have got a contradiction.

Let us suppose that ¥, is not void. We define on the open subset
Y, of #,(%) a mapping I, that assigns to a submanifold its diffeo-
morphic image in & under = o ¢, (the orientation being that shifted by
7 O 1g), 1. €. & point of X, = Z,(%).

LeMMA 3. I, is continuous.

Proof. Lemma 3 iy an immediate conclusion from the fact that
(see the proof of Lemma 2) on every Wz derivatives of the %-th order
of (w0 #,—m o x,) (in the local coordinates) can be estimated from above
by derivatives up to the k-th order of (s;— »,) (%, %3¢ &) and the upper
bounds on the corresponding 7 of derivatives up to the (k-+1)-th order
of z (the mean value theorem) if », liesin a sufflelently small neighbourhood
of %

ch, as an open subset of £, (%), is an FS-manifold of elass C*.

LeMvA 4. II,: ¥, — X, is a C®-morphism. )

Proof. The proof is fully analogous to that of Theorem 2 point (b)
in {3] {one needs only to replace the morphism @, appearing there by
mody).

From now on @ will denote the manifold J,, (%) of oriented m-di-
mensional elements tangent to % (i.e., the Grassmann manifold — see
[2])- = will be. the natural projection in the manifold of tangent elements.

As D, we take the mapping of X, into ¥, which assigns to every

QeX the set of m-dimensional oriented elements tangent to 2 — which .

is an m-dimensional compact submanifold with boundary of #, i.e.,
an element of ¥,.

LeMMA B. D, (being obviously a section of II,) is continuous.

Proof. We cover D(2) by domains of charts of J,,(Z) generated
by charts of Z (see [1]) and choose a finite covering (U;). Let X, (xe&p)
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be the morphism from Q into J, (%) which assigns to every point » of
Q the m-dimensional oriented element tangent at x(x) to »(£). Let
(X HT), (W), (Wy) be three finite coverings, the second finer than
the first, W, being a domain of a chart of Q and a compact W, = W; for
every . The differences on W; of X, and X, , and their derivatives up to
the k-th order can be estimated from above by the upper bounds on
TV: of the differences of x» and ¢, and their derivatives up to the
(k+1)-th order (in the local coordinates).

LevMA 6. D, is a C°-morphism.

Proof. We shall consider on X, and Y, atlases of the type constructed
in [3] with charts described by sixes (N, @, H, ¥, C, &), where N is a vec-
tor bundle over some estension £ of a submanifold QeX, (Y,),4.e.,
over some m-dimensional submanifold without boundary -containing
2, ¢ is a diffeomorphism of N onto an open neighbourhood of Qing (%),
H is a vector bundle over 0.0 diffeomorphic (through ¥) to a neighbour-

hood of Q2 in :(.J, C is a linear connection in N, and £ is a real function
possessing some additional properties (see [3]).
Let (N,, &, Hy, ¥,, C,, &) determine a chart x; at Q¢X,. Let

N,: = Hom (T(D ) Ni) @ N;. N, can be treated as a bundle over X, (Q)
(for the definition of X see the proof of Lemma 5) as X,z is a dlffeomorph—

ism of 0 into I (Z). Let us define a dJﬁeomorpmsm @2 of N, onto an
open neighbourhood of X, (.Q in J,,(%)(X5(2) is an extension of D, () )-
We assign to a point (I o) (1eHom(T(.Q), N, ueN ) from the fibre
over pe2 a tangent element in the following way: let (¢;) be a base for
T,(2); we take an element generated by a simple non-zero m-vector
A (e+1(e
i=1
point ).
Let H, and ¥, be the same as H; and ¥, provided we identify points

diffeomorphic through Xy Let & = £ =: & (, will be constructed
in due course.

Now it remains to show (we trivialise H,) that the mapping

;) tangent to N, at u (e is a C,-horizontal lifting of ¢; to the

-1

I@,N)x 0°(02) > ¥ > x5 7,2 1o, m)x =)

is of class 0%, x, and x, being the charts under consideration for X, and
¥, respectively (see the proof of Theorem 2 in [2]).

