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Any separable Banach space
with the bounded approximation property
is a complemented subspace of a Banach space with a basis

by
A. PELCZY NSKI (Warszawa)

Abstract. The result announced in the fitle is proved.

Recall that a separable Banach space X has the bounded approxi-
mation property (=Banach approximation property in the terminology
of [4] and [8]) if the identity operator on X is a pointwise limit of a se-
quence of finite-dimensional operators, equivalently if there exists a se-
quence (4,) of finite-dimensional operators such that 4, 0 for
=1,2,... and

1) limﬂw-——Z'Ap(m)H —0 for meX.
. - n =1
Clearly (1) and the Banach-Steinhaus Principle imply
n
(2) 7 SHPHZAﬂH =K< + .
7 p=1

The purpose of the present note is to prove the following:

THEOREM 1. A separable Banach space X has the bounded approwmi-
.mation property iff X is a complemented subspace of a Banach space with
a Schauder basis.

J. Lindenstrauss ([5], Corollary 4) proved recently the same fact
under the additional assumption that X is isomorphic to a separable
conjugate space. In this case, by a result of Grothendieck (cf. [1], Chap.
1, § 5, No 2), the condition “X has the bounded approximation property”
is equivalent to the (formally weaker) condition “X has the approximation
property”. Theorem 1 improves also Theorem 1.1 of [8] which states
that a separable Banach space has the bounded approximation property
iff it is a complemented subspace of a Banach space with a Schauder
decomposition into finite-dimensional subspaces. The last paragraph
of the proof of Theorem 1 is in fact the same argument as is used in the
proof of Theorem 1.1 of [8]. : ’
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Proof of Theorem 1. The part “if” ig trivial. To prove the “only
if” part, let us pub B, = 4,(X); m = 0; m, = dimE, for p =1,2,...
It follows from the Auelbach Lemma (ef Taylor [9]) that there exist
one-dimensional operators BP: B, B, with [BP| =1 (j = 1,2, ..., M)

1?11}
such that B“”(e = ¢ for ¢cH,. Let us set
0P = my? B]{p)
(r=0,1,...
Clearly we have

m-

for 1 = rm,+j

yMy—1;5 § =1,2,...,m,).

(3) 5‘ CP(e) =e¢ for 6B, and max HZG’“’ ”
l\q<m i=1
Let us set
Ay =CPA, for s =mitmit ... +mi+i

(i=1,2,..

wmp; po=1,2...).
By (2) and (3), we get ’

) sup || 3 4 < 1.
. o g=1 .

Thus, by (1), (3) and (4), we get

IIZA (0)—o] = tim 2 2 0P 4 (2)—

Now let us consider the space Y of all ;:equenees (fy (s) )8_1 such that
163 ed S(X)fors =1,2,.

“ =0 for #eX.

. and the series 2 y(s) converges. The opera-

=1
tions of addition and multiplication by scalars in ¥ are defined coordinate-
wise and the norm is defined by .

v = s 3

” for (y(s))e¥

Clearly Y is a Banach space. Since dim i s(X) =1, one can pick a y, ¢ A < (X)
so that |lys]§ = 1 and any ysA (X) is of the form y = ey, for some scalar ¢.
. Detine y,¢¥ by ¥,(t) =0 for ¢ #s and J.(s) =y, (8 =1,2,...). The
sequence (#,) forms a monotone basis for Y because linear comblnatlons
of the %,'s are dense in ¥ and for any sequence of sea,laur@ (os)s_, we have

1Sl <35

for n =1,2

icm°®

is an isomorphic embedding with [|THIT7Y <
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Furthermore the map T: X — Y defined by
T(x) = (4 (2)2, for zeX

4K. Finally the map
P: Y- T(X) defined by

8)) =(Es(§y(t))) for (y(s))e¥

is a projection from Y onto 7(X) with |P|| < 4K. Thus X is isomorphie
to a complemented subspace of the space ¥ with a basis. By a suitable
renorining of ¥ (cf. [6], Proposition 1), we infer that X is isometric to
a complemented subspace of a Banach space with a Schauder basis. This
completes- the proof.

Remark. 1. Theorem 1.can be easily generalized to the case of
separable Fréchet spaces (= locally convex complete metric linear spaces).
The proof presented here requires only a few minor changes.

Remark 2. In the particular case of finite dimensional spaces Theo-
rem 1 admits the following improvement:

For any n-dimensional Banach space E there exist a Banach space
F with dim¥ = a* = N and a constant ¢ with 1 <0< 14+~ such
that

(iy F > B,
(ii) there is & projection P: F 2% B with |P|| <

(iii) F has a basis, say (f)., Wlth the norm <

Sl <olS e

Sketech of the proof. By a result of F. John [3], there exists

a linear operator T: E -»I? such that |T7% =1 and ||T] < n'. Let

(#;)7~, be an orthonormal basis in 1. Let BS put B;(e) = (T(6), 2)T " (%)

,m. Then | MB,| < for k=1,2,...,n.
i=1

2

G, i.e.

forn =1,2,...,N.~

for e¢<F and for j =1,2,...
Next define C;: B—F by
C;=n"'B; for i= m—{—j

(r=0,1,...,n—13;7 =1,2,...,m).

N. We define F to be the space
N with the

»
Then | Y Gl <1+n " forp =1,2,...,
i=1

of all sequences (y,)Y, such that y,eC;(E) for & = 1,2, ...,
norm defined as the ga.uge of the convex body

111H< 1 U{(ym JeF: y; = Cile);
N; llell < 13).

conv {{ (y;)eF: sup
L<k<N

t=1,2,...,
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We identify B with' the subspace of F' consisting of the sequences {C; ()i,
for eeE.

Remark 3. It follows from 2 that for a given finite-dimensional
E and given ¢ >0 there exists a finite-dimensional F' satisfying (1)—(iii)
with ¢ < 1+e.

Remark 4. For any- finite-dimensional F there exists a Banach
space F (in general infinite dimensional) satisfying (i)-(iii) with ¢ = 1.

Indeed, this is equivalent to the existence on B of a sequence of
one-dimensional operators, say (4,),, such that D A.(6) = e for ¢cE

13 s=1
and supj 3 4] < 1. We put
k s=1 .
4, = (n2¥h1B,

for s =kn'+rm+jk =0,1,...;7 = 0,1, can—1; fF=1,2,...,m)

where B; are defined as in 2.
We do not know whether one can construct for a given finite-dimen-
sional B a finite-dimensional ¥ satisfying ()—(iii) with ¢ = 1..
Remark 5. We do not know whether the unconditional analogue

of Theorem 1 is true even for finite-dimensional spaces (ef: [8], Theorem

1.1, the “unconditional part”). :

Remark 6. Combining Theorem 1 with Ooro].'lamy‘ 1 of [7], and
Theorem 8.3 and Remark 4.1 of [8] we get

CoROLLARY. The (separable) Banach space B with a qomplementably
universal basis constructed in [7] has the Sollowing property: any separable
Banach space with the bounded approvimation property is isomorphic to
a complemented subspace of B. Hence B is isomorphic to the complementably
untversal space constructed by Kadec in. [4].

Added in proof. Essentially the same result as our Theorem 1 and the Corollary
has been independently discovered by W. B. Johnson, H. P. Rosenthal and M. Zippin
[3]. Their proof is entirely different than ours; it generalizes Lindenstrauss’ method
for eonjugate spaces. An interesting application of this approach is a result of W. John-
son [10} that every reflexive Banach space with the bounded approximation property
is isomorphie to a complemented subspace of a reflexive space with a basis.
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