Let (#,0 D,0 %) (v, ¢) =:(6,%). One can easily see that » = ¢.
So we have to show that the mapping’ (v, ¢)—>6(v,p) is of class O%.
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We choose the connection Oy in Hom (T (Q), N 1) @ IV, as follows: points
of N, are to be displaced parallelwise according to €, and the displa-

cement in Hom(T(b), N,) is to be generated by C, and a connection

in T(.é) for which the parallel displacement along the curves t—(p, t)e
€dQX]—r,r[ =~ H, agrees with the trivial structure of T (H,)
= T(@R)x]—r,r[ X R. We have . .

(@, ¥y) = I(@, Hom (T (), I,)) x I(2, 7y)

(the topologies being those of uniform convergence of all derivatives). -

Furthermore, the superposition

#goDgony” 1
I(Q, Ny x C°(02) =1

>F(.Q Ny)x 0°(02)—»TI'(2, N,)~I'(2,N,)
— is just the projection on the first factor and thus is of class 0=, Now
we need only to prove that the mapping

(v, @) > Dty © 9(«:, g)eI'(2, Hom(T'(2), Nl))

is of.class C*.

Let us cover 0.2 by a finite number of chart domains (9 The pomts of
N, lying over H, can be represented locally as triples (9, @)e B™ 1x
X B*x R*™™, the trivial structure being determined by the paralled dis-
placement along the fibres of H,. Now let (@,) be a finite covermg of
ON\H, by chart domains of Q such that the intersection of @; and H,
does not contain points with ¢ < $» for any j and that a3 ((9) is trivial.
Restricting the consideration to functions ¢ with |p| < 7/4 we see that at
points of LD} the displacements along fibres of H, will not intervene
when x is being computed. The family (&;% [0, 7, &;) is a finite covering
of Q. Let (f;, f;) be a subordinated partition of unity (of class C®). It
can easily be verified that I(w,p): = pr; o 6(v, ¢) is linear in v. Hence

i
U st Do) = 310, 9+ 3 im0

We define [;(v, ¢): = 1(fi, 0), Li(v,9): = I(f;v, ). We shall prove I,
and I; to be of clags €*. Let k; be a smooth function on 82 equal to 1 on
the 001npact subset wg (suppf;) of @; with a compact supph; = @. The
mappings

D(Q, Ny)so—>1;: = (fv, T(fiv)y) «0®(Q, Rr—mtmin-m)
and the ones similarly defined for every j and
02(09)2p 0™ (@, B,

2D’y 1) 1 = (@) @(p") £(2), by (0') T () £ (1)

icm°®
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for (p’,1)e@;x [0,r[ (and 0 elsewhere) are 'linear mappings continuous
in the topologies of uniform convergence of all derivatives, and hence
of class C™. One can easily notice that I; does not depend on ¢ and I;
depends really on @; only. Furthermore, I;(v, ¢) is equal to zero beyond
the compact supp f; = ¢;x [0, and so is I;(v, ¢) beyond the compact
suppf; = ¢;. Thus I; maps into a closed subspace of I‘(.Q, Hom (T(2), N 1))
consisting of sections vanishing beyond suppf; and analogically for
every l;. But this subspace is isomorphic to the closed subspace: of
0™ (Q, R™*=™) consisting of mappings equal to zero beyond suppf; and
analogically for every I;. It can easily be verified that I,, treated as a map-
ping into ¢°(2, R™»~™) possesses, as a result of the choice of O,, the
form

Li(v, @) (p'y 1) = 6i(p'7 i ?;i(_p’; 1), 51:(2"7 Z)),

8! being a smooth mapping vanishing for (p’, H¢@;x [0, r[. It is even
more evident that

Zj(vy ‘P)@) = ai(p, ’EJ(_(p))s

¢ being a smooth mapping equal to zero beyond ¢;. Such mappings are
of class 0% (see [3]). Thus 7, as a sum of C™-morphisms, is of class C%,.
which we were fo show.

We define f, as follows: let I be a Lagrange function (i. e., a posi-
tively homogeneous function on the manifold of non-zero simple m-vectors
tangent to ¥ — see [1]); on every m-dimensional submanifold, L deter-
mines in a natural way a tensor density .#; f, will assign to QX the
integral of % over Q.

LEMMA 7. f, is of class O

Proof. Let us cover D(2)(2¢X,) by means of a finite number of
relatively eompact domains U; of charts of J,,(&%) genemted by charts

of & (a, &) =n’z%'1li'.'.lin being the corresponding coordinates). Let

.........

(g;) be a subordmated 1)aa't1t1on of unity of class C®. On some
neighbourhood of £, f, is a superposition of D, and a function which
assigns to a subimanifold of J, (%) the sum of the integrals over £ of
forms g;(x, &) Iy(e, £)dz* A ... A do™, where I, is the local Lagrange
funetion for U (see [1]). D, is of elass €, and a function assigning to
submanifolds the integrals of smooth forms over them is of class (" (see
[2]). Thus f, is of class O*
We recall that (after [2])

T, X, = I'(Q, T(%))/I'(Q, T(2)), ‘
where I'(2, T (%)) is the space of smooth vector fields on Q and I'(2, T’(Q))
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is the space of smooth vector fields tangent on int 2 to 2 and on 9% to
9%, the topologies being those of uniform convergence of all derivatives.
Let

4,(9) s = {[0] e To X, u]0Q = 0}.

The classical theory of geodesic fields studies fields (I7,, D,, g5, §,)
" of the problem (f,, 4,), g, assigning to every submanifold («Y,) the integral
over it of a @-horizontal m-form % on J,, (%) and s,: X, — Y, being gen-
erated by a section o of J,,, (%) over Z.

By [2] g5 is of class 0" and

®) Togs([ul) = f’ltJ ad— fu__] 9,
o n

where [u]eTo Y, = I'(Q, T(®))/I'(2, T(Q)).
Leawma 8. ([u] s Il-vertical) <> (there exists a m-vertical vector field
u' on £ such that [uw'] = [u]).

Proof. By [2] there exists a homotopy 2x]—r, r[>(p, t) = h(p, 1)
e, (%), where h(p, 0) = p, (., ?) is a diffeomorphism onto a submanifold

. Hence

£=0
i=0]

Thus [u] is m;-vertical if and only if Tw o u om|5’ EP(HC(Q), T(]I,_.(Q)))‘ Butz
is a diffeomorphism of Q onto IT.(2). Thus there exists u” <I'(Q, T(Q))
such that Twow' = Trou. We set ' : = u—au’.

From the definition of g, and Lemma 8 we get

COROLLARY 1. g30 D, = f, and Tpgs gives zero when acting on I~
vertical veclors for every QeX, if and only if

IX _|9(X) = L(X), .

I (X|Tx | d(X)> =0 for every simple m-vector X tangent to &,
where X is the tangent element generated by X, and for every m-vertical vestor
Yy tcmgcmt at X to J,(%).

On /\ ™ [7m(Z) (i.e., on the bundle of horizontal m-covectors

tangent to J,, (%)) there exists a canonical sz,-horizontal m-form g (715 755

denote the projections of /\T* (T (Z)) onto J,,(%) and & respectively).
We immediately get

Lmyvma 9. 4 satisfies I (see Corollary 1) if and only if it is section of

- with the boundary of J,,(%) and =%

a7 o h(p, 1)

TolT,([u]) = [ >

icm
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’ m S "
5 = {oxe R T (u(@): <X Haz = DT}
- Y

(X is a simple m-vector generating the tangent elemexg X).

&' is a submanifold of AT (T (Z)) of codimensiox 1.

Proof. The first assertion is obvious. Showing &’ (‘X,nl HT,) to be
a submanifold of ;' (U,) for some covering (U;) of J,(Z), we shall com-
plete the proof.

We take U, sufficiently small, so that there exists a section § of
m -
A T(U;) over it taking values in the set of simple m-vectors generating
at each point the basic tangent element. The function

F 1= {(8cm, | 6> — LoSom,

is obviously a submersion and & nap'(U,) = F'({0}). F~'({0}) is of
course non-void (by the finite-dimensional variant of the Hahn—Banach
theorem). Hence & N z7*(U;) is-a submanifold of a7 (U,) of codimen-
sion 1.

LeEMMA 10. Conditions I and II of Corollary 1 are equivalent to the
following one:

IIL. & is a section of &, where &: ={wxe /\ T (T .(Z)): 2
b) (X !Y | dﬁ(wx)> = 0 for every my-vertical vector Y, ¢ tangent to &'
at ox and X — a simpls m-vector generating X}

’
) wxed,

Proof. First we shall prove the following fact:
(ot (X]YMX_! dﬂ(wx» =0 if ¥, is a ay-vertical vector tangent to
&' at wx and X generates X.

(«) follows immediately from the invariant formula for df (6 is
m,-horizontal):

X

(X|T,p 1dB(0x)y = (—1)"HT

<XI9/

But (X |6 = L(X) = const. along the m,fibre of &. Thus, for a section
9 satisfying I and IL we have

(4) ' <Z|?6(X)_ldéo‘79(x)> = <X|T“1(?a(;n)_ldﬁ(x)> =0,

and # is a section of &.

Conversely, if # is a section of &, then it is also a section of & and
satisfies I. Now (4) shows that II is also satisfied (we put Yy to be
an arbitrary lifting of the given m-vertical vector Tz, (Y,x,) tangent
at X to J,(&) ’

THEOREM 3. & is a submanifold of A T (T,(%)), 7 (E) = Tn(®)

and m,| & is a submersion. dimé = nt (:Z’) —1.
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Proof. See an eleganj:,p‘ff;)of in [5].
We define 8 to be j#e restriction of 6 to 4.
Being often coneidered is an open subset ¢ of & of ordinary points,

i.e., of points
is an immergion.

Lemya’11. we 0 if and only if the mapping ¥, — Y, 140 (¥, being
a ng-@erti'éal vector tangent to & ai ) is an isomorphism onto the subspace

t which the canonical mapping A of & into /W\L (%)

m
of A Toyny (%) containing m-covectors which give zero when adiing on simple
- m-veclors generating m, (). i )
Proof. By the definition of &, ¥, _|d8 lies in the subspace just
described. Since the diagram

mox
& ——— A\ TH (&)

J(n,, l;

x SN

is comutative, it suffices to show that our condition is equivalent to the
following omne:.

{B) 4 acts injectively on the m,-vertical subspace of T.é.
) But t;he. subspace tangent to the fibre of })\Z T*(Z) can be canonically
identified with the fibre. Let t —«(1) be a curve in & and 2(0) = »
73 (2 () = 7y (). We have ’
dn (1) >
t=0 B

dr(w(t))
at @

dat

<X"z(1) )> = <an(aa)
t=0

4 = d
=3 ((Zn@ Az 1] |y = 7 (Faia 1 6@ limo

T2 (

dx(t)
dt

= (— 1)p+1 <Xn2(.z)

for a itrar - X Iy i i
0 arbitrary m-vector X oo €A Ty (£). Thus, as the dimensions

ﬁjgrse, we have proved (B) and the condition of the lemama to be equiva-
nt.

_ d@(m)>

Y=

As _the section s, of I7,, we take a mapping s, which assigns to every
submamfold.(exn) its image under a section ¢ of I (%) over Z.

LeMwa 12. s, is continuous.

LEeyMa 13. s, is C®-morphism. .

The proofs of these two lemmas pr 3
of Lo a8 proceed on a full analogy to those
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LeMMA 14. T(gs 0 85)| 4. = 0 if and only if d(c*B) = 0.
Proof. By 3 we have

Ta(gs 0 3)([8]) = [u 18(c"9)— [u 15"
. o . 82

Since if #|9Q =0 then [u]ed,, we have d(c"#) = 0. Conversely, if
d(c*®) = 0 then Tq(g, o 8,) ([#]) = 0 for « such that |82 = 0.

From Corollary 1 and Lemma 14 we get

PROPORITION 1. (#, o) generates a g. f. (Iyy Doy 9o, Sa) Of the problem
with common boundary if and only if 9 is a section of & and a(c*9) = 0.

LeEMMA 15. For every QeX, there exisis a neigbourhood U of Q in X,
such that if Q' U, 8Q" = 3Q then Q' is connectable with Q by means of an
integral C®-curve of A,.

Proof. We take at 2 a chart from the atlas defined in [2] determined
by a six (N, ®, H, ¥, C, £). Then Q' with 00" = 02 is represented by
a section u over £ of a vector bundle N having an extension of Q as the
base. The superposition of the curve ¢ — fu with the inverse chart satisfies
the requirements of Lemma 15.

Let &, be a positively homogeneous function on the manifold of
simple non-zero m-vectors tangent to & defined as follows:

E(X):= L(X)—(X1]d"9).
Thus
E,(Q) = [6, — where the integral is understood as the integral-
Q

- of the corresponding tensor density generated by &, on Q. Let V be

a neighbourhood of D(Q;) in J,(%). If &, >0 on 7 {(V\D(£,)) (where
7 is the canonical mapping from the manifold of simple non-zero m-vectors
onto J,,(%)), then B,(Q) >0 for Q # £, such that D(2) <= V. If £, 20
on 5~ *(V), then E,(2) > 0 for Q such that D(Q) = V. .

Let us summarize the results concerning classical variational problems
with common boundary: :

THEOREM 4. Let Q, be embedded in a Lepage g. f. (II, Dy, gs, 85)
of (fsy Ao). Let &,20 (6,>0) on (V) (7' [V\0(2,)]), V being a
neighbourhood of ¢(8,) in J,,(%). Then f, has at 2, a relative (essential)
minimum in the class of submanifolds with common boundary.

REMARK 3. A. Liesen gave in [5] a local construction of a.broad
class of Lagrange geodesic fields in which a given critical submanifold
was embedded. The variational problems considered there were assumed
to lead to non-void ordinary submanifolds of &.

4. Classical integral variational problems with movable boundary.
Assume we are given an integral functional on the set of compact oriented
submanifolds with boundary. The search for its extremal points, while the

.
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class of submanifolds boundaries of which lie on & given surface is being
compared, is the aim of the theory of classical variational problems with
movable boundary. In the present section we shall formulate those prob-
lems in the language of Section 2 and give the construction of some geodesic
fields which lead (through Theorem 2) to reasonable necessary conditions
for a minimum (maximum).

Let X : =X, fi: =f,. Let Zbe aclosed submanifeld of &, which is to
contain the boundaries of submanifolds which are being compared. We
seb 4,,(2) to be the get of vectors tangent to C*-curves in &, (% ), the
boundaries of whose points lie in # if §2 = & and {0} for other Q. Let
£,eX,, be a critical point of the problem (f,,, 4,, Wwith 2, < #). We set:

Y, := Y,x X', where X' is the open submanifold of Z,_,(%) con-
sisting of all submanifolds X for which 4 = @,

D,,:= (D, 382,) — being constant in the second factor,

II,, : = IT,opr, where pr, is the projection of ¥,x X' onto the first
factor. : :

Let Q, be embedded in a g. f. (IT,, D,, g,, ;) of (f,n, 4,) — the problem
with common boundary. ‘

Leyva 16. Tgn(gcosc)(e) =0 if Tﬂofm(e) = 0.

"Proof. :

0 = Toufm(6) = Ta,(9:0D2)(6) = T ap)c(Ta, Dole))
= Tsc(aﬂ)gc(Tnosc(G)) = T, (4:0 5. e)

as D (Q) = s,(2;) and (Tgosc(e)—l’gul)e(e)) iy IT-vertical.

Let (IZ,, D,, g., s,) be of the Lepage type, i.e., let g, = g, and let
8, = 8,. We have d(s*9) = 0. Suppose that there exists an (m— 1)-form
¥ on & for which d¥ = ¢* 9 (e. g. let & be contractable). We set

In((Q D) =g ()— [P+ [,

a8,
5.(Q): — {s.(2),09) itaQc B,
™ (3.(2), 02,)  otherwise.

Lmwats 17, (I Doy gy 8) 08 @ w. g. f. of the problem. (f,,, 4,,)-
Proof. That T Dy Im (€)= 0 for a IT,,-vertical vector e follows directly
from an analogous property of D, and gc, and the following consideration.
Tgafm] 4, =0 as Qs a critical point of (f,,, 4,,). Thus Ty (g508.)| 4,
=0. But gyos,(2) = Jor*ﬂ;‘a [ ¥. Tet us take at Q, a chart % from the

atlas defined in [2] determined by a six (N, @, H, ¥, , &), H being trivial.
Let £ X, be a C®-curve in X’ with X, = 0Q,. Utilising the connection
0, we can treat my' (H) =: @ as a vector bundle isomorphic to 75 (0 2,)DH
(02, being its zero section). Thus we have a mapping of a neighbourhood
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of 82, in X’ into I'(dQ2,, §) induced by § — the canonical injection of
% into Z. This mapping is of class O™ (the proof of the fact proceeds on
a full analogy to that of class of I7, in Section 3). Thus Z; generates C*-
curves 8, and B; in I'(8Q,, N) and I'(0RQ,, H) = C*(9Q,) respectively.
Let £eCP(RY with £(0) = 1 and £'(0) = 1. Then the mapping Z from
I'(6Q,, N) to I'(2,, N¥)

for z¢H,
for z¢H,

[/ i )
(2(0)) (@) : = O(ﬂatwﬂ:( )

is linear and continuous (i, is the fibre coordinate in H of x). Thus
t—> (B, Z(8,)) is an integral C®-curve of A,,.

We have shown that every -curve in X' passing through 98, can
be obtained locally at 902, by taking boundaries of points of an integral
C®-curve of A, in X,,. Hence the derivative of the (l-function X'>X
— [¥is equal to 0 at 0.2,. )

REMARK 4. Let us take ©’ lying in the domain of the chart » generated
by (N, &, H, ¥, 0, £) and such that 4Q' { = &) is connectable with 8,
by means of a curve which can be obtained by taking boundaries of an
integral C®-curve of A,, t— £, running in the domain of x. Of course
the end-point of £2; (i.e., the point 2, for which 82, = 92') can be
connected with Q' by a C®-curve of submanifolds with common houn-
dary. Thus £° can be connected with Q, by a continuous curve being
of class ¢ and integral of 4,, everywhere beyond one point..Moreover,
left- and right-hand limits of first derivatives at that point exist for
both pieces of the curve which were obtained by restrictions of longer
curves. Thus, changing suitably the paramefrisation, we can obtain an
integral C'-curve of 4,, connecting Q" and £2,.

Before we can show the differentiability of s, in the weak sense,
9 classification of integral curves of 4,, must be established.

PrOPOSITION 2. Hither integral C'-curves of 4, are constant or the
boundaries of their points are contained in %.

Proof of Proposition 2. Let Is{— £, be an integral C*-curve
of A4,, I being an open interval. Let I, consists of points ¢¢I for which
092,¢% and 1, := I\I;. As & is closed in %, I, is open (f — £, is of course
continuous). I, is convex as well. Indeed, let ¢;el,, ¢ = 1,2, ¢, <1, and
leb 1= inf{t: £, <t <ty, tel,}; if ¢’ exists thent, < t' < ¢, and ¢ <I,. But
8Q,/0t = 0 for ?, < t< ' whence Q, = const., contrary to the continuity
of ¢ ©Q,; thus ¢" does not exist and teI, for ¢, < t<<t,. Now let 1, o> Tel,
tuel;. Then @ =9, Q. =lm& =9,, whence §2.¢% and vel,
and I, is open. Thus either I, or I, is void, which completes the proof
of Proposition 2.
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PROPOSITION 3. 8: 2, (%) > Pp_1(Z) s of class C%. .
Proof of Proposition 3. £,(%) is equipped with the finest topol-

ogy in which the canonical injections I, of all &, are continuous. But

dol, is the superposition of the continuous mapping £,2 %~ %[0 with
I, and thus is continuous. Let us take at Q,¢#,,(%) a chart » determined
by a six (N, @, H, ¥, 0, £). G := zny5' (H) can be treated as a vector bundle
isomorphic to =3 (02,) @ H over 02,, myomy being its projection (the
linear structure in fibres being defined by means of parallel displacement
in ). Thus the couple (&, ®|@) defines at 92, a chart » for .@ (%)
(02, is a submanifold without boundary).

(9, N)x I'(092, H) =25 100, @) =~ T'(0Q, N)x I'(62, H).

(rodox"Y)(8,9) = (0102, ¢). Thus vodox"' is of class C% as
a linear continuous mapping (provided all spaces are equipped with
the topology of uniform convergence of all derivatives).

PROPOSITION 4. The set X' of all Ze?,,_ (%), Z = &, for which 0Z = @
is a C%-submanifold of 2, (%) whose differentiable struciure coimcides
with that induced from Z,,_.(%):

Proof of Proposition 4. It is obvious that the topologies of X'
induced from #,,_, (%) and #,,_;(%) coincide. Now let us take a tubulam

neighbourhood of # in % i. e., a vector boundle M over & and a diffeomor-
phism of a neighbourhood of its zero-section onto an open neighbourhood of
% in Z coinciding on the zero-section with ng;. Let O be a linear connection
in M, X, X', and let v be a chart for &#,,_, (%) at X, determined by a couple
(N, D). n%‘(N) can be treated as a vector bundle over X, isomorphic
to nJ"T; (Z)) ® N, myonz being its projection (the linear structure in fibres
being defined by means of parallel displacement in M along radii in
corresponding fibres of N). Thus there exists a neighbourhood @ of X,
in & and its diffeomorphism ¥~ onto an open neighbourhood of the
zero-section of a bundle M @ N coineiding with the zero-section of M @ N
on X, and such that 2e# N 0 if and only if ¥~ '(2)eN (¥ is a subbundle
of M @ N). As X, is compact, we may assume that ¥~ maps onto M @ N.
The couple (M @ N, ¥) determines a chart » for £,,_, (%) at Z;. Locally,
in the chart x, #,_ (%) = ['(Z,, M) X I'(Z,, ¥) and ZeX if and only
if Ze{0}x I'(Z,, N) with »| X" = » which completes the proof.

Now the fact that t—s,,(2,)e¥,x X  is of class Ot for an integral
Cr-curve t— 2, of 4,, follows immediately from Propositions 2,3, 4 and
the definition of s,,.

Moreover, g,(s,,(2)) = const if 02,4 & for every i, or g,(s,(2,)
=go0s,(Q)— [¥+ | ¥ = fm‘/‘ P[P = def~fY'+fW

2 82y 2 2 2 022y
= const. if 695 < & for every i. The other assertlons of Lemma 1( can be

verified immediately.
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Lemma 18. There ewists an open neighbourhood U of 80, in # and
a closed (m—1)-form y on it for which #*f*Y = 2*yp on U (where 2, § are
the canonical injections of 082, into & and of & into & respectively).

Proof. We take a neighbourhood U of 82, in # which is isomorphic
to a vector bundle N, 02, corresponding to the zero-section of N (the
so called tubular neighbourhood). We put u : = miyz* "W, =y being the
projection in N.

Let &, be a function on the mamﬁold of simple non-zero (m—1)-
vectors tangent to U defined as follows:

&(X):= (X | P—p).
We have for Q sufficiently close to Q,, 80 = %:

= f"fcﬁ" fé’b’

where E,, =f,— 0,0 8, is the Welerstrass function for (I7,,, Dy, gy Sm)
(the last component of (5) has been obtained by virtue of the Stokes
theorem).

Finally we give .

Leda 19. There ewists a neighbourhood U’ of 2, in X, such that
every 2 U, 002" < B, is connectable with Q, by means of inlegral G*-curves
of 4,.

Proof. See Remark 4.

Summarizing the results concerning classical variational problems
with movable boundary, we get

TamorREM 5. Let O, be a critical point of (fn, A, ‘embedded in a Lépage
geodesic field (11, Ds; g5, ). Lot &, 0 (&> 0) ot (V) (7 THVNDH(20)])
and &, 0 on 7~ Y(V'), V being a nghboz?.ood of D(L,) in J,,(Z) and
V' — of Dy(02y) in I, (#). Then f, HAas at Q, a relative (essential)
minimum in the class of submanifolds with @ movable (longswise &) boundary.

Suppose that our g.f. (II, D,, g5, 5,) is of the Carathéodory type,
i.e., that rang ¢*9 = const. = n—m. Then a somewhat more geometric

(8) B,(Q)

" condition for an extremum of f,, can be given. Let

Centr, 6™ 9 1= {X T (%): X, _| *¥(z) = 0}.
Let Centro™9:= | Centr,c*9. Centro*® iz a distribution (of sub-
Z

Ze.
spaces of tangent to Z spaces).
PROPOSITION 5. Centr ¢* 9 is a distribution of class C® (i. e., @ subbundle
of T(Z)) and is totally integrable.
For proof of Proposition 5 see for example [6].
At points xeQ, Centr,o*¢ is transversal to T,0Q, as (X,|c* 9>
= L(X,) > 0, X, being a p-vector tangent at & to 2, with 5(X,) = o(z).
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Thus for every meéo( !50 being an extension of Q) there exist a neighbour-
hood U, of # in & and a diffeomorphism yz,: U,x K(0, R,) = T, for
which (U, 0 Q) = 1.(Ux{0}) = U and 7. ({y} x (0, R,))is an integral
submanifold of Centrc™® (U, is open in 2, and K (0, R,) is a ball in
Rr™, Let W be a neighbourhood of 2,. By R;; we shall denote a relation

c Wx Qo defined as follows:

_RW , there exists a connected 1ntegra1 submanifold « W of
(@'~ 7)< Centro*# of dimension n—m, containing  and '

LueMMA 20. There exisis a neighbourhood W of Q, such that Ry, defines
a function P: W — Q,, P(W) > Q,. P is a submersion.
Proof. Let (#;) be a finite set of points 2, such that (J U;i > Q.
i

Let (U;') be a family of sets open in Q,, relatively compact and covering
2, and let U; < U;L, hold. Then there exists a sequence (r;) such that

) =2

Tt can easily be verified that W: = (J x, (U X K (0, r;)) possesses the
.3

U T2 KO, 7)) 0 [U e U7 X [K(0, $B,) E (0, 1E,)

required properties.
LEMMA 21. P*¢*¢ = o 9. ,
Proof. Let X,, ..., X,, be vector fields on W such that TP(X,),

'P(X,,) are vecter fields on 2, and TP(X,)
immediate eonsequence’ of the following formula:

= 0. Lemma 21 is an

0 = (Xo(x) A Xy(@) A 3 A T (@)1 d(0™ ) (2))

= @) (X1 Ao A Xyl ™ 9)).
LevmA 22. If P(B)n 2, < 02, then there ewisis a neighbourhood
0 of 80 in Py_i(B) such that for 0 [F— [ ¥>0.
= ago

Proof. Using Proposition 4 and Lemmas 2 and 3, we can show that
¢ may be chosen so that, for Te@, P(X) will be a compact submanifold
without boundary which can be represented by a function ¢ on 482, if we

choose a diffeomorphism of a neighbourhood of 02, in én onto ]—e, e[ X
X 082,. Let us put

h(t, p) :=
The diffeomorphism
' 990 p > (i9(0), 1)

p(p) for pedRq,tef0,1].

el—e, e[ X 02,
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defines a curve t — % of compact submanifolds without boundary  of

[r= [r=J il [#) o= ([ 2o {5 2o

5 o

Since 0, is embedded in the field, we have .

(X,|6*#) = D(X,) >0,

X, being a p-vector tangent at & to £, comformable to the orientation.
If we choose Q, suitably, this holds for 2, also, and thus [ d%/dt _| " 90,
2t

what completes the proof.

Now the condition for a minimum which uses the econcept of a Carathé-
odory g.f. can be put in the following way:

TmrorREM 6. Let 2, be a critical point of (f,,, 4,,) embedded in a Carat-
héodory geodesic field (Il,, De, gsy8,). Let .= 0 (6,>0) on 5 (V)
URNAN D.(2,)]), V being some neighbourhood of D) in J,,(%). Let
W, P be as in Lemma 20, and let P(B) N Qy = 8Q,. Then f,, has at 2,
a relative (essential) minimum in the class of submanifolds with movable
(longswise #) boundary.

The condition assumed in Lemma 22 has a geometric i;terpreta,tion.
It means that'# (in a neighbourhood of d02;) runs outside the surface
PHO0,).
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